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This article deals with the actual issues of ensuring the dynamic strength of
rocketry components using pyrotechnics. It studies the shock interaction of
rocket fairing pyrotechnic separation system components during the second
phase of the system operation at so-called capturing. The contacting of the
system components occurs through a viscoelastic damper. The damper is
installed between a movable part and a fixed one to 'attenuate’ impact due to
plastic deformation. The damper acts as a one-way connector — it limits
compression and does not prevent separation. The whole structure is as-
sumed to be elastic, and plastic deformation is concentrated in the damper.
The mechanical model is represented as a combination of elastic elements
and a nonlinear damper. The technique of taking into account the nonlinear-
ity of a damper is based on the introduction of variable boundary forces on
the damper ends. In the case of plastic compressive deformations, boundary
forces increase the deformation, restrained by elastic forces, and when the
contact disrupts (separation), they completely compensate the stresses in the
damper model, nullifying them. A three-dimensional computational model of
the fairing assembly composite design is constructed. The damper is pre-
sented in the form of a continuous thin ring. The finite element method is
used. The calculation of the structural dynamics with respect to time is car-
ried out by the Wilson finite-difference method. Verification of the technique
on the test problem with the known wave solution is carried out. Calculation
studies of the dynamic stress state at different impact speeds for damper
variants with different plastic stiffness are performed.: steel elastic (damper
without holes, 'rigid', for comparison); initial (damper with holes, plastic,
soft) and rational (damper with a selected characteristic of rigidity). It is
shown that the initial damper is inefficient due to insufficient rigidity. The
characteristics of plastic stiffness are determined, under which dynamic
stresses are significantly reduced in relation to the initial structure. The
maximum dynamic stresses in the pyrotechnic separation system of the fair-
ing with rational dampers strongly depend on the impact speed. At signifi-
cant speeds, they exceed the plasticity limit. A more precise formulation of
the 'catch-up' task should be carried out taking into account the plasticity in
the entire structure.
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plasticity.
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Introduction

Fairing separation is a complex and responsible part of a rocket flight mission, performed by a separation
system (SS). In rocket production, various SS designs are used [1, 2], but the most widespread systems are of py-
romechanical and detonation types. The use of pyrotechnic devices in SSes causes the emergence of intense loads
of a shock-pulse character, which increases the actuality of ensuring dynamic strength. The fairing is not used af-
ter separation, so during the process of separation, irreversible processes in the propulsion elements, associated
with plastic deformation or microfracture, can be allowed. At that, the main task is to preserve the functionality of
the fairing separation system. Prediction of SS strength without restriction on deformation in the elastic region
also contributes to the improvement of mass indices and allows using damping devices with plastic elements.

In calculating the strength of fairings, quasistatic state models are mainly used without taking into
account the dynamics of separation processes [3, 4]. The dynamic processes in the elastic deformation region
during separation are investigated in [5—7] for fairings and in [8, 9] for spacecraft and launch vehicles (LV).
Studies in the field of structural dynamics during fairing separation, taking into account physical nonlinear-
ity, are presented insignificantly.

Fairing separation system structure and its functioning. Strength issues and problem formulation
The subject of the study is the mechanical processes taking place during the operation of a ready-
assembled fairing pyrotechnic separation system (FPSS) shown in figure 1.

The separation system consists of two large components that make up a
movable part (MP) and a fixed part (FP). The FP includes a support and a con-
nected rod (piston), which are supported by an instrument compartment casing
(ICC) and pyrobolted to it in transport position. The movable part includes a cyl-
inder and a connected fairing body. The rod and cylinder form a movable pair and
can move relative to each other, the closed space that they form, changing its vol-
ume. Inside the rod-cylinder pair volume, pyrotechnics (powder) is placed, which,
during combustion, creates pressure, under which the cylinder, and with it the en-
Fairng tire movable part, move rapidly relative to the fixed part, increasing the speed and

LITs3 accumulating kinetic energy. The FPSS pyrotechnics includes pyrobolts and pow-
der, which are triggered in a certain sequence. First, the pyrobolts are triggered and
the power connection between the support (FP) and ICC is eliminated, and then
the powder is ignited and MP is set in motion. Several phases can be identified in
FPSS operation, the first of which is the displacement of the cylinder from the ini-
tial position to the final one. In the final position, free relative displacement is im-
. \Instmment possible, and a power contact occurs between the rod and cylinder, which deter-

tqg}};;&?e(n }t mines the second phase of FPSS operation, the so-called 'catch-up'. The 'catch-up'
- results in equalizing MP and FP speeds, i.e. combining them into a single struc-
ture, and the possibility to separate from the rocket owing to the additional speed
relative to it. The third phase of FPSS operation begins at the moment of 'catch-
up', when a side nozzle opens and a reactive jet of leaking powder gases arises,
resulting in the fairing lateral drift-away from the rocket trajectory.

- Cylinder

Support

Fig. 1. FPSS general scheme

To partially solve the problem, it is supposed to use additional collision-softening elements in the
form of dampers, whose purpose is to prolong the process of speed equalization and, consequently, reduce
the dynamic strength of the structures. At that, a complex behavior of the structures interacting through the
damper is possible, which manifests itself as contacting, or its interrupting, i.e. rebound. At considerable col-
lision speeds, plastic deformations can develop in the structures, which considerably impedes the solution to
the problem. To simplify it, the structures are assumed to be elastic when colliding, allowing the possibility
of the damper being plastically deformed and the structures being separated.

In this case, there arises the problem of choosing the damper characteristics for plastic deformation,
determined by its design factors and the material used, under which the dynamic stresses during the whole
process of shock interaction are minimal. It should be noted that the loss of kinetic energy (speed after sepa-
ration) due to the irreversible work of the damper plastic deformation should also be minimal.
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Research technique and FPSS design model

The technique is based on the application of the finite element method (FEM) in a three-dimensional
setting, where a volumetric multilinear finite element with a topologically regular discretization system is
used. When modeling the material of the structural elements, continuous heterogeneity or piecewise homo-
geneity and the presence of curvilinear anisotropy are allowed, which makes it possible to compute complex
and composite structures.

The application of the FEM procedure based on the use of the Lagrange-d'Alembert kinetostatic varia-
tional principle leads to a mathematical model represented by a system of ordinary differential equations [10]

M]ii +[D]i+[K]u=F,, (1)
where u is the displacement vector of the finite element (FE) grid nodes; F, is the vector of a given load
varying in time; [M], [D], [K] are the mass, damping and strength matrices, respectively.

It is to be noted that in dynamical problems with impulse action, where the process is studied during a rela-
tively short time interval, the damping effect is insignificant. In addition, the damping values are either generally un-
known or determined with little accuracy. Therefore, the damping effect in this work is not taken into account ([D]=0).

The solution to the matrix equation (1.1) is implemented using the implicit Wilson finite-difference
scheme [11], which is absolutely stable, of the second order of accuracy. According to this scheme, the accelera-
tion at the time step At is a linear function, and the equations (1) are written for the point of time 7+0A¢ (6=1.4).
There is no restriction on the choice of the step Ar which is determined mainly by the requirement to the accuracy
and efficiency of calculations. The finite-difference analogue of the equation (1) can be written in the form

[K]”Hem = Rt+eAr ’ (2)

where [K]is the modified strength matrix; I%, +ea, 18 the modified right-hand side (vector of external forces);

U6 — 18 the displacement vector for the point of time #+0At.

The displacements u velocities u and accelerations i,,,, at the Fe= N

t+Ar t+At

end of the step (the point of time 7+Af) are determined using the finite-difference
formulas including the values of the previous step kinematic parameters u,, u,, i, T Fairing
and the displacement values u,,gx [11]. ii s

Problem statement with regard to studying the dynamics of FPSS compo- il
nents during 'catch-up' has a specificity that is related to the absence of fixations. At
that, oscillation processes are excited in the constructions, accompanied by the for-
mer displacement in space as a solid body. Of special importance is also the formula-
tion of the 'catch-up' problem, where the structure colliding components are consid-
ered as a whole, but they have different initial speeds, i.e. the right-hand side in the
equation (1) is zero, and the perturbation of the system is formed by specifying dis-
continuous initial conditions.

The computational model of the colliding FPSS components during the
‘catch-up’ is shown in figures 2, 3, where the fixed component (the support and
rod) and the movable component (the cylinder and fairing body) moving at a
speed V,, contact through the damper, whose location is shown in more detail in
figure 3, a. The damper is presented as a solid cylindrical ring with the geometri-
cal parameters of the initial damper construction (height L=10 mm, thickness y
h=3 mm), whose characteristic at compression is determined by the stiffness dia- R upport

gram N(A), where A= u,(A)—u,(B) is the relative displacement of the damper

model

ends (shortening under compression); N is the current axial thrust transmitted
through the damper. The characteristic values of the relative motion of A are the
initial plastic displacement A,, at which the damper plastic deformation begins,
and the limiting plastic displacement A, (A<)A;;,,), at which plastic deformation is | Fig. 2. Fairing separation
impossible. The change in the force N(A) during plastic deformation is a charac- | system complex structure
teristic of the damper construction plastic stiffness at a given value of A and it is model at “catch-up'

determined by the instantaneous yield strength of the damper material and its
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Fig. 3. Damper location:

a — model; b — the data read-out points
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Fig. 4. Diagram of introducing
boundary forces on damper ends
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geometric parameters — height and cross-sectional area. For a material
with hardening, the dependence N(A) is variable, and for an ideal elastic-
plastic material the force N reaches the limiting value N, i.e. the load-
bearing capacity of the structure in the plastic state, and remains so when
deformed. The power contact of the damper with the support and rod,
and, accordingly, the transfer of forces are carried out on the ends, i.e.
there is a gap between the cylindrical surfaces of these parts. The damper
only works in compression and carries out one-waycommunication, al-
lowing the separation of the parts contacting through it. ICC is not in-
cluded in the design model, since there is practically no power connec-
tion between the support and ICC after the destruction of the pyrobolts.
The fairing body in the model is considered as a solid one of the same
mass. Fig. 2 also shows the location of the points for which the results of
the calculations of displacements, velocities, and stresses are presented.

The damper plastic stiffness diagram N(A) in the computational
studies of FPSS dynamics allows for variation. This corresponds to the
damper design modification, which, in principle, can be considered as a
complex system consisting of a series of elements with their own proper-
ties, whose combination can affect the diagram N(A).

For example, for a damper of the initial structure in the form of a
short cylindrical shell with a large number of radial holes, the plastic de-
formation diagram N(A) has been obtained approximately. Simplified
models of damper drafting were used — kinematic ones, taking into ac-
count the flattening of the holes and the model of plastic hinges. A much
more accurate and coherent determination of the diagram N(A) is con-
nected with the solution to an elastic-plastic problem with large deforma-
tions, taking into account the contacting of hole boundaries, which is
practically impossible because of the difficulties in realization. The dia-
gram N()) can also be obtained experimentally. The calculation results of
the N(\) diagram points for the initial damper are as follows: relative dis-
placements A;: A=0, A,=0,015 mm, 2,=3 mm, ;=6 mm, A4=A;,=8 mm;
loads N;: No=0, N;=30 kN, N,=60 kN, N;=103 kN, N,=316 kN.

To evaluate the collisional damping effectiveness of FPSS compo-
nents during 'catch-up', a justification is necessary with the help of computa-
tional simulation. In calculating the dynamics of contact shock interaction,
the approach is used, according to which all the FPSS composite design
components are considered to be elastically deformable, and in order to take
into account the nonlinear behavior of the damper, associated with plastic
deformation or breaking the contact, the method of introducing boundary
variable forces is applied, whose arrangement is shown in figure 4.

The boundary forces P refer to external forces, are recalculated at
each step of integration over time, and are included into the expression

A

R, 4, of the right-hand side of (2). Their purpose is to compensate for the

elastic forces that are developing in the damper model that is part of the
design as an elastic element. At plastic compressive deformations, the
forces P must increase the deformation, restrained by elastic forces, and in
the case of contact failure, i.e. the elements separating from each other, the
boundary forces must completely compensate for the stresses in the
damper model by zeroing them. The scheme for determining the boundary
forces for different damper states — active plastic deformation, unloading or
separation — is shown in figure 5.

ISSN 0131-2928. Ilpodonemu mawunodyoysanns, 2018, T. 21, Ne 3
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The state of a damper as a one- enaration NV
dimensional element with nonlinear behavior is Separation E
determined by the relative motion of its ends. At 'y R
that, various mechanical states are possible: ac- Mim Amax Aot/ ———~—LJA 2
tive plastic deformation, unloading that takes C ~/flo D
place according to the elastic law, and separa- Unloading /
tion of contact elements from each other. An
evaluation of the damper state is performed at
each time step, respectively, according to which /
the boundary forces P are calculated. Active

In the case of elastoplastic deforma- — ©  plastic
tion, both elastic A, and plastic A, components deformation
?n be dlStlngl,'llSh.e d from the total relative Fig. 5. Scheme for determining the boundary forces P at damper

isplacement A in figure 5 , . . . .
A=A, + 7&,, ‘ plastic deformation, elastic unloading, and separation

The plastic component A, can be considered as an additional component and taken into account in
the law of elasticity by the method of additional deformations [12]. Its definition is performed by iterations,
when the elastic problem is being solved, and reduces to the introduction of additional volume forces, which
are brought to the nodes of the finite elements on the damper ends [13], i.e. to the boundary forces P. The
boundary forces P are proportional to the plastic component A,

P=EN, L.
Given that A, =A—A,, and A, is a known function of the current value of the relative displacement
A, =k, (L), we get
P=EL'A-A,0)]. (3)

At the step of integration with respect to time, the displacements are determined, taking into account
the boundary forces, by the relation

do=Dg + 0P, 4)

where A is the displacement determined from (2), without taking into account the boundary forces; a is the
displacement at a step from the momentum of unitary boundary forces.

The equations (3), (4) constitute a system relative to A, P. Excluding P, we obtain a nonlinear equa-
tion for A, whose solution is performed by iterations

oMot aEL'A, (M)
1-oEL"
The denominator in (5) is different from zero, since the term aEL" <1 is the compliance ratio from
the action of the boundary forces at both the dynamic (o)) and static (£ 'L) loads. It is obvious that under dy-
namic loading, when the system inertia exerts influence, the compliance is lower.

The state of active plastic deformation takes place when the inequality is satisfied (without taking
into account the displacement sign)

(&)

AN, =X =X, >0, (6)

where X oo ?J;l are the plastic components of the displacement at steps i, i+1, respectively.

The state of the damper is characterized by the position of the point on the plane A, N. For the active
plastic deformation, the point lies on the curve N(A) (Fig. 5), and the boundary forces in this case are deter-
mined from the relation

pe Ay -2, MWIL'E .
1-aEL"
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If the inequality (6) is not satisfied, then the state of elastic unloading is fixed, at which the plastic com-
ponent is considered to be fixed and equal to the reached maximum value, and, accordingly, the boundary forces
are also fixed

P=EL P = )],
where A« is the achieved maximum value of the relative displacement (point B, Fig. 5).
The unloading occurs under the condition A >2_, (Fig. 5), whereA,, =A . —A, (A
it is violated, the state is defined as a separation, in which there is no force interaction of the elements

through the damper. The magnitude of the boundary forces necessary for simulating this state is determined
from the condition A, =0, which leads to the relation

P AL'E .
1-aEL"

In the state of separation at negative A, the boundary forces P <0 (the damper compression, CO sec-
tion in figure 5, and at positive A — P>0 (the damper extension, OD segment in figure 5.

The proposed technique has been tested, in particular for the impact contact of solids through an elas-
tic-plastic element, the results of which are confirmed both qualitatively and quantitatively. Certain require-
ments are imposed on the accuracy of determining the unitary boundary forces, which are made to the strictness
of correspondence to a given magnitude and equilibrium. At contact deformation, this has no significant value,
but in the case of contact absence, at free movement, it does exert influence, introducing errors.

ost max ) » and when

Evaluation of the technique accuracy from the example of a longitudinal impact

Calculations of shock processes have specificity, which manifests itself in the appearance of deforma-
tion waves, their interaction both with the boundary and with each other. To evaluate the possibility of repro-
ducing wave processes, the techniques used need to be verified on problems with exact or known solutions.
Here, we consider a solution to the problem with regard to the rod end longitudinal impact by a moving load.

Fixation along The computational model of the problem with regard
the axis | to the rod being impacted by a load of mass M moving with a
,, speed Vj is shown in figure 6, where the simulated rod is
shown with the following parameters: length /=80 cm, mate-
Load ~<Symmetry rial density p=8 g/cm’, cross-section 2x2 cm, E=200 GPa,
conditions v=0.3 at the mass ratio of the load and rod a=Ip/M=0.5. In the
three-dimensional finite element model, discretization was
used: in length — 80 FEs, in cross- section — one or three FEs,
Fig. 6. Model of a moving load impact on the rod | and one fourth part of the rod was considered with the setting

RQg

of the symmetry conditions. The figure also shows the location of the control points, for which the numerical re-
sults are given below.

Impact simulation in the calculations is as follows. The load and rod are combined and considered within
the framework of a general FE model. At that, one of FEs at the rod edge is considered to be a load, and its me-
chanical characteristics are accepted as high, which practically corresponds to an absolutely solid body. When
setting the initial conditions, the speed of the load FE nodes is equal to Vp, and the nodes of the rest of the body are
fixed. This approach physically corresponds to the conditions of contact between the load and rod at the moment
of contact. The impact causes the appearance of elastic waves in the rod and its joint movement with the slowing
load. After a certain time, the contact of the load with the rod is lost, that is, the load separates from the rod. De-
pending on the duration of the contact, which depends on the mass ratio of the load and rod, the number of wave
passes along the rod can be different. The singularity of the wave process in this problem is the reflection of the
wave from the load, which is equivalent to the reflection from a rigid sealing, in which the type of wave does not
change (compression wave), but the stress at reflection increases abruptly.

Figures 7 to 9 respectively present the results of calculations of displacements and velocities at the
rod points shown in figure 6, as well as the change in the rod stress at the point located near the load. The
kinks in the displacement graphs and the jumps in the speed graphs correspond to the moments of the pas-
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sage of the waves reflected from the rod ends. In the calculations, the speed discontinuities, when the front
passes are manifested in the form of bursts and oscillations.

In the three-dimensional finite element model, transverse displacements due to the connection of de-
formations (v#0) are taken into account as well. When the front passes, the transverse oscillations are excited,
accompanied by shifts, whose magnitude is small, and it does not prevent part of the energy of the longitudi-
nal oscillations from being lost. Consequently, the dynamic process becomes more complex and different
from the assumptions in the core theory, with which the results are compared. To eliminate this effect, the
calculations were carried out with a zero Poisson's ratio, at which the transverse oscillations did not arise, i.e.
the calculated FE model was more consistent with the conditions adopted in the core model.

The main value by which the comparison was made in the problem under consideration is the time variation in the
rod stress at the point of contact with the load, i.e., in fact the contact stress. The criterion for loss of contact be-
tween the load and rod is the change in the stress sign, and the point of time, when this occurs, determines the con-
tact time. The comparison was made both with regard to stresses for the points of time #,, #,, #; (points A, B, C in
figure 9) of the arrival of reflected waves to the load and impact duration, whose results are given in table 1. The
stress of the load at the initial point of time according to the core theory is determined by the formula

6, =Vy+/ Ep .The calculated impact duration corresponded to the data of [14] with high accuracy.

Conclusions on the comparison of the calculated data, obtained by the method used, and data from [14]
indicate the applicability of the developed software to solving problems with shock-pulse loading.

Results of computational simulation

The presented technique was used in calculations of
shock interaction in FPSS components during 'catch-up' at
various initial speeds of MP — 40; 60; 80 m/s and various

Table 1. Stresses 6/6, in the rod near the load
during wave passage

. ; Point Data 14] FEM calculation
dampers. The calculations were carried out for the damper 1 1.00 1.07
of the original design, which, within the permissible plastic B 236 251
deformation, has small stiffness, as well as (for comparison) C 214 212

for a steel damper in a state of elasticity, where stiffness is
high. In addition to these initial variants, research was con-
ducted on rational variants of a damper characterized by the

Table 2. Maximum values of the stress intensity in
FPSS components at a speed V,=40 m/s

rigidity of an ideally elastic-plastic material, in which the dy- Damper | o,  (C) | o;  (F) | 6, (G)
namic tension of‘ the construction is nnr}lmal. The hmlt%ng elastic 1.68 127 1.45
stiffness characteristics of dampers, i.e. their carrying capacity, ——

in relative values N;:NP/NJ,, where N,; is the magnitude of the initial 1,25 0,84 0,77
longitudinal force from the maximum internal pressure rational 0,67 0,37 0,37

(Ny=590 kN), depend on the speed V, and take the following
values: N,=0.43 (at V=40 m/s), N,=1.4 (at V=60 m/s),
N,’=2.4 (at V=80 m/s).

Table 3. Maximum values of the stress intensity in
FPSS components at a speed V=60 m/s

The results of computational studies for the displace- Damper | 6, (C) | ©; . (F) | 6, (G)
ments and speeds at reference points A and B (see figure 3,a)  ¢Jastic 2.51 191 2.17
are presented in figures 10 and 11, and those for the stresses at — .
reference points C, F, and G are presented both in figure 12 initial 2,23 1.63 1,66
and in tables 2 to 4. rational 1,45 0,81 0,83

Characteristic of the interacting structures is the initial
approach, accompanied by plastic deformation, followed by the
unloading of a damper with subsequent disruption of contact

Table 4. Maximum values of the stress intensity in
FPSS components at a speed V,=80 m/s

and free movement of non-connected structural components. Damper 6,..C) | o (F)| o, (G)
F lastic steel d the draft tact 1 1 X

or an elastic steel damper, the draft upon contact is very low —_ -~ 335 254 289
(figure 10), and if plastic properties are taken into account both ——
in the initial and rational variants, it is high. A limitation was __initial 3,06 2,27 2,52
imposed on the limiting damper draft at compression, deter- rational 2,09 1,30 1,39
mined by Az, (A;,=8 mm), the maximum draft values for the
rational variants A either being close to 4;;, or reaching it for
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a short time. This is due to the fact that for the greatest effect of reducing stresses, the equalization of veloci-
ties should occur over a longer period of time, and, accordingly, on a greater relative displacement of the
damper ends. At that, the exhaustion of the deformation capacity (A=A;,) should not be prolonged, since an
additional shock effect will occur. The contact disruption occurs at the beginning of the reduction of the
maximum compression achieved by the damper, in particular, when the displacement value ;;, is deviated.

It can be noted that, as the impact speed V, increases, the speed equalization time (figure 11) for the
rational variants decreases, which is associated with an increase in the recommended stiffness.

Data on the dynamic stresses in different FPSS components (point C — cylinder, point F' — rod, point
G — support) for different damper variants of are represented in figure 12, which shows the distribution of
stress intensity over time, and in tables 2 to 4 its maximum values are given at different impact speeds.

%

Stresses are represented in the relative values 6, =0, /06, , where o, is the steel plasticity limit of the

I max Imax p°
separation system components: cylinder, rod, and support (c,=1300 MPa).

The stress change in the variants of the initial and steel elastic dampers is similar in both magnitude
and law of variation. The initial damper has small stiffness, which greatly reduces the compression force.
Such a damper has almost no resistance and only postpones the moment of hard collision of its parts, which
is typical for a steel elastic damper. The directional search for rational stiffness at various collision velocities
of FPSS components has made it possible to significantly reduce the magnitude of the maximum dynamic
stresses and, for some cases, introduce the structural components into the elastic stage of deformation.

It can be stated that the level of developed dynamic stresses is strongly dependent on the magnitude
of the impact speed. At that, in order to obtain a rational design, the necessary plastic stiffness of the damper
also increases strongly with increasing speed V,. This is in correlation with an approximate estimate of the
strength of the interaction of two solid bodies upon an absolutely inelastic impact, at which the speed equali-
zation time is determined by the initial speed, and the force itself is assumed to be constant. According to
such an estimate, the magnitude of the force depends quadratically on impact speed.

The calculations show that even for the rational designs of dampers, with increasing impact speed,
plastic deformations can appear in FPSS components. The formulation of the problem used in this paper as-
sumes the elastic behavior of the structural components and plastic behavior of a damper. It can be assumed
that the plasticity in all the components also damps shock interaction, and, if taken into consideration, allows
designing FPSSes in the field of plastic destruction. The clarification of the problem statement in this respect
is the subject of further research.

Conclusions

1. The proposed technique for calculating the shock interaction of FPSS components through a
damper, taking into account its plasticity and disruption of communication between the contacting compo-
nents, has undergone testing and confirmed its efficiency.

2. It is shown that a directional change in the plastic stiffness of a damper can significantly affect the
level of dynamic stresses in FPSS components. Different values of the limiting stiffness of a damper are de-
termined by its design parameters (thickness, height) and the yield strength of the material.

3. An initial damper is inefficient due to insufficient rigidity. The intensive shock interaction through
an initial damper with the appearance of high dynamic stresses shifts in time and is analogous to the case of a
rigid damper (steel elastic damper).

4. For various impact speeds, rational parameters of the limiting plastic stiffness of a damper are de-
termined, under which the maximum values of dynamic stresses in FPSS composite structure are minimized.
The values of the stiffness parameters of rational dampers are different for different impact speeds and in-
crease with increasing speeds. The time for the equalization of speeds upon collision decreases with the in-
crease in the impact speed.

5. The maximum dynamic stresses in FPSSes with rational dampers strongly depend on impact
speed and at significant velocities exceed the plasticity limit. A more precise formulation of the 'catch-up'
task should be carried out taking into account the plasticity in the entire structure.
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Cmammio npucesueno aKmyaibHUM NUMAHHAM 3a6e3neyentst OUHAMIYHOT MIYHOCHI eNleMeHmié PAKemHOi MexHIKu
nio 4ac GUKOPUCMAKHsL NIPOMEXHIMHUX 3ac00i8. [locnioxncyempbes yOapHa 83aemo0ist V36 NIPOMEXHINHOL cucmemu 8I00UIeHHs
obmiyHUKa paxkemu 6 opyeil ¢hazi pobomu cucmemu 3a Mak 36aHO20 «niOXonaeHHs1». Konmaxmyearts ey3iie cucmemu i00yea-
€mbes uepe3 NpydICHo-nIacmudHuil oevngbep. emnghep 8CMaHoGMOEMbCs Midic PYXOMOK A HEPYXOMOIO HaACHUHAMU OJsL
«NOM’SIKWEHHs1» YO0apy 3a PAXYHOK NAacmuyHol deghopmayii. [Jemnpep 6UKOHYe posib 0OHOCIOPOHHBOO 38 S3KY — 0OMENCYE
CIMUCKAHHA Ma He nepeukoocac 6iopugy. [IputiMaemscs, wjo KOHCMPYKYIsL 8 YLIOMY € RPYICHOIO, d NAACHIUYHE 0eqhOPMYBAHHS.
30cepedcere 6 demnghepi. Mexaniuna moodenb no0aemvcst y 8U2isiol KOMOIHAYIL NPYJ’CHUX eleMeHmI8 Ul HeliHIIHO20 deMngepa.
Memoouka epaxyeartsi HeliHiHOCmI demigepa noby008arHa HA 66€0CHH IMIHHUX SPAHUYHUX CUT mopysamu demngepa. 3a
RAGCMUYHUX OeqhopMayiil CIMUCKAHHA SPAHUYHI CUU 361bULYIomMb deopmayiio, sKa CMPUMYEMbCS NPYICHUMU CUTAMY, A )
Pasi NOpYuieHHs. KOHMAKMY — 6I0PUBY — NOGHICHIIO KOMIEHCYIOMb HANPYICeHHs 8 Modeni Oemngbepa, 3anymorouu ix. [lobyodoea-
HO MPUSUMIPHY DO3DAXYHKOBY MOOeb CKIAOEHOI KOHCMPYKYii oomiuHuka 6 300pi. [emnghep nodacmucs y 6uenioi CyyinbHo2o
MOHK020 Kinbys. Bukopucmogyemucs Memoo cKinueHnux enemennie. Po3paxyHok OUHAMIKU KOHCIPYKYIL 3a 4acoM GUKOHYENTb-
€51 CKIHYeHHO-PI3HUYeguUM Memodom Birbcona. Ilposedero eepuikayito memoouku Ha mecmogiil 3a0aui 3 6I00MUM XEUTbOBUM
PO36’s3K0M. Bukonarno po3paxyrkosi 00ciosncerts OUHAMIYHO2O HANPYHCEHO20 CIAHY 3a OesIKUX WBUOKocmell yoapy O 8api-
anmie demnghepa 3 PisHON NIACMUYHON JHCOPCMKICIIO: CIANE8020 NPYICHO20 (Oemnghep 6e3 0meopis, «dHcopcmKuil», Ols no-
DIGHANHSL); NEPBUHHO20 (OeMnghep 3 OMBopamL, NAACIIUYHUL, M SKULL) Ma PAYIOHATbHO20 (OeMngbep 3 NidIOPaHow xapakmepu-
cmuxoro arcopemrocmi). Tloxkazano, wo nepeunHutl demnghep He € eheKmuHUM GHACTIOOK HeOOCMAMHBOL HoOpcmKocmi. Bu-
SHAYEHI XAPAKMEPUCMUKU NAACIIUYHOL JHCOPCMKOCI, 30 SIKUX OUHAMIYHI HANPYIICEHHST SHAYHO 3HUNCEHI BIOHOCHO NEPEUHHOT
KoHCempyKyii. MakcumanbHi OUHAMIYHI HANPYX’CEHHsL 8 NIPOMEXHIYHIN cucmemi 8I00LIeHHs. OOMIYHUKA 3 PAYIOHATbHUMU OeMN-
hepamu cunbHO 3anexncamv 6i0 WIBUOKOCHI yoapy. 3a 3HAYHUX WBUOKOCHEN 60HIU NEPeGUIYYIONTL SDAHULIO NIACHUYHOCHI.
bBinvw mouny nocmanogky 3a0aui «niOXonieHHA» Cli0 GUKOHAMU 3 YPAXYBAHHAM NAACIUYHOCI Y 6CIll KOHCIMPYKYIL.

Knruosi crosa: obmiunux, cucmema 8i00inenHs, yoap, HANPY’CeHHsl, KOHMAKM, Oemngep, NAACMuyHiCMb.
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