О.А. Середа, Г. Штоклі-Еванс, І.В. Типіло, Р.Є. Гладишевський, Д.І. Семенишин КРИСТАЛІЧНА СТРУКТУРА КАЛІЙ ІТЕРБІЙ ОКТАЦІАНОМОЛІБДАТУ (IV) ГЕПТАГІДРАТУ

Проведено дослідження кристалічної структури КYbMo(CN)₈·7H₂O рентгенівським методом монокристалу. Сполука кристалізується у триклінній сингонії, просторова група P-1, a=7.5732(10), b=9.2250(13), c=14.421(2) Å, $\alpha=80.674(16)$, $\beta=87.567(17)$, $\gamma=77.513(16)^\circ$, V=970.6(2) Å³, Z=2, $D_x=2.198$ г·см⁻³; R=0.0342, wR=0.0833 для 3591 незалежних відбить. Координаційним многогранником атомів молібдену є деформована тригональна призма з двома додатковими атомами [Mo(CN)₈], а атомів ітербію — тетрагональна антипри- зма [YbN₄(H₂O)₄]. Частина ціаногруп є містковими і координуються з атомами молібдену та ітербію через атоми вуглецю і нітрогену відповідно, утворюючи через атоми калію полімерну 3D-структуру. Формулу координаційного полімеру можна записати у вигляді {[K(H₂O)₄][Mo(CN)₈], ²2H₂O.

Кристалічні структури октаціаномолібдатів (IV) вивчені для сполук $K_4[Mo(CN)_8] \cdot 2H_2O$ [1], $Rb_4[Mo(CN)_8] \cdot 3H_2O$ [2], $(NH_4)_4[Mo(CN)_8] \cdot 0.5H_2O$ [2]. В залежності від природи катіону зовнішньої сфери і кількості молекул кристалізаційної води координаційний поліедр [Mo(CN)₈] має різну будову: площинний додекаедр у калієвій солі, в рубідієвій — аксіальний додекаедр, в амонійній осьовий додекаедр та антипризма.

Кристалічні структури октаціаномолібдатів (IV) рідкісноземельних елементів на даний час не вивчалися. Тому метою дослідження є вивчення кристалічної структури калій ітербій октаціаномолібдату (IV) гептагідрату.

Синтез октаціаномолібдатів (IV) рідкісноземельних елементів описано в роботі [3]. Ми повторили синтез комплексу за цією методикою, але змінили умови одержання $H_4[Mo(CN)_8]$, яку одержували, пропускаючи розчин $K_4[Mo(CN)_8]$ ·2H₂O через катіоніт КУ-2 в H⁺-формі. Розчин кислоти обробляли карбонатом ітербію до припинення виділення CO₂. Одержаний розчин ставили на повільну кристалізацію при кімнатній температурі в темному місці. Через кілька місяців одержали монокристали, придатні для рентгеноструктурного дослідження.

Масив дифрактометричних даних одержали на дифрактометрі STOE IPDS [4] при температурі 173 К з використанням Мо K_{α} -випромінювання (графітовий монохроматор, φ -сканування, 0— 200°, крок $\Delta \varphi$ =1.0, експозиція 3 хв, 2 Θ в межах 3.27—52.1°, $d_{\min} - d_{\max} = 12.45$ —0.81 Å. Структура розв'язана прямими методами з використанням програм SHELX-97 [5, 6]. Атоми гідрогену локалізовані за допомогою різницевого синтезу Фур'є і уточнені в анізотропному наближенні з використанням повноматричного методу найменших квадратів по F^2 . Емпірична корекція на абсорбцію проведена з використанням DELrefABS в PLATON [7], фактори трансмісії: T_{\min}/T_{\max} = =0.179/0.423. Кристалографічні дані для структури К YbMo(CN)₈·7H₂O зареєстровані в Кембріджському центрі кристалографічних даних CCDC № 670611.

Рис. 1. Проекція структури {[K(H₂O)]-[Yb(H₂O)₄][Mo(CN)₈]}_n·2nH₂O вздовж напрямку [100].

Проекція структури комплексу (рис. 1) зображена в PLATON [7]. Кристалографічні характеристики КYbMo(CN)₈·7H₂O і деякі експериментальні параметри подано в табл. 1. Координати атомів і еквівалентні ізотропні температурні параметри структури наведені в табл. 2, вибрані довжини зв'язків і кути — в табл. 3, положення і ізотропні параметри Н-атомів — в табл. 4.

З результатів рентгеноструктурного дослідження можна зробити висновок, що кристалічна структура KYbMo(CN)₈.7H₂O складається з двох структурних блоків [Mo(CN)₈] та [YbN₄(H₂O)₄]. Координаційні многогранники атомів молібдену,

© О.А. Середа, Г. Штоклі-Еванс, І.В. Типіло, Р.Є. Гладишевський, Д.І. Семенишин, 2008

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 8

Таблиця 1 Кристалографічні дані для КУbМо(CN)₈·7H₂O

Параметри	Характеристики	Параметри	Характеристики
Колір кристала	Жовтий	Випромінювання	MoK _α
Розмір кристала	0.30×0.23×0.15 мм	Довжина хвилі	$\lambda = 0.71073$ Å
Емпірична формула	C ₈ H ₁₄ YbKN ₈ O ₇ Mo	Кут	$2.29 < \theta < 26.16^{\circ}$
Молярна маса	$M_r = 642.35$	Кількість виміряних відбить	7018
Кристалічна сингонія	Триклінна	Кількість незалежних відбить	3591
Просторова група	<i>P</i> -1	Кількість відбить з $I > 2\sigma(I)$	3093
Параметри комірки	a=7.5732(10), b=9.2250(13),	Фактор усереднення	$R_{int} = 0.0309$
	$c=14.421(2)$ Å, $\alpha=80.674(16)$,	Кількість уточнених параметрів	259
	$\beta = 87.567(17), \gamma = 77.513(16)^{\circ}$	Фактори збіжності	R = 0.0342, wR = 0.0833,
Об'єм комірки	970.6(2) Å ³		S=1.139; R=0.0262,
Кількість формульних	Z=2		$wR = 0.0665$ для $I > 2\sigma(I)$
одиниць		Різницева електронна густина	$ \rho_{\min} = -1.077, $
Густина (розрахована)	$D_x = 2.198 \text{ г/см}^3$		$ \rho_{\min} = -1.077, $
Лінійний коефіцієнт	μ=5.694 мм ⁻¹		$\rho_{\rm max} = 0.950 \ e \ {\rm \AA}^3$
абсорбції		Температура	T = 173(2) K

Таблиця 2

Координати атомів (Å) і еквівалентнні ізотропні параметри теплового коливання атомів (Å²) для KYbMo(CN)8.7H₂O

Атом	x	у	Z	U_{eq}	Атом	x	у	Z.	U _{eq}
$M_0(1)$	0 28202(7)	0 28520(5)	0 23292(3)	0.0093(1)	N(8)	0 4054(8)	0.0092(6)	-0 1918(4)	0.0183(11)
Yb(1)	0.33605(3)	0.26323(3)	-0.15723(2)	0.00000(1)	C(1)	0.2826(8)	0.2985(6)	0.0830(4)	0.0144(17)
O(1)	0.5923(7)	0.1299(5)	-0.0721(3)	0.022(16)	C(2)	0.1296(9)	0.1263(6)	0.2016(4)	0.0166(19)
O(2)	0.5436(7)	0.2608(5)	-0.2779(3)	0.0233(16)	C(3)	0.1874(9)	0.1738(7)	0.3617(4)	0.0192(19)
O(3)	0.1831(6)	0.2885(5)	-0.3015(3)	0.0187(12)	C(4)	0.2149(9)	0.4648(7)	0.3159(5)	0.0184(17)
O(4)	0.0896(7)	0.1679(5)	-0.1058(4)	0.0262(16)	C(5)	0.5004(9)	0.2607(7)	0.3308(4)	0.0176(17)
N(1)	0.2879(8)	0.3014(6)	0.0018(4)	0.0189(17)	C(6)	-0.0259(9)	0.5741(6)	-0.1917(4)	0.0151(17)
N(2)	0.0467(9)	0.0434(6)	0.1836(4)	0.0258(19)	C(7)	0.5709(8)	0.5496(7)	-0.1710(4)	0.0134(17)
N(3)	0.1417(9)	0.1107(7)	0.4316(4)	0.0296(19)	C(8)	0.5117(8)	-0.0961(6)	-0.2085(4)	0.0118(17)
N(4)	0.1830(8)	0.5650(6)	0.3566(4)	0.0203(17)	O(5)	0.4950(7)	0.1220(6)	-0.4236(3)	0.0253(14)
N(5)	0.6105(8)	0.2513(6)	0.3941(4)	0.0246(17)	O(6)	0.2945(10)	0.4740(6)	0.5590(4)	0.046(2)
N(6)	0.1081(8)	0.4890(6)	-0.1706(4)	0.0183(11)	O(7)	0.8070(7)	0.2749(6)	0.0199(4)	0.0356(17)
N(7)	0.4943(8)	0.4558(6)	-0.1453(4)	0.0190(17)	K(1)	0.1488(2)	0.02742(15)	-0.37263(10)	0.0223(4)

ітербію та калію в структурі комплексу зображено на рис. 2. Атоми молібдену в структурі займають одну правильну систему точок і оточені кожен вісьмома ціаногрупами у вигляді деформованої тригональної призми з двома додатковими атомами. Як видно з табл. 3, відстані Мо-С знаходяться в межах 2.135(6)—2.171(7) Å, довжини зв'язків С \equiv N змінюються від 1.138(9) до 1.171(8) Å. У многограннику [Mo(CN)₈] сегменти Mo-C \equiv N є майже лінійними, а величини кутів MoCN змінюються від 173.8(5) до 178.8(5) і дещо відрізняються від 180°. Атоми ітербію одночасно оточені чотирма ціаногрупами (положення N(1), N(8), N(6), N(7)) і чотирма молекулами води

Атоми δ (Å) Атоми δ (Å) Атоми ω (°) Атоми ω (°) Mo(1)-C(1)2.145(6) Yb(1) - N(7)2.374(6) C(1)-Mo(1)-C(2)72.8(2) C(3)-Mo(1)-C(6)95.8(2) C(3)-Mo(1)-C(8)94.9(2) Mo(1)-C(2)2.162(6)K(1) - O(3)2.831(5)C(1)-Mo(1)-C(3)143.5(2)Mo(1)-C(3)2.146(6) K(1)-O(5) 2.965(6) C(1)-Mo(1)-C(4)128.9(2) C(3)-Mo(1)-C(7)145.6(2) Mo(1)-C(4)2.159(7) K(1) - N(3)2.803(6) C(1)-Mo(1)-C(5)131.3(2) C(4)-Mo(1)-C(5)71.6(3) Mo(1)-C(5)2.171(7) K(1)-N(2)3.090(6) C(1)-Mo(1)-C(6) 76.2(2) C(4)-Mo(1)-C(6) 69.8(2) Mo(1)-C(6)2.156(5) K(1) - N(3)2.985(7)C(1)-Mo(1)-C(8)76.7(2) C(4)-Mo(1)-C(8)143.2(2)Mo(1)-C(7)2.138(6) K(1)-N(8)2.837(6) C(1)-Mo(1)-C(7)70.9(2) C(4)-Mo(1)-C(7) 74.2(2) 2.140(6) 1.138(9) 70.7(2) Mo(1)-C(8)N(5)-C(5)C(2)-Mo(1)-C(3)C(5)-Mo(1)-C(6)141.4(2)Yb(1)–O(1) 2.340(5) N(1)-C(1)1.166(8) C(2)-Mo(1)-C(4)131.4(2)C(5)-Mo(1)-C(8)71.6(2) 77.4(2) Yb(1)–O(2) 2.294(5) N(2)-C(2)1.154(9) C(2)-Mo(1)-C(6) C(5)-Mo(1)-C(7) 76.1(2) 2.379(4)1.159(8) 76.9(2) Yb(1)-O(3)N(3)-C(3)C(2)-Mo(1)-C(8)C(6)-Mo(1)-C(8)147.0(2)1.151(9) Yb(1)-O(4)2.281(5)N(4)-C(4)C(2)-Mo(1)-C(7)143.7(2)C(6)-Mo(1)-C(7)93.4(2) Yb(1)-N(1)2.376(6) 1.171(8) C(3)-Mo(1)-C(4)78.0(2) 95.3(2) N(8) - C(8)C(7)-Mo(1)-C(8)Yb(1) - N(5)2.422(6)N(6)-C(6)1.159(9) C(3)-Mo(1)-C(5)76.1(2) C(2)-Mo(1)-C(5)131.4(2) 1.148(9) Yb(1) - N(6)2.383(6)N(7)-C(7)

Таблиця З Вибрані міжатомні відстані і кути в структурі КУbМo(CN)₈·7H₂O

Рис. 2. Координаційні многогранники в структурі $\{[K(H_2O)][Yb(H_2O)_4][Mo(CN)_8]\}_n \cdot 2nH_2O.$

(O(1), O(2), O(3), O(4)). Відстані Yb–N змінюються від 2.374(6) до 2.422(6), а Yb–O — від 2.281(5) до 2.379(4). Координаційний многогранник атомів ітербію [YbN₄(H₂O)₄] можна описати як тетрагональну антипризму, квадратні грані якої утворені двома атомами нітрогену і двома атомами оксигену. Однак цікавим є факт, що на одній грані атоми одного типу знаходяться на її протилежних сторонах (транс-положення), а на другій — по одну сторону (цис-положення) (рис. 2).

Таким чином, кожний аніон [Mo(CN)8]4-

чотирма ціанолігандами зв'язаний містковим зв'язком з катіонами ітербію, а чотири ціаноліганди є кінцевими. Структура комплексу складається з подвійних шарів ланцюгів — -Yb-N≡C-Mo-C≡N-, які поширюються в двох напрямках. Незв'язані молекули води (положення O(6), O(7)) і катіони калію розміщені між шарами. Атоми калію оточе-

Т	а	б	Л	И	Ц	Я	4

Координат	и атомів	водню	та	ïx	ізотропні	параметри
теплового	коливання	я (Å ²) д	цля	KY	bMo(CN)8.	7H ₂ O

Атом	x	у	z	U_{eq}
H(1A)	0.654(9)	0.169(6)	-0.039(4)	0.026
H(1B)	0.575(10)	0.043(4)	-0.050(4)	0.026
H(2A)	0.534(10)	0.219(7)	-0.327(3)	0.028
H(2B)	0.623(8)	0.317(7)	-0.287(5)	0.028
H(3A)	0.069(3)	0.312(8)	-0.291(5)	0.022
H(3B)	0.221(8)	0.338(7)	-0.351(3)	0.022
H(4A)	0.00010	0.22080	-0.07480	0.0320
H(4B)	0.04990	0.09990	-0.12890	0.0320
H(5A)	0.589(12)	0.048(8)	-0.422(5)	0.0300
H(5B)	0.495(11)	0.187(8)	-0.475(6)	0.0300
H(6A)	0.305(13)	0.555(6)	0.580(6)	0.0550
H(6B)	0.232(12)	0.495(8)	0.508(4)	0.0550
H(7A)	0.82540	0.23200	0.07740	0.0420
H(7B)	0.77390	0.38080	0.01910	0.0760

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 8

Таблиця 5 Водневі зв'язки для КУbMo(CN)₈·7H₂O

D–H…A	D–H (Å)	HA (Å)	DA (Å)	D–HA (°)
01-H1A07	0.85(6)	1.97(6)	2.809(7)	172(5)
O2-H2AO5	0.87(5)	1.84(6)	2.708(7)	174(8)
O2-H2BN4	0.87(6)	2.14(6)	2.9676(8)	160(7)
O3-H3AN4	0.86(4)	2.17(5)	2.892(8)	142(6)
O3-H3BO6	0.86(5)	1.81(5)	2.656(7)	168(5)
O4-H4AO7	0.89	2.00	2.860(8)	162
O4-H4BN2	0.87	1.93	2.793(8)	177
O5-H5AN3	0.87(8)	2.25(8)	3.113(9)	169(7)
O5-H5BN8	0.88(8)	2.22(8)	3.009(7)	150(7)
O6-H6AN8	0.87(7)	2.17(7)	3.021(8)	167(8)
O6-H6AN4	0.86(7)	2.20(6)	3.008(8)	156(8)
O7-H7AN2	0.86	2.50	3.238(8)	143
O7-H7BN1	0.95	2.83	3.785(9)	173

ні чотирма атомами азоту з С \equiv N-груп (N(2), два N(3), N(5)) і двома атомами кисню молекул води O(3), O(5)), які утворюють координаційний поліедр у вигляді деформованої тригональної призми [KN₄(H₂O)₂]. Це приводить до утворення тривимірної структури і формулу координаційного полімера можна записати як {[K(H₂O)]-[Yb(H₂O)₄][Mo(CN)₈]]_n·2nH₂O.

Водневий зв'язок існує між координованими і некоординованими молекулами води та кінцевими групами С≡N молібденоціанідного аніона (табл. 5). Атоми кисню некоординованих молекул води утворюють водневі зв'язки з атомами водню координованих молекул води та ціаногрупами.

Як показало проведене дослідження, склад синтезованої нами сполуки, встановлений за результатами рентгеноструктурного аналізу, не відповідає складу $Yb_4[Mo(CN)_8]_3\cdot12H_2O$, поданому в роботі [3]. Це, очевидно, пов'язано зі зміною методики синтезу і одержанням октаціаномолібденової (IV) кислоти, забрудненої йонами калію, в результаті чого одержується сіль змішаного складу.

Якщо порівняти кристалографічні дані для {[K(H₂O)][Yb(H₂O)₄][Mo(CN)₈]}_n·2nH₂O з даними для калійного, рубідієвого та амонійного комплексів, то бачимо, що вони значно відрізняються за своїми кристалічними структурами і мають різні форми координаційних поліедрів для окта-

Національний університет "Львівська політехніка"

ціанідного аніону. Будова дослідженого комплексу є більш подібною до структури сполуки H₃OCe(H₂O)₄[W(CN)₈]·2H₂O [8], вони належать до однієї просторової групи, але мають різні періоди комірки і форми координаційних многогранників атомів.

РЕЗЮМЕ. Рентгеновским методом монокристалла определена кристаллическая структура К YbMo(CN)₈. 7H₂O. Она принадлежит к триклинной сингонии, пространственная группа *P*-1, *a*=7.5732(10), *b*=9.2250(13), *c*=14.421(2) Å, α =80.674(16), β =87.567(17), γ =77.513(16)⁰, *V*=970.6(2) Å³, *Z*=2, *D_x*=2.198 г·см⁻³; *R*=0.0342, *wR*= =0.0833 для 3591 независимых отражений. Координационным многогранником атомов молибдена является двушапочная тригональная призма [Mo(CN)₈], а атомов иттербия — тетрагональная антипризма [YbN₄(H₂O)₄]. Часть цианогрупп являются мостиковыми и координируются с атомами молибдена и иттербия соответственно С и N атомами, образуя через атомы К 3*D*-структуры. Формула координационного полимера может быть записана в виде {[K(H₂O)][Yb(H₂O)₄][Mo(CN)₈]}_{*n*}·2nH₂O.

SUMMARY. The crystal structure of KYbMo(CN)₈. 7H₂O has been solved from X-ray single crystal diffraction data. The compound crystallizes in the triclinic system, space group P-1, lattice parameters a=7.5732(10), b=9.2250 (13), c=14.421(2) Å, α =80.674(16), β =87.567(17), γ = =77.513(16)^o, V=970.6(2) Å³, Z=2, D_x=2.198 r·cm⁻³; R= =0.0342, wR= 0.0833 for 3591, independent reflections. The coordination polyhedra of the molybdenum atoms are [Mo(CN)₈] bicapped trigonal prisms and of the itterbium atoms [YbN₄(H₂O)₄] square antiprisms. Part of the cyanogroups act as bridging units, connecting [Mo(CN)₈] and [YbN₄(H₂O)₄] structural units into "slablike" structure. These slabs are connected via potassium ion to form 3-dimensional structure. The formula of the coordination polymer can be written as {[K(H₂O)][Yb(H₂O)₄]-[Mo(CN)₈]_w:2nH₂O.

- 1. *Hoard J.L., Nordsieck H.H.* // J. Amer. Chem. Soc. -1939. **-61**, № 10. -P. 2853—2857.
- 2. Семенишин Д.И., Гловяк Т., Мыськив М.Г. // Координац. химия. -1985. -11, вып.1. -С. 122—128.
- 3. Зубрицкая Д.И., Сергеева А.Н., Писак Ю.В. // Там же. -1980. -6, вып. 3. -С. 405—408.
- 4. Stoe IPDS Software. Stoe & Cie GmbH. -Darmstadt, Germany, 2000.
- 5. Sheldrick G.M. // Acta Crystallogr. -1990. -A46. -P. 467-473.
- 6. Sheldrick G.M. SHELXS-97. -Univ. Gottingen, Gottingen, Germany, 1999.
- 7. Spek A.L. // J. Appl. Cryst. -2003. -36. -P. 7-13.
- 8. Сарамага І.В., Давидов В.М., Семенишин Д.І., Довгей В.В. // Укр. хім. журн. -2001. -67, № 5. -С. 14—18.

Надійшла 26.12.2007

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 8