Г. Я. Акимов¹, Т. А. Соловьева^{2, *}, П. И. Лобода², С. Ю. Прилипко¹

¹Донецкий физико-технический институт им. А. А. Галкина НАН Украины, г. Киев, Украина

Механическая активация кристаллизации аморфного бора и синтеза Al₃Ti при холодном изостатическом прессовании порошка состава B-Al-(LaB₆-TiB₂)

Порошковую шихту, состоящую из частиц аморфного бора, а также кристаллических алюминия и композиционного материала LaB_6 — TiB_2 подвергали холодному изостатическому прессованию под давлением до 0,6 ГПа с последующим нагревом спрессованных порошков до температуры 1000 °C. Обнаружено, что практически весь аморфный бор, входивший в шихту, перешел в кристаллическое состояние, а также зарегистрирован синтез Al_3Ti , в то время как обычно кристаллизация аморфного бора происходит при температуре 1500 °C.

Ключевые слова: бориды, аморфное состояние, давление, механическая активация, кристаллизация, синтез.

ВВЕДЕНИЕ

Композиты, полученные кристаллизацией расплавов эвтектических сплавов квазибинарных систем из тугоплавких соединений, представляют собой уникальный класс материалов, в которых обычно один из компонентов композиции имеет волоконный или пластинчатый тип структуры. Поликристаллы, полученные направленной кристаллизацией эвтектических сплавов борид-боридных систем, демонстрируют высокие механические свойства, такие как твердость $> 35 \Gamma \Pi a$, вязкость разрушения $> 25 M \Pi a \cdot m^{1/2}$ и прочность > 1500 МПа [1]. За счет армирования керамической матрицы керамическими волокнами прочностные свойства этих материалов достигли уровня механической прочности металлических. При этом твердость керамических материалов в десятки раз превышает твердость металлических инструментальных и в 3-4 раза твердость наиболее распространенных металлокерамических материалов типа твердых сплавов. В настоящее время ведутся достаточно интенсивные исследования по созданию новых композиционных материалов из порошков сверхтвердых высокопрочных керамических армированных материалов [2]. В то же время хорошо известно, что компактирование порошков перед спеканием в заготовки изделий с использованием холодного изостатического прессования (ХИП), как никакой другой метод, обеспе-

© Г. Я. АКИМОВ, Т. А. СОЛОВЬЕВА, П. И. ЛОБОДА, С. Ю. ПРИЛИПКО, 2017

²Национальный технический университет Украины

[&]quot;Киевский политехнический институт им. И. Сикорского",

г. Киев, Украина

^{*}tayzsolov@gmail.com

чивает высокий уровень всех эксплуатационных свойств керамики [3]. Для отработки оптимального режима ХИП прежде всего необходимо изучить влияние давления ХИП на физические свойства порошка, в состав которого входят частицы из армированного керамического материала. Ранее [4–7] сообщали о сильном влиянии давления ХИП на физические свойства различных порошков. Так, было установлено, что ХИП порошка частично стабилизированного диоксида циркония инициирует в нем фазовый переход из тетрагональной в моноклинную фазу [4]. ХИП порошка оксида алюминия α -Al₂O₃, снижает температуру превращения α -фазы в θ -фазу на 70 °C [5]. Обработка ХИП порошковых гидридообразующих интерметаллидов LaNi₅ и LaNi_{2.5}Co_{2.4}Al_{0.1} повышает их остаточную проводимость [6]. С помощью многократного ХИП с промежуточными термообработками удалось существенно снизить температуру синтеза порошка манганита (La_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_{3±Δ} и благодаря этому получить порошок с размером частиц 5–7 нм [7].

Целью исследования является изучение влияния XИП с последующей термообработкой при $1000\,^{\circ}$ С на фазовый состав порошка, состоящего из частиц аморфного бора, а также кристаллических алюминия и композиционного материала LaB_6 — TiB_2 .

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Частицы LaB_6 – TiB_2 изготавливали с использованием порошков гексаборида лантана (LaB_6) и диборида титана (TiB_2) чистотою 98 % в соотношении 89 % LaB_6 и 11 % TiB_2 . После механического смешивания и одноосного прессования заготовок диаметром 30 мм и высотой 35 мм их спекали в вакуумной печи при температуре 1600 °С в течение 0,5 ч. После этого материал распылялся на промышленной плазменной установке [8]. Скорость охлаждения составляла 10^5 град/с. В результате получали порошок со средним размером частиц 300 мкм (рис. 1) и внутренней структурой, состоящей из тонких волокон диборида титана (темная фаза) в матрице гексаборида лантана (светлая фаза) [9].

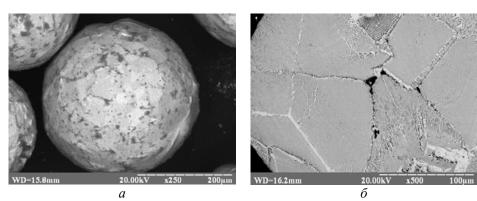


Рис. 1. Микроснимки порошка LaB $_6$ -TiB $_2$: общий вид частицы (a), микроструктура в плоскости поперечного сечения частицы (δ).

Частицы композита были двух типов: первый – частицы композита в исходном состоянии, второй – частицы композита были протравлены с целью удаления с поверхности матрицы из LaB₆. Авторы использовали протравли-

_

^{*} Здесь и далее состав приведен в % (по массе).

вание, поскольку ранее было обнаружено [10], что при ХИП протравленной аналогичной порошковой системы алюминий более плотно прилегает к поверхности частиц, а также это позволяет обнажить волокна TiB_2 (рис. 2, 3).

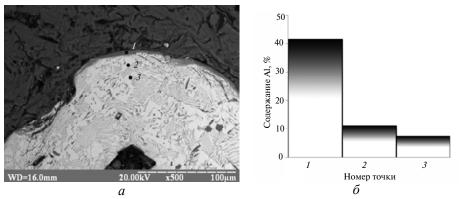


Рис. 2. Микроснимки приповерхностной области частицы порошка LaB_6 — TiB_2 (*a*) и результаты микрорентгеноспектрального анализа, которые демонстрируют распределение алюминия в частице борида (*б*).

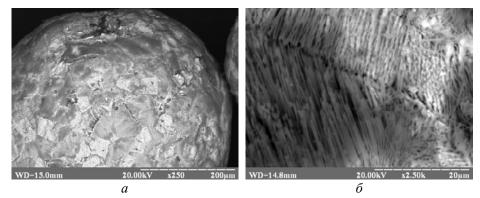


Рис. 3. Микроснимки частицы протравленного порошка LaB_6 – TiB_2 : общий вид (a) и поверхность (δ) частицы.

Следующими компонентами смеси были аморфный бор марки Б99А (ТУ. 6.02.585–75) (рис. 4, a) и алюминий в виде алюминиевой пудры (Al – 99,5 %, Fe – 0,46 %, Zn – 0,04 %) (рис. 4, δ).

Компоненты порошка (в соотношении 90 % (LaB₆–TiB₂), 3 % В и 7 % Al) механически тщательно смешивали и одноосно прессовали под давлением 0,4 ГПа в таблетки диаметром 10 мм и высотой 4 мм. Таким способом было изготовлено две серии таблеток: первая – с протравленными частицами LaB₆—TiB₂ (серия 1), а вторая – с частицами LaB₆—TiB₂ в исходном состоянии (серия 2). Каждая серия была разделена на две части. Образцы одной части из каждой серии помещали в латексные оболочки, которые вакуумировали, герметизировали и подвергали ХИП под давлением 0,6 ГПа, получаемом на установке высокого давления мультипликационного действия путем сжатия трансформаторного масла в специальном контейнере. После этого образцы, спрессованные одноосно и прошедшие ХИП, термообрабатывали при температуре $1000\ ^{\circ}$ С в вакуумной лабораторной печи.

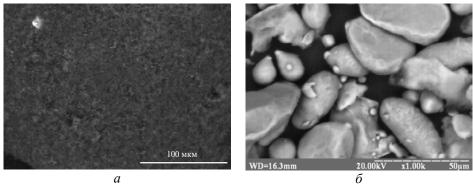


Рис. 4. Микроснимки порошка аморфного бора (a) и алюминиевой пудры (δ) .

Были проведены следующие исследования: методом гидростатического взвешивания образца в парафине измеряли плотность, фазовый состав образцов исследовали методом рентгеновской дифракции на дифрактометре Ultima IV в монохроматическом $CuK\alpha$ -излучении с фокусированием по Бреггу-Брентано. В качестве монохроматора использовали изогнутый монокристалл графита, установленный на дифрагированном пучке. Съемку проводили в угловом интервале $2\theta = 10-120^\circ$ с шагом сканирования $0,04^\circ$, время экспозиции в точке было 2 с. Результаты этих измерений обрабатывали с использованием программы для полнопрофильного анализа рентгеновских спектров от смеси поликристаллических фазовых составляющих Powder Cell 2.4. Исследование структуры проводили на сканирующем микроскопе PEM-106И.

РЕЗУЛЬТАТЫ

Измерение плотности образцов продемонстрировало следующее: после одноосного прессования порошков серии 1 и 2 они имели практически одинаковые плотности, равные 3,22 и 3,20 г/см 3 соответственно. После ХИП плотность компактов выросла: плотности образцов серий 1 и 2 стали равными 3,72 и 3,40 г/см 3 соответственно. На рис. 5 показаны микроснимки образцов после ХИП, на рис. 6 – после ХИП и термообработки при 1000 °C.

Видно, что в образцах серии 2 наблюдаются единичные акты разрушения частиц LaB_6 – TiB_2 . В то же время, в образцах серии 1 происходит массовое растрескивание и разрушение частиц LaB_6 – TiB_2 . Очевидно, что это явление обусловлено более высокою плотностью образцов серии 1. На микроснимках после ХИП и термообработки (см. рис. 6) видно, что нагрев до $1000\,^{\circ}$ С

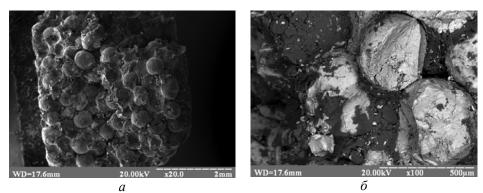


Рис. 5. Микроснимки образцов B–Al–(LaB $_6$ –TiB $_2$) серии 2 (a, δ) и 1 (a, ϵ) после ХИП (темная фаза — алюминий и бор) при различном увеличении.

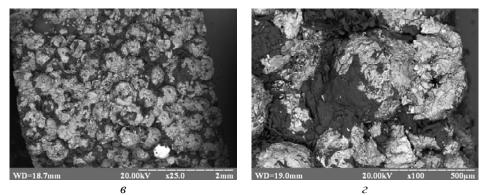


Рис. 5. (Продолжение).

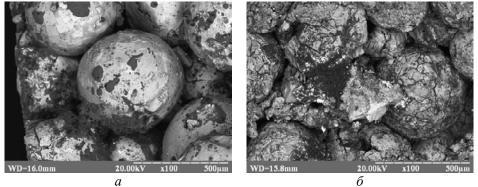


Рис. 6. Микроснимки образцов B–Al–(LaB $_6$ –TiB $_2$) серии 2 (a) и 1 (δ) после XИП и последующей термообработки при 1000 °C.

практически не изменил состояние частиц LaB₆-TiB₂, но смесь алюминия и бора (темные образования), которая находилась между частицами LaB₆-TiB₂, исчезла. Эта смесь осталась на поверхности и в трещинах образцов серии 1 и только на поверхности образцов серии 2. Результаты рентгенофазового анализа (РФА) приведены в таблице. Следует обратить внимание на два факта: первый – все образцы-таблетки после термообработки распались на мелкие фрагменты, т. е. спекания не произошло; второй – данные РФА относятся к поверхности и приповерхностному слою частиц LaB₆-TiB₂. Этот вывод основан на результатах следующего эксперимента. Был сделан шлиф частиц после термообработки и проведен РФА, который показал, что внутри частиц отсутствуют фазовые изменения (см. таблицу). Видно, что термообработка после ХИП образцов привела к следующим результатам. Во-первых, возможно, внутри трещин частиц LaB₆-TiB₂ серии 1 произошла кристаллизация аморфного бора и появился так называемый тетрагональный бор (B t) и, вовторых, на поверхности образцов серии 2 произошел синтез тетрагонального Al₃Ti t.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

То, что при ХИП под давлением 0,6 ГПа образцы серии 1 растрескивались и разрушались, а с образцами серии 2 этого практически не происходило (см. рис. 5), можно объяснить следующим образом. Поскольку разрушение, как правило, начинается с какого-нибудь концентратора напряжения на поверхности, то можно сделать вывод, что после распыления таких концентраторов

было очень мало. Когда же поверхность была удалена и при этом волокна ТіВ2 остались выходящими практически перпендикулярно к поверхности (см. рис. 3, а), возникли концентраторы напряжения. Известно, что сплавлением с алюминием можно получить из аморфного бора кристаллическое вещество, называвшееся ранее тетрагональным бором [11]; температура его кристаллизации – 1400–1500 °C [12]. Также известно, что изостатическое сжатие аморфного бора под давлением 11 ГПа может привести к кристаллизации аморфного бора, которая сопровождается повышением плотности [13] (плотность аморфного бора равна $1,73 \text{ г/см}^3$, а кристаллического $-2,3 \text{ г/см}^3$). Наблюдаемое снижение температуры кристаллизации, вероятно, связано с тем, что при ХИП возникли зародыши кристаллической фазы. Возможно, это происходило следующим образом. Механическое смешивание бора и алюминия во время ХИП могло сопровождаться проникновением алюминия в рыхлый аморфный бор аналогично тому, как это наблюдали в [10] (см. рис. 2). Кроме того, судя по микроснимкам (рис. 7), эти зародыши, скорее всего, были локализованы в трещинах частиц LaB₆-TiB₂ серии 1 и, возможно, оставались в слабо сжатом состоянии.

Результаты рентгенофазового анализа

Фаза	Состав, % (по массе)					
	Серия 1			Серия 2		
	OC,	OC,	ХИП,	OC,	OC,	ХИП,
	БТ	1000 °C,	1000 °C	БТ	1000 °C	1000 °C
LaB_6	6,01	80,00	76,29	5,54	73,27	73,10
TiB_2	4,06	10,00	7,13	6,70	8,41	7,31
Al	89,93	10,00	13,69	87,75	18,32	11,70
Al ₃ Ti_t	_	_	_	_	_	7,89
B_t	_	_	2,88	_	_	_

Примечание. ОС — одноосно спрессованный, БТ — без термообработки, Al_3Ti_t — сплав с тетрагональной решеткой, B_t — тетрагональный бор.

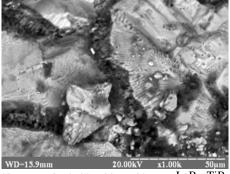


Рис. 7. Микроснимок трещины на поверхности частицы LaB_6 — TiB_2 , заполненной кристаллическим бором в образце серии 1 после термобработки при $1000\,^{\circ}$ C.

Синтез интерметалида Al_3Ti в обычных условиях происходит при 1500 °C [14]. Очевидно, что наблюдаемое в этой работе снижение температуры синтеза также обусловлено проникновением алюминия в сжатый поверхностный слой LaB_6 — TiB_2 серии 2. Прижатые друг к другу и продеформированные в процессе ХИП волокна TiB_2 и частицы алюминия при нагреве образовали

интерметаллид уже при $1000\,^{\circ}$ С. Снижение содержания алюминия после термообработки связано с тем, что он частично удаляется из образцов, так как его температура плавления равна $660\,^{\circ}$ С.

выводы

При квазиизостатическом сжатии под давлением 0,6 ГПа с последующей термообработкой при температуре $1000\,^{\circ}$ С порошковой системы, состоящей из $3\,\%$ B–7 % Al–90 % (LaB₆–TiB₂), механическая активация, прежде всего, инициирует кристаллизацию аморфного бора, которая по определению происходит в присутствии алюминия, и синтез интерметаллида Al₃Ni. Такое предположение основано на том, что алюминий, во-первых, обладает высокой химической активностью и, во-вторых, является наиболее пластичным материалом в исследуемой композиции, а также на ранее установленном факте проникновения алюминия в поверхностный слой LaB₆ частиц LaB₆—TiB₂.

Кроме того, следует отметить, что наблюдаемая механическая активация при XИП кристаллизации аморфного бора и синтеза Al_3 Ті может быть использована для интенсификации процессов сплавообразования и синтеза тугоплавких соединений как отдельных упрочняющих фаз в композиционных материалах с металлической, керамической и полимерной матрицами. По сути, открывается возможность создания нового класса сверхтвердых, сверхпрочных материалов полифункционального применения.

Порошкову шихту, що складається з частинок аморфного бору, а також кристалічних алюминию і композиційного матеріалу LaB_6 — TiB_2 піддавали холодному ізостатичному пресуванню під тиском до 0,6 $\Gamma\Pi$ а з подальшим нагріванням спресованих порошків до 1000 °C. Виявлено, що практично весь аморфний бор, який входив до шихти, перейшов в кристалічний стан, а також було зареєстровано синтез Al_3Ti , у той час як кристалізація аморфного бору зазвичай відбувається при температурі 1500 °C.

Ключові слова: бориди, аморфний стан, тиск, механічна активація, кристалізація, синтез.

The powder blend consisting of amorphous particles B, crystalline Al and composite material LaB_6 — TiB_2 have subjected to cold isostatic pressing to a pressure of 0,6 GPa, and then have heated the pressed powders to 1000 °C. It is found that in almost all amorphous B in the blend had transferred to the crystalline state, as well as registered Al_3Ti synthesis, while crystallization of the amorphous boron is typically happen at a temperature 1500 °C.

Keywords: borides, amorphous state, pressure, mechanical activation, crystallization, synthesis.

- 1. Bogomol I., Borodianska H., Zhao T. et al. Dense and tough $(B_4C-TiB_2)-B_4C$ "composite within a composite" by spark plasma sintering // Scripta Materialia. -2014.-N 71. -P. 17–20.
- 2. Low I. M, Sakka Y., Hu C. F. MAX phases and ultra high temperature ceramics for extreme environments. Hershey: IGI Global, 2013. 679 p.
- 3. *Акимов Г. Я.* Холодное изостатическое прессование как способ получения керамических изделий с высоким уровнем физико-механических свойств // Огнеупоры и техническая керамика. 1998. № 8. С. 21–26.
- 4. *Акимов Г. Я. Тимченко В. М., Горелик И. В.* Особенности фазовых превращений в мелкодисперсном диоксиде циркония, деформированном высоким гидростатическим давлением // Физика твердого тела. 1994. **36**, № 12. С. 3582–3586.
- 5. *Акимов Г. Я, Сторож В. В., Горелик И. В. и др.* Полиморфные превращения в оксиде алюминия // Журнал технической физики. 1994. **64**, № 11. С. 172–174.

- 6. *Прохоров И. Ю.Щербакова Л. Г., Акимов Г. Я. и др.* Активация порошковых гидрид образующих интерметаллидов высокими давлениями // Физика и техника высоких давлений. 2011. **21**, № 3. С. 72–79.
- 7. *Пат.* 94832 Украина, МПК СО4В 35/50, СО4В 35/626, СО4В 35/622. Способ получения нанокристаллических материалов на основе манганитов лантана / С. Ю. Прилипко, Г. Я. Акимов. Заявл.01.02.2010; Опубл. 10.06.2011, Бюл. № 11.
- 8. *Пат.* 99564 Україна, МПК С01В 35/00, С04В 35/50, В22F 9/00, В22F 9/10. Спосіб отримання керамічних евтектичних порошків на основі гексабориду лантану методом відцентрового плазмового розпилення / П. І. Лобода, Ю. І. Богомол, О. І. Білий та ін. Заявл. 30.12.2014; Опубл. 10.06.2015, Бюл. 11.
- 9. Loboda P. I., Soloviova, T. O., Bogomol Y. I. et al. Effect of the crystallization kinetic parameters on the structure and properties of a eutectic alloy of the LaB₆–TiB₂ system // J. Superhard Mater. 2015. N 6. P. 43–52.
- 10. Акимов Г. Я., Соловьева Т. А., Лобода П. И. и др. Влияние ХИП на формирование свойств эвтектических композиционных порошков LaB_6 – TiB_2 // Огнеупоры и техническая керамика. 2015. № 4/5. С. 11–14.
- 11. $\ensuremath{\textit{Pemu}}\ \Gamma$. Курс неорганической химии: В 2 т. М.: Мир, 1966. Т. 2. 838 с.
- 12. Machaladze T., Samkharadze M., Kakhidze N. et al. Crystallization of amorphous boron by the calorimetric method // Open J. Inorganic Chem. 2014. N 4. P. 18–20.
- 13. *Kurakevycha O., Godeca Y. Le, Hammoudac T. et al.* Comparison of solid state crystallization of boron polymorphs at ambient and high pressures // High Pressure Res. 2012. **32**, N 1. P. 30–38.
- 14. Долматов А. В., Ситникова О. А. Синтез интерметаллидов на основе Ті и Аl алюминотермическим способом в условиях дополнительного нагрева // XIV Междунар. научтехн. Уральская школа-семинар металловедов молодых ученых, Екатеринбург, 11—15 нояб. 2013 г. Екатеринбург, 2013. С. 122—123.

Поступила 03.08.16