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Introduction

Based on a comprehensive approach that uses the computer simulation of the
process of destroying structural materials and technology of self-learning neu-
ral networks, a methodology has been developed for predicting the rate of flow
accelerated corrosion (FAC) of pipeline elements with a single-phase medium
of the second circuit of nuclear power plants (NPPs). The neural network
model has been implemented in the Delphi Integrated Development Environ-
ment. The neural network consists of an input layer containing seven elements
and an output layer with two elements. As the input variables of the neural
network, the parameters that have the greatest influence on FAC process are
chosen. These are the medium temperature, the pipeline internal diameter, the
oxygen content in the medium, the coolant flow velocity, the hydrogen index,
the time of monitoring (or the start of operation), and the time for which the
prediction is performed. For each of the network input parameters, intervals of
possible values were chosen. At that, the factors that affect FAC rate, but not
included in the feasible model (chromium, copper and molybdenum content in
the pipeline material, amine type) are assumed to be permanent. As the output
parameters of the neural network, FAC rate and the variation of the pipeline
element wall thickness within the predicted time interval have been selected.
As the activation function of the neural network the sigmoid function is used.
As a method of training the neural network, the error back propagation
method has been chosen, which assumes both a forward and reverse passage
through the network layers. As the learning algorithm of the neural network,
the one with a teacher has been chosen. As a test sample for the neural net-
work, it is proposed, along with operational control data, to use the results of
calculations based on a statistical model created in the framework of a special
calculation-experimental method. The application of the developed methodol-
ogy makes it possible to improve the prediction accuracy of FAC rate without
determining all the dependencies between the many factors that influence FAC
process. The low errors of the constructed models make it possible to use the
results of calculations both to determine the resource characteristics of NPP

pipelines and optimize operational control.

Keywords: neural networks, computer simulation, flow accelerated corrosion.

Practically all NPP secondary circuit pipelines and equipment elements, made of pearlitic and

slightly alloyed steels, are subject to FAC. FAC of the elements of NPP pipelines is manifested in the form
of thinning, which ultimately leads to their destruction. A great variety of mechanisms for destroying NPP
pipeline metallic areas is connected with the difference in geometry, thermohydrodynamic characteristics,
water and chemical parameters of the working medium, etc. Therefore, in order to optimize the amount of
control and prevent critical situations, the task of predicting FAC rate in NPP pipeline elements is topical.

The calculation of FAC rate from the operational control data contains many uncertainties associated
with a wide spread of the results of measuring the wall thicknesses of pipeline elements due to FAC non-
uniformity. This is often caused by different loading conditions of different pipeline areas, as well as the sto-
chastic properties of FAC process itself. Thus, for example, for the most common computer code
CHECKWORKS, the discrepancy between the operational control data and calculated data is +50% [1]. Due
to the lack of reliable data on the factors included in the computer codes on NPP power units, the discrep-
ancy is considered to be satisfactory even with a value between -50 and +250% [2].

Recently, among the variety of different prediction techniques, intellectual information technologies
are becoming increasingly popular, in which artificial neural networks are used. A large number of parame-
ters that determine the intensity of FAC process in the elements of NPP pipelines exert a complex effect on
each other. The ability of an artificial neural network to generalize can improve the prediction with regard to
the magnitude of FAC without determining all the dependencies between the many factors that cause FAC
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process. The purpose of this paper is to optimize the scope and frequency of monitoring the technical condi-
tion of NPP second circuit pipeline elements by developing a method for predicting FAC process intensity
based on the process statistical model and technology of self-learning neural networks.

1. FAC process computer simulation

The known models for predicting the development of FAC process in NPP pipelines, as a rule, use
both analytical and empirical approaches. The analytical models based on a theoretical description of physi-
cal processes are used to study individual FAC mechanisms. The empirical models are built on the basis of
operational control data and are divided into statistical and physicochemical.

Among the statistical models is the model of FAC process development prediction elaborated within
the framework of a special calculation-experimental method (CEM), which allows, in addition to determin-
ing FAC, determining the resource characteristics (residual service life) of NPP pipeline elements with a sin-
gle-phase medium.

The special CEM model [3, 4] is based on the computer simulation of the process of destroying ma-
terials and construction elements. To solve the problem of predicting FAC rate, the thicknesses correspond-
ing to the pipeline nominal diameter, are chosen as the nominal thickness values. The calculation of FAC
rate and service life of the elements of NPP pipeline systems is based on the use of data from the operational
control of pipeline wall thicknesses, and since the pipeline FAC process is associated with the thinning of its
walls, only information on the thinnings is used. When determining the permissible depth of FAC damage,
the technique is based on the strength standards of NPP equipment and pipelines [5].

The main parameters necessary for calculations, in addition to geometric (element type, diameter, wall
thickness) and operational parameters (ambient temperature, operating pressure), include the date of inspection
and the result of thickness measurement, as well as the time point for which the value of thinning is predicted.

As a result of computer simulation of FAC process, a sequence of corrosion defects with specified
distribution parameters (mean depth and dispersion) is generated in the elements of NPP pipelines and the
average destruction depth of the surfaces of the pipe-pipeline elements is predicted for a specified period of
its operation. To assess the probability of destruction (when corrosion damage achieves the maximum per-
missible value), the dependence of the coefficient of variation (dispersion) of the destruction depth on the
service life is determined. As a result of the calculation, at any loading stage, an output file is generated con-
taining information on the change in the mean depth and dispersion of FAC damage in time.

The advantage of the developed model is the ability to obtain the distribution of wall thickness val-
ues of the pipeline element at any time, in contrast to the operational control data. The statistical model al-
lows predicting FAC rate for straight portions, outlets, bends, and heat affected zones of NPP pipelines. The
disadvantages of the model include the inability to evaluate the effect of metal physical and chemical proper-
ties (chromium, copper, and molybdenum content); working medium heat-hydraulic characteristics (tem-
perature, velocity); water chemistry regime indicators, etc. on FAC rate.

The above disadvantage is absent in the approach to predicting FAC, based on the use of the mathe-
matical apparatus of the theory of neural networks, which allow reproducing complex dependencies of input
data from output ones. Neural networks have proven well in the field of simulation systems and processes,
whose internal connections are either poorly understood, or implement complex interactions [6]. FAC of the
elements of NPP pipelines relate to such processes. The use of a neural network to solve the problem of predict-
ing FAC can allow assessing the mutual influence of all factors and improve prediction accuracy.

2. Models based on the use of neural networks

The models based on the use of neural networks can be considered as a promising alternative and
addition to the traditional methods of estimating FAC of NPP second circuit equipment, including the above
statistical model based on computer simulation.

The main characteristics of a neural network are the structure, number of layers, type of neuron, in-
put and output values, and the learning algorithm. The choice of the input parameters of a neural network is
determined by the volume and quality of the experimental data available for training.

To solve the problem of predicting FAC rate, it is proposed to implement a neural network model
containing seven input parameters and two output ones. The input signals are selected taking into account
their relative influence on FAC process. These are the medium temperature, pipeline internal diameter, oxy-
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gen content in the medium, coolant flow rate, hydrogen pH, time needed for the control (or start of opera-
tion), and the point of time for which the prediction is made.

The values of the input parameters necessary for the network operation are either monitored during
operation or indicated in the design and working documentation. The factors affecting FAC rate, but not in-
cluded in the model being implemented (chromium, copper and, molybdenum content in the pipeline metal,
amine type) are assumed to be constant. The values of the input parameters in the developed neural network
model were within the following ranges [2]:

— working medium temperature —142 to 300 °C;

— pipeline diameter — 89 to 630 mm;

— oxygen concentration — 0 to 40 mkg/kg;

— working medium velocity — 0.1 to 10 m/s;

—pH - value is 7 to 10.2.

As the neural network output parameters characterizing FAC intensity, the rate and value of the
pipeline element wall thinning (the change in the wall thickness divided by the nominal wall thickness) for
the predicted time interval were chosen.

Here, the following is to be noted. When software for calculating FAC is developed abroad, it is as-
sumed that service life does not affect FAC rate and change in wall thickness (thinning). This assumption can
be realized if the factors accelerating FAC and those slowing it down are balanced by each other. However, for
the operating conditions of NPP pipelines, the linear dependence of the amount of thinning on time and the
constancy of FAC rate are not typical. Thus, for example, the analysis of measurements of the wall thickness of
the feed water pipelines of NPPs with VVER-1000 shows that the average FAC rate in the first five years of
operation is 0.84 mm/year, and in the next five years it is 0.38 mm/year, i.e. it is reduced by a factor of 2.2 ap-
proximately times [7]. Therefore, the use of the moment of control and the moment of time for which the pre-
diction is performed as the network input parameters should make it possible to take into account the non-linear
dependence of the pipeline wall thickness on time and, accordingly, improve prediction quality.

The most commonly used neural network activation function is the sigmoid function f(x)

Fy=—2

l+e™™
where a is the parameter characterizing the slope of the activation function graph; x is the input parameter;
Jfx) is the value of the neuron output.
The sigmoid function is strictly monotonically increasing, continuous and differentiable. The main advan-
tage of this function is that it can be differentiated along the whole axis of abscissas and has a simple derivative

g af (x)(1- f(x)),

ox
which makes it possible to significantly reduce the computational complexity of the neural network training
method, which uses the error back propagation method [8].

The initial data are converted to the form in which they can be fed to the network inputs. Normaliza-
tion is performed when data of different dimensions are fed to different inputs. The data are normalized to
the interval (0, 1) — the sigmoid function range of output values. The conversion of x into s is performed in
accordance with the formula

>

s =[x—min(x,...x,)]/[max(x,...x,)—min(x,...x,)],

where n is the number of x values.
The inverse conversion from s to x is performed as follows:

x=min(x,...x,)+s[max(x,...x,)—min(x,...x,)] .

As a method of training a neural network, the back propagation method is used, which assumes a for-
ward and reverse passes through the layers of the network. During the forward pass, the input vector is fed to
the input layer of the neural network, and then propagates through the network. As a result, a set of output sig-
nals is generated, which is the actual response of the network to this input image. During the forward pass, all
the weights of the network are fixed. During the reverse pass, all the weights are adjusted according to the error
correction rule, namely: the actual network output is subtracted from the desired one, resulting in an error sig-

ISSN 0131-2928. Journal of Mechanical Engineering, 2018, vol. 21, no. 3 15



JMHAMIKA TA MILIHICTb MAIIINH

nal. This signal later propagates through the network in the opposite direction. The network weights are ad-
justed in order to maximally approximate the network output signal to the desired one.

The back propagation algorithm looks as follows.

1. A training pair is selected from a training set, and the input vector is fed to the network input.

2. The output of the network is calculated by the formula

1
=f(S)=———F.
y=16) l+e™™

n

where § = Z(xiwi); n is the number of input parameters; x; is the value of the i-th input; w; is the weight of
i=1

the i-th input.

The values of the weights are selected in the course of network training, which consists in approxi-
mating the output parameters to the expected values. Unfortunately, there is no universal method for select-
ing weights that would guarantee finding the best starting point for any problem being solved [8]. For this
reason, in most practical implementations, a random selection of weights with a uniform distribution of val-
ues in a given interval (in our case in the interval (-0.5, 0.5)) is most often used. The very approach to train-
ing a neural network implies starting from the wrong position in the search for the right one.

3. The difference between the network output and the required output (the target vector of the train-
ing pair) is determined

A=y —d

4. Weight change is determined by the formula

Aw, =nA;y;(1-y;)x;,

it

where 1 is the parameter that determines the speed of training.

5. For each vector of the training set, steps 2 through 4 are repeated until the error on the entire set
has reached an acceptable level.

As a teaching algorithm of the neural network developed, the teaching algorithm with a teacher is chosen.
With this training, the set of input data is divided into two parts — the actual training sample and the test data. The
training data are sent to the network for training, and the test data are used to calculate the network error.

Despite the fact that a large number of operational control data have been currently accumulated, only a
small part of this data is processed. In addition, the analysis of monitoring data is difficult to perform due to the
objective complexities associated with the presentation of measurement data and their accuracy. Therefore, in this
work, test samples are generated on the basis of both the operational control data and computer simulation results.

3. Results of applying the developed methodology

A separate network must be built for each geometric type of pipeline elements (straight portion,
bend, outlet, etc.), which will greatly simplify the neural network structure and improve the model accuracy.
The developed methodology assisted in predicting FAC rate for pipeline straight portions with NPP second
circuit single-phase medium.

Usually, in predicting, both an estimate of the expected variable value (in our case, FAC rate or pipe-
line wall thicknesses) and that of the time interval (at which the probability of finding the variable predicted
values is preserved) are made. In some cases, predicting the specific values of the predicted variable is not so
important as predicting significant changes in its magnitude, in particular, the pipeline element wall thick-
ness reduction below the maximum permissible one. In this case, there are also used the results of calcula-
tions based on a computer-simulated statistical model.

The figure below shows the results of estimating the accuracy of approximating the results of the
neural network operation (line — regression line, points — output values) for two test samples. The average
quadratic error of the prediction calculated by the neural network for the case of using operational control
data as a test sample is 0.035; for a test sample based on the calculations using a statistical model that uses
CEM it is 0.037. The network target values are 0.31; 0.18; 0.15; 0.07; 0.27; 0.28; 0.375; 0.37; 0.417; output
data are — 0.271; 0.13; 0.13; 0.016; 0.275; 0.22; 0.367; 0.4; 0.433.
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Graphs of linear regression between the network output and the standard. Test samples are based on:
a — control data; b — results of computer simulation

Almost the same error in predicting FAC rate in the case of using two different test samples indicates
the possibility of applying the results obtained by the calculation and experimental method for test samples
in the absence of the required amount of exploitation control data, verification of the neural network being
developed for each type of NPP pipeline elements, refinement of calculation results and predictions.

With the help of the developed neural network, the inverse problem can also be solved, when the
value of one of the unknown initial parameters (temperature, medium velocity, oxygen concentration, etc.)
can be calculated from the known value of FAC rate.

Conclusions

The principal possibility of using the technology of self-learning neural networks for predicting FAC
rate in the pipeline elements of NPP second circuit has been established.

The joint use of the two components (the developed methodology based on CEM and neural network)
may be useful in assessing the possibility of reliable and safe operation of NPP pipeline elements subject to FAC.

The main advantage of the developed approach is the possibility of carrying out predictive calcula-
tions of FAC rate and the optimizing operational control.

With the help of the developed neural network, it is possible to solve both direct problems, in which
the input values determine the output value (FAC rate) of the model used, and inverse ones, in which the
known output values are used for searching the input data leading to the appearance of the available output
ones. Thus, the developed methodology can be used to assess the effectiveness of water chemistry regimes,
to study the effect of both geometry and regime parameters on FAC intensity of NPP pipeline elements.
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IIporno3yBaHHs epo3iliHO-KOPO3iiiHOr0 3HOCY eJieMeHTIB TPYOONPOBOIiB ATOMHUX €JIEKTPOCTAHIII
METO10M HelpoMepe:KeBOro MoIeJTI0BAHHS

' Bi6aik I. B., ' ABpamos K. B., >Pycanos P. A.

'TacturyT npo6item MaumuoOygyBanus iM. A.M. ITizropaoro HAH Ykpaiuu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

? IncTuTyT IPoTOuHMX MamuH im. P. Illepanbcrkoro Iomsepkoi AH,
[Mompmra, M. I'mancek 80-231, Byn. dimepa, 14

Ha ocnogi komnnexcrozo nioxooy, wo 8UKOpUcmo8ye KoMn romepHe MoOeTo8aH s Npoyecy pYUHYBaHHs KOHCIPYK-
YiHUX Mamepianie i mexHOI02H0 CAMOHABYANLHUX HEUPOHHUX MEPEC, PO3POOTIEHO MEMOOOI0LII0 NPOSHO3Y8ANHHS WUEUOKOCHII
epositino-kopositinoeo srocy (EK3) enemenmie mpybonpoeodie 3 oonogasznuum cepedosuwyem opyeoeo xoumypy AEC. Hetipo-
Mepedicesa MoOeb peanizosana 8 cepedosuwyi npoepamysarisi Delphi. Hetiponna mepedica ckiadacmubcst 3 6XiOH020 wapy, wjo
Micmumb cim enemMenmis, i 6uUXiono2o wapy 3 06oma eremenmamu. Ak 6xioHi 3MiHHI HEUPOHHOL Mepedici 0bpaHi napamempu,
SKI YuHAMb HAoObuwull énaus na npoyec EK3. Lle memnepamypa cepedosuwya, eHympiwmii oiamemp mpyoonposooy, emicm
KUCHIO 8 cepe0osuii, WeUOKIiCmb meuii menioHocis, 800He8Ul NOKA3HUK, YacC NPOo8edeHHs KOHMPOmo (abo noyamky eKxcniya-
mayii) 1 uac, Ha AKUl 30IUCHIOEMbC NPOSHO3YEAHHS. 51 KOJCHO20 3 6XIOHUX Napamempie Mepexci subupaIucs inmepeaiu
Moocnusux 3Hauens. Ilpome yunnuku, wjo enauearoms na weuokicms EK3, ane ue ysitiwinu 6 peanizosany mooein (emicm xpo-
My, MiOi ma MonibOeHy 6 mamepian mpyoonposooy, mun aminy), NpUtHAMI nocmitnumu. Buxionumu napamempamu HeupoH-
Hoi mepedxci € weuokicmo EK3 i 3mina mosuunu cminku enemenma mpybonpogooy 3a npocHo308anull 4acosutl inmepsan. Ak
MEMOO HABYAHHSL HEUPOHHOL MEPENHCT 0OPAHULL MEMOO 360POMHO20 NOUUPEHHS. NOMUTIKU, WO nepeddbayac npsamull i 360pom-
Hut npoxio. Haguanbnum ancopummom HeupoHHOT MEPEdICt € aneopumm HAGUAHHs 3 yuumenem. /[is mecmogoi ubipku npono-
HYEMbCS, NOPAO 3 OAHUMU eKCHIYAMAYIlIHO20 KOHMPOTIIO, 8UKOPUCTO8Y8AMU Pe3VlbMamuy PO3PAXYHKIG 30 CIAMUCIMUYHON
MOOeJIo, CIMBOPEHOI0 8 PAMKAX CREeYidIbHO20 PO3PAXYHKOBO-eKCHEPUMEHMANbHO20 Memoody. Bcmanoenerno npunyunogy mo-
HCUBICMb BUKOPUCIIANHS HEUPOHHUX Mepedic 051 npoeHo3yeants weuokocmi EK3 6 enemenmax mpy6onpoeodig opyeo2o ko-
umypy AEC. Po3pobnenuil nioxio 00380J18€ RONUUMU MOYHICIb NPOSHO3Y WEUOKOCII epO3IIHO-KOPO3IHO20 3HOCY 0e3 GU-
SHAYEHHS BCIX 3anexcHOCmell Midc be3niuyio pakmopis, wo enausaoms Ha npoyec EK3. Hu3zvki 3nauenHs nomunok nodoyoosa-
HUX MoOeell 0038051I0Mb BUKOPUCIOBY8AMU Pe3YIbIMAMU PO3PAXYHKIE 0151 BUSHAYEHHS PeCYPCHUX XAPAKMEPUCTHUK MPY6o-
npoeodie 3 00HoPasHuM cepedosuugem opyeoeo konmypy AEC i onmumizayii’ excniyamayitinoco KOHmporio.

Kniouosi cnosa: netiponni mepesici, Komn'tomepue MoO0emo8anHs, epositiHo-KOPO3IUHULL 3HOC.
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This article deals with the actual issues of ensuring the dynamic strength of
rocketry components using pyrotechnics. It studies the shock interaction of
rocket fairing pyrotechnic separation system components during the second
phase of the system operation at so-called capturing. The contacting of the
system components occurs through a viscoelastic damper. The damper is
installed between a movable part and a fixed one to 'attenuate’ impact due to
plastic deformation. The damper acts as a one-way connector — it limits
compression and does not prevent separation. The whole structure is as-
sumed to be elastic, and plastic deformation is concentrated in the damper.
The mechanical model is represented as a combination of elastic elements
and a nonlinear damper. The technique of taking into account the nonlinear-
ity of a damper is based on the introduction of variable boundary forces on
the damper ends. In the case of plastic compressive deformations, boundary
forces increase the deformation, restrained by elastic forces, and when the
contact disrupts (separation), they completely compensate the stresses in the
damper model, nullifying them. A three-dimensional computational model of
the fairing assembly composite design is constructed. The damper is pre-
sented in the form of a continuous thin ring. The finite element method is
used. The calculation of the structural dynamics with respect to time is car-
ried out by the Wilson finite-difference method. Verification of the technique
on the test problem with the known wave solution is carried out. Calculation
studies of the dynamic stress state at different impact speeds for damper
variants with different plastic stiffness are performed.: steel elastic (damper
without holes, 'rigid', for comparison); initial (damper with holes, plastic,
soft) and rational (damper with a selected characteristic of rigidity). It is
shown that the initial damper is inefficient due to insufficient rigidity. The
characteristics of plastic stiffness are determined, under which dynamic
stresses are significantly reduced in relation to the initial structure. The
maximum dynamic stresses in the pyrotechnic separation system of the fair-
ing with rational dampers strongly depend on the impact speed. At signifi-
cant speeds, they exceed the plasticity limit. A more precise formulation of
the 'catch-up' task should be carried out taking into account the plasticity in
the entire structure.

Keywords: fairing, separation system, impact, stress, contact, damper,
plasticity.
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