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ON THE THEORY OF GENERALIZED TOEPLITZ KERNELS *
PO TEOPIXO Y3BATAJIbHEHHUX S/TEP TEILJIITA

A new proof of integral representation of the generalized Toeplitz kernels is given. This proof is based
on the spectral theory of corresponding differential operator which acts in the Hilbert space constructed
from the kernel of this sort, A theorem on conditions which are imposed on the kernel and guarantee the
selfadjointness of considered operator (i.e., the uniqueness of measure in the representation) is obtained.

HasomuTscs HOBe JlOBeJieHHA iHTerpanbHOro s06paxenns ysaransnennx snep Temrina. e noseaes-
1 GasyeThcA Ha cneKTpasneHil Teopii Bignosinuoro gudepennianeHOro onepaTopa, Mo Ai€ B riisbep-
TOBOMY IpocTOpi, MoGynoBaHOMY 3a TakuM AnpoM. Opep>KaHO TeopeMy Ipo YMOBH Ha ANpO, AKI 3a-
GesnedyioTh caMOCHPSAXKEeHIiCTh Lboro oneparopa (To6To egHHICTh MIpH B 300paskeHH]) .
0. Introduction. Let I = (—[,[), 0<I<eo, and IXI 3 {x,y) > K(x,y) e c! ve
a bounded measurable (with respect to Lebesgue measure dxdy) kernel. Recall that
this kernel K is called positive definite if for every fe Cg, (1),

|| Ko f) FG) dedy 2 0.

IxI

It is obvious that in this inequality, it is possible to take f to be continuous with
compact support or integrable on / with respect to dx, etc. If K is continuous, then
its positive definitness is equivalent to the requirement that all matrices

(K(xj,xk))szl, for arbitrary different points xq,...,x,€ I, N =1,2,..., be
nonnegative.
This kernel is called a Toeplitz kernel if the function (—21,21)> ¢t — k()€

e C! exists such that

K(x,y) = k(x-y), x,yel ' 0.1
(such a function k is said to be a positive definite function) . For Toeplitz kernel (or
for positive definite function), the following classical integral representation of

Bochner —Krein: K is a Toeplitz kernel iff
K(x,y) = k(x-y) = [ & Ndo), x,yel, (0.2)

5 R?
where do(A) is a nonnegative bounded Borel measure on R’ (see e.g. [1], Ch. §,

§ 3, Subsect. 3). In the case [ = I[%l, this measure is determined by K uniquely.

In 1979 M. Cotlar and C. Sadosky [2] have introduced an essential generalization of
Toeplitz kernel. Namely, let I = ]Rl, a positive definite kernel K is, by definition, a
generalized Toeplitz kernel if, instead of one function k& in (0.1), we have four
functions kqp(£), o, B=1,2, such that

K(x,y) = kqp(x—y), xe€ly, yelp, (0.3)

where I; = [0, ), I, = (—ee,0).

They give, for such kernels, a generalization of representation (0.2) and they,
together with R. Arocena [3—6], have obtained applications of this notion to dilations
of operators, etc.
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ON THE THEORY OF GENERALIZED TOEPLITZ KERNELS 1459

The above mentioned generalization of Toeplitz kernels dealt witn the case I = RI,

ie. [ = e. R. Bruzual in [7] generalized these constructions to the case [ < o, when
in (0.3), I; = [0,1), I, = (=1, 0) (“Krein situation”™). In particular, he has developed
a theory of local semigroups of contractions and using this theory has proved a
generalization of integral representation (0.2) for such a type of generalized Toeplitz
kernel. Note here also the articles [8, 9], containing interesting results about such
kernels.

On the other hand, Yu. M. Berezansky in 1956 has developed a general approach to
the integral representation of positive definite kernels K, which was based on the
theory of generalized eigenfunction expansion of differential (and other) operators in
the space constructed from K (see [10, 11] and book [1], Chapter 8).

The aim of this article is to show that the integral representation of type (0.2) for
generalized Toeplitz kernels in the cases 0 <! <o and [ = +eo, can be obtained by
using, in a quite natural way, the above mentioned generalized eigenfunction approach.
This approach gives a possibility to find conditions on K that imply uniqueness of the
measure do(A) in the representation of type (0.2), to develop a theory of extension of

a generalized Toeplitz kernel K on (1, [)x (I, 1) to a kernel on R! x R!, of the

same type similar to stated in [1] (Chapter 8, § 3, Subsect. 8, 9), etc. Note that
M. Cotlar and C. Sadosky in [2] have pointed out possibility to apply the generalized
eigenfunction approach to the theory of generalized Toeplitz kernels in the case [ =co.

In this article, we also use books [12, 13] and text book [14] in which the theory of
rigged spaces, the needed theorems about eigenfunction expansions and positive
definite kernels are explained in a more modern way, but actually we only use results
from [1]. Communication [15] contains a short information about results given in this
article.

1. Formulations of results. Let J be an interval of the form I = (-[,1) 0<I<
<eo, andlet I; = I1[0,e0), I, = I{](—e°,0). Denote Vo, B = 1,2,

Iop = {t=x-y|xely, yelp}, (1.1)
ie. Iyy = Iy = (-1 1), I}, = (0,20), Iy = (-21,0).
Consider a bounded positive definite kernel
Ix1I>s (x,y)— K(x,y)e CL
This kernel is, by definition, a generalized Toeplitz (g.T.) kernel if there exist four
continuous functions Iop 3 ¢ > kqp(2) € ¢! such that
K(x,y) = kqp(x~y), (x,y)elyxIg, o,B=12. (1.2)
Any positive definite kernel is Hermitian (K(x,y) = K(y,x), {x,y)e Ix I),
therefore representation (1.2) gives:
Eoyallis Bt Fal.. =12

k(1) = ky(-1), tely.
For every o, P = 1,2, the restriction K I (I «X Ig) is a continuous function
kaﬁ(xuy), hence the function K is continuous on I X I (and bounded by
definition) . The boundedness of K gives the boundedness of every kg on Iyg.
The main result of the article is the following.
Theorem 1. For every generalited Toeplitz kernel, the following integral
representation takes place:

s 2 '
K(x,y) = [ &M % (ka0 dogg (M),  (x,y)e IXI.  (1.4)
R! o,f=1

(13)

ISSN 0041-6053. Ykp. mam. sypu., 2000, m. 52, N2 11



1460 Yu. M. BEREZANSKY, O. B. CHERNOBAI

Here x, is the characteristic function of the interval I, o =1, 2, andd o(A) =

= (doyg (R,))iﬁﬂ is a finite nonnegative matrix-valued Borel “spectral” measure
on R? ( doyy(A) and do 5, (M) are nonnegative finite scalar measures,

do15(A) == doyy (M) has bounded variation on R').

Conversely, every kernel of form (1.4) with a finite nonnegative matrix-valued
measure do (M) is a generalized Toeplitz kernel.

Remark 1.1. The proof of this theorem, which will be given in Subsect. 2, 3 and 5,
shows that it holds true for a more general situation, namely, if the functions I ,pg >
5>t kop(t) e c! are only measurable. In this case, the corresponding integral (1.4)

is, as before, continuous. Therefore it is possible to conclude that such a still g.T.
kernel K, for almost all (x,y)e I x I, coincides with a continuous g.T. kernel
given by the integral in (1.4). Moreover, in [8] it is proved that the difference
between K and this integral is a positive definite kernel (defined for almost all x, y).
Remark 1.2. Let [ <oo and K be a g.T. kernel on X I. For K we have

representation (1.4) in which the integral is a g.T. kernel on R! x R, Therefore it is
possible to say that every g.T. kernel on I X I can be extend to a g.T. kernel on
R'xR.

Remark 1.3. The measure do(A) in (1.4) is defined by K, as rule, not uniquely. .
Therefore, we have many extensions of K from IxI onto R' x R,

The uniqueness of the measure do(A) is connected with the selfadjointness of
some operator A generated by K. More exactly, this operator A is constructed from
the differential expression —i f; acting in the Hilbert space Hy generated by K (see

(2.1)). Itis the closure in Hy of operator (2.9).
We will give some sufficient condition on K which involves the selfadjointness of

A and, therefore, uniqueness of the extension of K from IxI to R'x R'. Fora

connection between selfadjointness of the operator A and uniqueness of the measure
dc (M) see [1], Chapter 8, § 1, Theorem 1.1.

Let [ <. By definition, a g.T. kernel is nondegenerate, since it follows from the
equality

[] Ky f6)F@ydxdy = 0, (L5)
IxI
where fe L2(I, dx), that f = 0.

The folowing result takes place.

Theorem 2. Let | < oo. Assume that a generalized Toeplitz kernel K is
nondegenerated and the corresponding functions ki1 (1), kop(2), t€ (=1,1), are
infinitely differentiable in some neighborhood of zero. Then this kernel can be
extended uniquely to a generalized Toeplitz kernel on R!x R, ie the operator A

is selfadjoint in the space Hy, if

21 (" REZD @)Y =,  a=1,2. (16)

This theorem will be proved in Subsect. 4. It is a generalization to g.T. kernels of
the well known result concerning positive definite functions (see e.g. [1], Chapter 8,
§ 3, Theorem 3.13).
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Note that, in Subsect. 2—4, we will investigate the case [ < co. The case [ =co
will be examined in Subsect. 5.

Remark 1.4. For ordinary positive definite functions k(z) on ]Rl, the measure
do (M) in representation (0.2) (x -y = t e RI) is defined uniquely. For g.T.-

kernels on R' x R' such a uniqueness can fail to hold.
It is possible to construct the corresponding example in the following way. Let
¢1,p2€ L 1 (]Rl, dA) be two different functions for which

[ eMoMdr = [ Mo (Mdh,  te (0,). (1.7)
]Rl Rl
Put VAe R! and Vo, B, j = 1,2, dcsg? M) = 1P Ay ar, where 1P A) =
= 1o1 ] + [o,M], B W) = 9,0, Q) = 1A = 9;(A). Every matrix
tH) = (’cm (l))aﬁ -1> J =1, 2, is positive definite, because 1:5-? (A) =2 0 and
I'c(” w)? = [(pj-(l)i < "I:U} ) ’c(j} (A). Therefore, the matrix-valued measures

doP(n) = (doU ) )3 =1 are nonnegative, finite and distinct, but according to (1.4)
and (1.7) the correspondmg g T. kernels K(x,y) are the same. O

For real-valued g.T. kernels on R! x R, it is easy to prove the uniqueness of

do(A) in representation (1.4).

Note that Theorem 2 still holds in the case [=o0. The proof is the same as in
Subsect. 4, with changes from Subsect. 5.

2. Hilbert spaces and differential operators connected with generalized

Toeplitz kernel. Using a given g.T. kernel K for the case [ <, we introduce a "
quasiscalar product

e 2
(f 8= [[ K&y FO)g@dxdy, figel? 2.1)
IxI
where L? = LZ(I ,dx), dx is the Lebesgue measure (K is bounded, therefore

integrals (2.1) exists). Identifying all fe L 2 for which (fsf)g = 0 with zero and
then completing the set of the corresponding classes

= {heL?|(f-h,f-h)y, = 0}, feL? 22)
we obtain a space Hy in which our operators will act. Vectors from Hy are denoted
by B Gla

Consider the rigging (chain)
Woa() o L? o W), (23)

where Wzl,o () 1is the subspace of the Sobolev space Wzl(l) consisting of functions
ue Wzl(l) for which #(0) = 0. This rigging is quasinuclear, i.e. the imbedding
W%,D ) < L? is quasinuclear. Using (2.3) it is possible to construct a quasinuclear
rigging

Hy _ D Hg D Hyg 4, 24 .
where the space Hy , consists of classes #,u € WZIO (I), with the corresponding

scalar product. This scalar product (&, D) e is equal to (wy, vy) where uy

20K
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is a special unique vector from Wzl,n (I), belonging to #. For details of the above
construction see [13], Chapter 5, § 5, Subsect. 5.1 (note that in our case, G, = Gy =

=G =L ) orin [1], Chapter 8, § 1.
Remark 2.1. Note that in thc case of a nondegenerate g.T. kernel K (i.e., if

(f, ey # 0 forevery 0 # fe L) f = f and the space Hyg , = Wz,u(n- Denote
by Ip2 and Iy the standard operator I (connected with the chain) for chains (2.3)
and (2.4), respectively. Then in our case, it follows from (2.3), (2.4) that:
1 1 gl —~
Hy_ = Iy Hy, = I3 Woo() = Iz I, Woo(D). 2.5)

’ K
Denote by KmB(x, y) the characteristic function of the set I, x I B and introduce
the kernels

Kop(x,y) = Kop(x, »)K(x,y), (x,y)eIxI, o,p=12.  (26)

Using (1.2) we can write:

2
K(x,y) = 2 B ®Y) = Y, Kep N kp(x=y), (x,y)e IXI. (27)
o,p=1 o,p=1

Representation (2.7) permits to rewrite expression (2.1) in the form
(f, )y = [[ k-0 rf0ededy, fgel®  (28)

cc,5 LIgxIp

Introduce now operators connected with our problem. Denote by Cy (I) the set of

all functions u from C*(J) which are equal to zero in some neighborhoods
(depending on u) of the points —Z, 0, I. Onsuch finite functions, we define the
operator

Dom (A") = CT(U) > u > A'u = -s% =: (Lu)(x). (2.9)

Lemma 2.1. The operator A’ is Hermitian wth respect to quasiscalar product
@2a), e

(A'u,v)g, = (W, AV)y,, u,ve CoU). (2.10)
Proof. Using representation (2.8) for (2.1) we get
2
(A'u,v)y, = [[ g =y (it 0))v@) dxdy, w,ve Cg(). (2.11)
a,ﬁ 1IgxIg

Fix some o, B and functions u,v € Cy (), and consider the integral

jj up (6= Y)W 0)v(x) dxdy. (2.12)

Extend in an arbitrary way the function Kyp(x,y) from Ip onto R' as a bounded
function and extend the functions wu(y) and v(x) to be zero for y € R! \Ig, x €
e R \Iy. Because the functions from Cy (/) are equal to zero in some
neighborhoods of the points —1, 0, I, these extended u, v belongs to Cg, (/) and

we can rewrite integral (2.12) in following way:
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[| kp=nuwovGiaxdy = || kpe-yw0)v@dedy =

Iy %1y RIxR}
J’ B(r)[j '(x—:)@ded: j B(r)[fu(x-r)mcix)dr =
Rl
= = ] kop@=»)u)v (x) dxdy (2.13)
Ioxlg

(we used above integration by parts formula).

Applying equality (2.13) to each term in (2.11) gives (2.10). O

Note that, for smooth functions kg, equality (2.10) follows from (2.11) using
directly the integration by parts formula.

The Hermitness of A” in (-, - )y, gives that this operator in a natural way can be

extended to smooth classes (2.2); A'a = (A’ u) (the proof of this simple assertion can
be found in [13], Chapter 5, § 5, Subsect. 5.2 or in [1], Chapter 8, § 1).
So, as a result we have, in the Hilbert space Hy, a densely defined Hermitian

operator A/, let A be its closure, A = (A’). The operator A may or may not be
selfajoint (see below, Subsect. 4) . But it has equal deficient numbers. This assertion
follows from the following,

Lemma 2.2, The map

fr fri= FF, where fel?  f'(x)= FC9, 2.14)
is an involution in the space H yx and the operator A is real with respect to this
involution:

= (AF)", Fe Dom(A). (2.15)

Proof. Forevery o, = 1,2, Kgp(x,y) = KB (=%, =y), (x,y)e I'xI, and

kop(x—y) = kgo(—x+y), x€ Iy, y € Iy (see (1.3)). Therefore, formula (2.7)
gives

K(x,y) = KCx—y), (x,y)elx]. 2.16)
Using definition (2.14) and (2.1), (2.16) we conclude that
(58", = (0, () =f fgel? 217)

This equality and (2.2) show that the definition )A“ > F is correct and, therefore,
its continuous extension to all Hy gives the involution Hy 5 F +> F" € Hy.

It is necessary to check equality (2.15) only for F = i, ue Cy (I). Using (2.9)
we get: (A‘'u™)(x) = —i%u(~x} = ((A’u)(x))” and, therefore, A’* = (A’%Q)",

which gives (2.15) for F = #. O

Thus, the operator A is real with respect to the involution * and, therefore has
equal deficient number. We fix some selfadjoint extension B of this operator in the
space Hy and construct the generalized eigenfunction expansion for B . This
expansion gives a proof of Theorem 1.

3. Spectral projection theorem and a proof of Theorem 1. For the application
of the spectral projection theorem (i. e. of the theory of generalized eigenvectors) to the
operator B, it is necessary to construct an extension of rigging (2.4).

Turn Cy () into a linear topological space by introducing the convergence
Co(l) » u, - ue Cy() which is uniform for the functions and all their
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derivatives that have uniformly bounded supports (i.e. there exist some neighborhoods
of the points —I, 0, [ inside of which u,(x) = 0 forall n).
Consider the space of classes

D = (C5) CRY)
and endow it with the quotient topology via the map u — #. As result, we construct
an extension of chain (2.4):

Hy O HyDHy, . >Dj; 3.2)
the imbedding D <y Hy , is dense and continuous.

Chain (3.2|2 is standardly connected with the operator B: D < Dom (B) and the
restriction B |' D acts continuously from D into Hg , (moreover, B M'D is given by
(2.9) and, therefore, acts continuously in D).

So, it is possible to apply the spectral projection theorem to B and rigging (3.2).
We will treat it in the following way. In our general situation when K may be
degenerate, we apply some corollary of this theorem (Theorem 5.1 from [13], Chapter
5,8 5; we use only its special case for a single selfadjoint operator and the spaces
G, =Gy=G_= L% H + = WZI,Q(D; the involution * is now the usual complex
conjugation; see also [1], Chapter 8, § 1, Theorem 1.1). After its formulation, we will
explain in what manner we get the corresponding result from the standard spectral
projection theorem in the case when g.T. kernel K is nondegenerated.

The above mentioned Theorem 5.1 in the necessary special case asserts the
following.

Proposition 3.1. For the kernel K, the following representation holds:

K= [QMdp). (3.3)
R!.

Here Q(M) e H_.®H_, H_ = Wz':é (I), is an elementary positive definite kernel
" and the norm ||Q(A\) ||y oy _ is bounded with respect to . ; the measure p is a
Borel nonnegative finite measure on the axis R'. The integral in (3.3) is

convergent in the norm of the space H_® H_.
The positive definiteness of the kernel Q(A), A € R, means that Yue H =

= W0 (D)

(QM),u®a),,. , = 0. (3.4)

*er
The elementary character of Q(\) consists in validity of the following equality:
QA% PO WH) g = (QM), AN OT) g, =

= AMQM),v®%), u,ve Cy(). (3.5)
Observe that, in terms of the tensor product, expression (2.1) has the form
(fs®)ug= K. 8®Pg,» frgelL? (3-6)

Remark 3.1. Explain in what way one can deduce for the case of a
nondegenerated g.T. kernel K, representation (3.3) from the usual spectral projection
theorem (see e.g. [14], Chapter 15, § 2, Theorem 2.1). We apply this theorem to the

operator B standardly connected with the chain (3.2) ; now ]? = f and, therefore,
D=Cr.
Using this theorem, it is possible to assert that the following statement takes place.
Proposition 3.2. On the axis R there exists a Borel nonnegative finite measure

p (the spectral measure of B) for which the following Parseval equality holds:
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@)= [ PMwv)y dp(N), wu,ve Hg,=WdD. (3.7)

]Rl
Here P (\) is defined, for p-almost every A € ]Rl, and it is an operator-
valued function values of which are operators from Hg . into Hg _. The

corresponding Hilbert—Schmidt norm ||P(L) || gs < 1.
The operator P()\) “projects” onto generalized eigenvectors of the operator B
corresponding to the “eigenvalue” A in the following sense: ¥ ue Hy ,

(P(?“)M’AID)HK = ?L’(P(l)u: U)Hx: (38)
veD=Cy() (BICyw) =4").

This operator is nonnegative with respect to chain (3.2), L.e.
(PMu,u)g, 20, wueHg,. (3.9
Proposition 3. 1 follows from the preceding one in the case of a nondegenerate K.

Indeed, fix A € R!. Using the kernel theorem (see e.g. [14], Chapter 14, § 6,

Theorem 6.3, and Remark 6.2 ; * now is the complex conjugation) we can assert that
the continuons bilinear form

Wao (D@ W0 (1) 3 (u,v) = ap(u,v) := (PA)u,v)y € C
has the representation

(P, v) g, = ar(u,v) = (QN),v®7) (3.10)

L2 ® L2 ]
where QM) e (Wyo()® Wa()) (it is essential, of course, that the imbedding
Wi o(I) < L? is quasinuclear).

Equalities (3.6) and (3.10) make it possible to rewrite representation (3.7) in form
(3.3). This generalized kernel (M) is positive definite: inequality (3.4) follows

from (3.9). Equalities (3.10) and (3.8) give: Y u,ve Cy (1)
Q) AV ®D) 2,2 = (PAU,A) g, =
= MPA)u,v)g, = MQA),v®U) 2,2 - (3.11)
Now we prove the last equality in (3.5). For the proof, it is necessary to note that
the form a, from (3.10) is positive and, consequently, Hermitian: Vu,v e Wzljo (0))
ay(u,v) = @ (v,u). Therefore using (3.11) Vu,ve C;5 )

(QA), v®(A'w) = a)(A'u,v) = ay(v,A'w) =

*er

= Q0), A WO pg,s = MQM),UBD) g, =

= Aa,(,u) = Aay(u,v) = MQMN), U®E)Lz®Lz.

Thus, (3.5) is proved. The boundedness of the norm || Q(A) ||y @y follows from

the estimate || P(A)||ps < 1.
Indeed, let I be a unitary operator connected with the chain

H ®H 5L*®L*>>H,®H, H, =W, =H,
and Iy connected with (2.4) (note that I = I;> ® L2, see Remark 2.1). Then we
can rewrite (3.10) as the equality:
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TQM),v®u)y, on, = (RN, v®U)2g,2 =
= (PO, v), = Uy PAU,)y,,  u,ve H,. (3.12)

Let (e;)7=; be some orthonormal real basis in the space H,, then (e; ® e)Tk=1
is an orthonormal basis in H, ® H,. Takingin (3.12) v = ¢;, u = ¢, we get

QM en, = 3 I(TQM),¢;®e)n, om,|* =
Jk=1
= 3 Iy PWep e g > = > My, POy, = 1y, PO, -
k=1 . =1
’ (3.13)
The operator P(A): H, — Hg _, [|P(A)||gs < 1, therefore, || Iy P(A) || ps. <
< 1 and equality (3.13) gives that [|[TQ\) ||y ex, < 1, ie [[QM) |y en_< 1

for an arbitrary A.

Proposition 3.2 is proved. O

Note that, for a degenerate g.T. kernel X, the proof of Proposition 3.1 is the same
as above but technicaly it is more complicated.

The proof of Theorem 1 is based on Proposition 3.1 and the following assertion.

Let G = R be a finite open interval and & e 'Wz_l(G) be a generalized
solution, inside G, of the equation L& = LE (L =27 is given by (2.9), A €
e ©), ie. the following equality holds:

(&, )26y = M (& v)p26y, v E Cn(G). (3.14)
Then, automatically, £ € C~(G) and has the form '
E(x) = ce’™ xe G, (3.15)

where c e C' is some constant.

(This result is a special case of the theorem about smoothness, up to the boundary,
of a generalized solution of ordinary differential equation (see e.g. [14], Chapter 16,
§ 6, Theorem 6.1)).

1Proof of Theorem 1. Denote by H,, , the subspace of H, = Wzl,g (I) consisting
of functions from H, which are equal to zero on I\I, and let

Hyp,=Hy,®Hy ,cH ®H, o,fp=12.
Note that for u € H,, the function u(x)¥q(x)€ H 4 (Kq(x) is the characteristic
function of 1,). Let

B, od (yoH,., @mslb, (3.16)

be the rigging connected with the spaces L 2(! o) and Hy ..
Fix A € R' and denote by Qaﬁ(l) the restriction of the generalized function
Q(A)e H_ ® H_ to Hyp 4, ie.

(Qaﬁ M), vy ® %)Lz U)®L Up) = (Q), v, ® EE)LzQLz s (3.17)
vo€ Hy 4, upeHp,, o,p=12.
Evidently, we have the equality
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Qm), U®E)L2®L2 =
2
= a,%l(ﬁaﬁ(l),Ka(x)v(x)KB(_}))u(y))Lz(Iu)@Lzup), u,ve H,. (3.18)

We will find the expression for Qaﬁ(l); below o, = 1,2 are fixed. Note at
first that the bilinear form

Hg . ® Hy 4 3 (”[5, Vg) > a(upg,vgy) := (Qaﬁ. ), vg ®u_ﬁ)£’2(‘ru)®l'2(!p)
(3.19)
is continuous. Indeed, because || Q) ||y gp » A € R!, is bounded, we have using
definition (3.17) :
la(up, vo)| = [(QM), v ®ug) 2 2] <

< eMllien_ be ®uglly,em, < cllugllmg,+ valls,, -

Using chains (3.16) we can assert that there exist such continuous operators R:
Hg ,—> Hy _ and S: Hy , — Hp _ that we have the representations

a(up,vg) = (Rupg, vo)r2q,) = (4p, SVa)r2(rp) (3.20)
uge Hg ,, vg€ Hy ,.

From (3.20), (3.19), (3.17), and (3.5) we can conclude that § = Rupe H, _ isa
generalized solution, inside I, of the equation £ & = A &. Namely, we have the

corresponding equality (3.14): Vv e Cg, (G) < Cy' (D)
(& Lvg)p2,y = (Rup, Evg)p2q,y = alup, £vy) =

= (@O, (Lv) @) 2 = MOAA), Ve @g) g2 =

= 2 (Qqp N, v @) 2 U)®L* () Ma(up,vg) = ME,va)L2(y,)-

Therefore, the above-mentioned assertion gives that Rug = § € Cg, () and,
according to (3.15),

(Rug) (x) = cl(uﬁ)eih, xe I, uge Hp 4, (3.21)
where the constant ¢ = ¢;(ug) depends on €, ie. on ug. Linearity and continuity
of R gives that the functional Hp , 3 ug > cy(up) € €' is linear and continuous.

Quite analogously we get the representation »

(Sva) ) = )™, yely, vee He,.

Equality (3.2) gives that
o (up) | €M vg (R dx = &{g) [ uy 0™ dy,
Iy !ﬁ
ugpe Hp ,, Vo€ Hy .

From this equality, it is easy to conclude that, with some constant T & Cl,

cy(ug) = 'l:_[ uﬁ(y)e_"wdy, uge Hp . (3.22)
i
(it follows from the following general assertion: let Iy, I, (my, ms) be some linear
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functionals on linear spaces U ( V), respectively, L, my, # 0. Suppose that
Lym @) = L)my(), ue U, ve V, then I1€ €' such that i =L, my =

=1Tm).
Substituting (3.22) into (3.21) and using (3.19), (3.20) we get:

(Qop M), v, ®g) 2 ey = Trjxj,v N D ug () dxdy,
a i

HBE Hﬁd*’ Vg € Ho;,+.
This equality means that Quﬂ(k) is a smooth function Qg(A;x,y) and
Quﬁ(l;xa )’) b Taﬁ(l) ei;\(x—-y), xXe fa: ye fl}: o, ﬁ = 1)2 (323)
(the constant T dependson A, o, B).

Let u,ve H, = Wzl,o (I) . Then representations (3.18) and (3.23) give:

2 » —
QA28 g = 3 T [[ PN uy)dedy =

o,p=1 I X1
- 11|
Ixi\ o,

The arbitrariness of the functions u, v € W"zl,n (I) in (3.24) shows that Q(A) is an
ordinary kernel, Q(\;x,y), and

Me

M ke (x) k3 ) Top (l)] @) u() dxdy . o)
1

=)
It

2
QAsx,y) = Y, AN )k T V),  xyel (329

(I,ﬁ =1
Note that the matrix T(A) = ("uﬂ (}'))i,[i -1 is nonnegative definite for every A €
e R'. Indeed, from (3.24) and (3.4) we can conclude:

2

> Tap(%)ca% = (QM), Z®u) 292 20,

o,p=1

Co = J e*u(x)de, ueH, o=1,2.
L+ I

This inequality shows that T(A) is nonnegative definite, because the numbers ¢ are
arbitrary.
The nonnegativeness of T(A) gives

T (A) 20, TpA) 20, |12 < 1M 1), Ae RN (3.26)

Using the measure p from Proposition 3.1 we introduce the matrix-valued
nonnegative Borel measure do(A) on R': ’

do(A) = TA)dp(A) = (Tep(MN)dp(M)apay = (o (M)apoy- (3:27)

After substituting representation (3.25) into (3.3) we get the required formula (1.4) (we
use the measure (3.27)) :

. 2
Kx,y)= [ 3 x )k doggV), x,yel  (3.28)
R! o,p=1
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Let us investigate the convergence of integrals (3.28). According to (3.26), the
measures doqq (L), do,y(A) are nonnegative. Taking in (3.28) x = y € I; and using

(1.2) we get oy (]Rl) = ky;(0) < eo. Analogously, GZZ(RI) = kyp(0) < oo, The

measure dGiy(A) = dG,; () has bounded variation. The proof follows from (3.27),
(3.26), and the estimate

Jlra@ldpy < [ (maA)Y? (e )2 dpr) <
R! R!

1/2
= (-[ M dp() .[ 122(7\‘)0:9(7“)} = (o RY o (RHY? < .
]Rl ]RI

These properties of the measures dcyp(A) involve the absolute convergence of 4

integrals in (3.28) and their continuity with respect to (x,y)e IxI.
So, we proved representation (1.4). The inverse statement is evident: every
integral (1.4) has form (1.2) with continuous functions kqp(¢f) and is a bounded

positive definite kernel, because V fe Cg, (1)

[| Koy FO)FR) dxdy =

Ixr

’ 2 L
= H [j MENY () Kp (7) dO g (x)] FO) F)dxdy =
IxI 1

R C‘:B._-l

2 e—— .
= [| X JeMr@ar [ o™ foray o) =
R\ oB=1J, Ig
2
= [|[e™ fxax| o) 20. O
R

4. Proof of Theorem 2. At first we will introduce some additional general
constructions. Let [ <o and I X I 3 {x,y) > K(x,y)e Cc! be an arbitrary

bounded continuous positive definite nondegenerate kernel. Using K we introduce the
Hilbert space Hy (see the beginning of Subsect. 2) and investigate the question about

m

whether the derivatives 5, = 8™ of the &-function &, concentratéd at the

m
point ze I, m=0,1,..., 82 = §,, belong to Hy.

Let us recall the notion of 8, and its derivatives. Let ® = Cg, (I) be the usual
space of infinitely differentiable finite with respect to I functions on I. Denote by

@ >5L>> (4.1)

the corresponding chain of spaces. The generalized function Sg”’) is defined by the
expression

(S(ij,(p)ﬁ = (—1)”’(13[”’)(;:), oe®, zelI, m=0,1,....

We will prove the following simple lemma (see also [1], Chapter 8, § 3,
Subsect. 7). :
Lemma 4.1. Let ze I, 1 =0, 1,..., and the function I X I 3 (x,y) —

—= K(x,y)e C! be 21 times continuously differentiable in some neighborhood of
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the point (z,z). Then for every m =0, ...,1 the derivative 8 e Hy in the
following sense.

There exists a sequence (W,¢ (¥)y=1, 0 <€, 0, of functions @, ., € @
with support belonging to {xe I| |x—z| < e,} for which their derivatives cﬂ{’“)
€ ©® < Hg tend in @' to B(ZmJ and tend in Hy to some vector from Hy which

is also denoted by 3™ .
Suppose that the condition about smoothness of K is fulfilled for z,{ e I.
Then the following formula holds:

j+k
) §®Yy. = k[ 97 k=
6P, 80y, = 1 [ax,,ayjfc G2, jk=0..,1 (42

Proof. Denote by ®, ¢(x) the nonnegative function from Cg, (I) = ® which is
equal to zero for |x—z| = & > 0 and for which L 0 (x)dx = 1. Let 0 <€, —
— 0, n— oo. Then using the integration by parts formula we conclude that ¥V ¢ € @

@ ,0)2 = D" o™ (),

ie. mg"g]n — 8 in the sense of chain (4.1).
On the other hand, with the help of integration by parts formula taking into account
the smoothness of K near point (z,z) we get

lim (0%, 0% Y,
n,p—see

_ _ a?.m
=, T, ﬂ [ oy J(x,y)mz,s,‘ 0) @ye, (¥) dxdy = [~—-—-ax,,, 5" K] @2).
(4.3)
It follows from this fromula that Hc:)(’”) - c:)(’”) I[%,K — 0 if n,p = o, ie. the

sequence (035”2 )y=1 is fundamental and, therefore, tends to some vector from Hy
*=n

which we will denote by 8™ .
For the proof of formula (4.2), it is necessary to calculate

62,50, = lim_ (052, 0f i, -
This calculation is the same as (4.3) and gives (4.2). O
Note that the vectors 8§, where z runs over a dense set from I, make a total
set in Hy (aproof is found in [1], Chapter 8, § 3, Subsect. 7).
We will apply now the above stated results to a g.T. kernel K for which the
functions kq1(¢), ko (2), t € (—1I,1), are infinitely differentiable in some
neighborhood of 0. Formula (1.2) shows that in this case forevery ze I, z # 0, the

function I X I > (x,y) — K(x,y)e C! is infinitely differentiable in some

neighborhood of the point (z, z) and, therefore, Lemma 4.1 is now applicable for
everysuch z and m = 0,1, ... .
Consider the operator A, which is equal to the closure of operator (2.9) in Hg. It

is easy to understand that every 52’”), where ze I, z # 0, belongs to Dom(A4)
and

A = i) m=0,1,.... (4.4)
Indeed, for n sufficiently large, the functions from Lemma 4.1 a}(zfgn €
€ Cy () =Dom(A’) and A’mg’gn = —img’:;_:n. According to this lemma, in the
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space Hy, nli_r)nﬂ 032"3,, = 8/ and n]i_}mﬁA’mg”’Qn = —id*D This means that

8" belongs to Dom (A’) and A’8! = —i8("*V, je. (4.4) is proved.
From this assertion we conclude that ¥V ze I, z#0,

8,e [) Dom(A™) and A™§, = (-i)" 8. (4.5)

m=1
Calculate the norms ||A™ 8, |, . Let ze I, z# 0. Then, according to (4.5), (4.2)
and (1.2), we get:
a,Zm

mn 2 o (m) s(m) et
Vz>0 ”A 82||HK - (az 362 )H!C - [W

K] @2) = D"k™0);
(4.6)
Vz<0 [|A"8,%, = D" (), m=0,1,....

For the proof of Theorem 2, we now apply the quasianalytical criterion of
selfadjointness (see e.g. [14], Chapter 13, § 9): letr A be a closed Hermitian
operator in a Hilbert space H, a vector f € ﬂ:zl Dom (A™) is called
quasianalytical if

S A" Al = e, @7

m=1

The operator A is selfadjoint iff H contains a total set of its quasianalytical
vectors.

Taking into account that the set {8,] ze I, z# 0} is total in Hg (see above)

and formulas (4.6), (4.7) we can assert the selfadjointness of the operator A if
condition (1.6) is fulfilled:

i (D" KW )" = o, a=1,2. O

m=1

5. Remarks to the case [ = oo, In this case, instead of chain (2.3), it is necessary
to construct a longer chain (see [13], Chapter 5, § 5, Subsect. 5.1 and also [1],
Chapter 8, § 1).

Namely, let R' 5 p(x) > 1 be an infinitely differentiable weight for which
p~1(x) is integrable on R' with respect to the Lebesgue measure dx. In the
notations of the above cited book, we construct the chain

G_2Gy> G, Gy=L*R,dx), G,=L*R,px)dx). (51)

The g.T. kernel is, as earlier, bounded, therefore K€ G_® G_ and we can
construct, instead of (2.1), the quasiscalar product

(F:0ue= || Kxy)fO)g@dedy, f geby, (52)
RIxR!
generating the Hilbert space Hy.

The role of chain (2.3) is now played by the following chain with the zero space
HU = GD:

H_oHyo H,. (5.3)
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Here H, = WZI,D(R], q(x)dx) is the subspace consisting of the functions from
Wzl (RI, q(x) dx) which are equal to zero at the point x=0. Here g(x) = p(x), x €
e R', isan infinitely differentiable weight with properties: 3 C >0 such that

lg’(x)| < Cq(x), xeR! and jwdx < oo,
]Rl Q(x)

It follows from [12] (Chapter 1, § 3, Theorem 3.6) that the imbedding
Wi (R, g(x)dx) =y L*(R', p(x)dx) is quasinuclear. Therefore the imbedding
H, —, G, will also be quasinuclear.

Introduce the space Hy , as a space of classes #, with respect to (5.2), of
functions u € H, and construct the chain

HK,— = HK =3 HK,+' (54)

The imbedding Hy , is now also quasinuclear and we can take this rigging (5.4)

instead of (2.4).

After such a change the proof of Theorem 1 is preserved.

The formulation of Theorem 2 in the case [ =oco is the same as in the case [ < oo.
Its proof is also preserved, but it is necessary to use chains (5.3), (5.4) instead of (2.3),
2.4).
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