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The air pollution transport model is generally salvwith the so-called operator splitting technigiie original
problem is split into several subproblems and tbleit®n of the model is obtained by solving the mdblems
cyclically. In this paper, we analyze the advectidiffusion and emission subproblems. These suligmob have to
possess certain qualitative properties that folfown physical considerations: nonnegativity preadon, maximum-
minimum principle and maximum norm contractivityeVWWhow that these properties are valid for the midems, and
we shad light on their relations.
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I ntroduction

Nowadays, more and more stress is put on envirohpretection. In order to understand how air palhts or
radioactive dust-clouds move in the air, or how eaithy materials seep into the ground, we genersdiy up
mathematical models based on physical or chemaadiderations. The solutions of these models helfuntervene
in harmful processes. One of these models is theodlution transport model ([Zlatev, 1995],[Csom@606])

aaltl=—D(uv|)+D(KDV|)+R1+E‘0V| (h=1....n), @)

which, after prescribing the initial and boundamnditions, forecasts the concentration of the alupants as a
function of timet. Here the unknown functiov, = v, (x,t) is the concentration of thih pollutant, the function
u =u(x,t) describes the wind velocit = K(x,t) is the diffusion coefficientR = R, (X,t,v) describes the chemical
reactions between the investigated pollutarss E(x,t) is the emission function and = o(x,t) describes the

deposition. Because of its complexity, system ¢lgenerally solved applying the so-called operspditting technique.
The system is split into several subproblems adogrtb the physical and chemical processes involuetthe model:
advection, diffusion, chemical reaction, emissiawl aeposition. These subproblems are solved cylglivath some
appropriate methods. Then, the solution of the oale be obtained using the solutions of the suflpros. Naturally,
the properties of the solution of the air pollutimodel are determined by the properties of the authhat are applied
for the subproblems. In this paper three remarkahlalitative properties — the nonnegativity preadion, the
maximum-minimum principle and the maximum norm cactivity — will be defined and investigated forrizgn
subproblems of (1).

Let Q and dQ denote, respectively, a bounded domairRfi (d O IN*) and its boundary and we introduce the
sets

Q =ax(07), Q =0x(01], r, =(0Qx[0,7]) 0 (Qx{0)

for any arbitrary positive numbear. For some fixed number >0, we consider the initial-boundary value problem

v _§, OV v .
e i 30 A0 bh—=f , )

vl =g, 3)
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where g:T; - R is a given continuous function anfl: Q; — R is bounded inQ; . The linear partial differential
operators in (2) have bounded coefficient functidefined inQ; . Moreover, the coefficient functiong; fulfill the
propertya; =a; and the inequality

d
D.a%X >0

ij=1

is valid for all vectorsO# x0 R®. We say that a continuous functionQ; — R solves the problem (2)-(3) if its
derivatives in (2) are bounded, andatisfies the equality (2) and the condition (3).

Remark 1.1 If ou /dx =0 (i=1...,d), then the problem (2)-(3) involves the advectidiffusion and emission

subproblems of system (1). The function v playsrale of the concentration of one of the pollutantée do not
investigate the chemical reaction subproblem, whighgenerally described by nonlinear functions &me deposition
subproblem.

Under the natural assumption that the initial andriglary conditions for the concentration are noatieg, the
concentration must be nonnegative in any point ahdany time instant. This property is called noraieity
preservation and it must hold for the solution leé system (2)-(3) too. The nonnegativity preseovaproperty is a
direct corollary of another property: the maximurmimum principle, which says that — under certadnditions — the
solution of (2)-(3) can be estimated from below &wodn above by the values of the functi@pandf. As a special case,
it follows from Fick's laws that if there is no ession source present in the computational spaes,ttite concentration
takes its maximum and minimum values in the inis&te or on the boundary. The maximum norm cotimigc
property holds when for arbitrary two initial furas the maximum norm of the difference of the sohs at every
time level is not greater than the maximum norrthefdifference of the initial functions.

In paper [Faragé & Horvéath, 2006], we consideradtoblem

ov
—-0(KOv)=f, v| =
o (KDOv) =9

and we showed that the validity of the maximum-mimin principle is a sufficient condition of
the maximum norm contractivity and it is equivalémthe nonnegativity preservation property. Irstpaper, we will
prove the above statement for the more generalgro®)-(3).

For more details regarding maximum principles cttngRrotter and Weinberger, 1967]. For Readers \ah®
interested or involved in scientific computation® wemark, that the subproblems of (1) are genersdlyved
numerically. It is a natural requirement of an addg numerical method for the air pollution tramsmaeodel that it has
to possess the discrete equivalents of the quadétaroperties listed in the previous paragraphe @iscrete maximum
principle is generally guaranteed by some geonatdonditions for the meshes ([Borisov & Sorek, Z0(0Farago at
al, 2005], [Faragd & Horvath, 2006], [Fujii, 1973]yhe conditions of the discrete nonnegativity preation was
discussed e.g. in [Faragd & Horvath, 2001]. Thecrdie maximum norm contractivity was analyzed faore-o
dimensional parabolic problems in [Horvath, 19984 in [Kraaijevanger, 1992].

1 Maximum-Minimum Principle and the Nonnegativity Preservation

In this section, we will define the maximum-minimyrinciple and the nonnegativity preservation prope
and we show their validity for the problem (2)-(8Je show the equivalence of the two properties.

DEFINITION 2.1. We say that the problem (2)-(3) satisfiesrttaximum-minimum principle if for any fixed functis g
andf the solutiorv satisfies the inequality

rr;in g+t Ijmin{o,igf f} Sv(xt) < rr;axg +t, Hnax{o,supf}
3 0 f Q{l

forall xOQ, 0<t, <T.

The maximum-minimum principle guarantees the umigge of the solution of problem (2)-(3). We consittee

function v = v"'—v™ with two different solutions/” and v"”. The functionV is a solution of the problem (2)-(3) with
the choicef=0 andg=0. Thus, based on the maximum-minimum principle weehv(x,t;) =0 for all xOQ and

t, 0 (0, T). This implies the uniqueness of the solution.
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DEFINITION 2.2. The problem (2)-(3) is called nonnegativitggerving if for any fixed functiong andf with g|. =0
and f |, =0 (0<t, <T) the solutiorv is nonnegative irQ; .

Theorem 2.3 The problem (2)-(3) satisfies the maximum-minimwprinciple if and only if it preserves the
nonnegativity.

PROOF The necessity of the condition is trivial. To shthe sufficiency, let us fix the functiorgsandf. Then, we
define the function

v =v—rT|]ing —tl]nin{O,iQf f}

with the solutiorv. Clearly, v is a solution of the problem

d. v o
- b — = f —min{Q,inf f},
at Z 'axax z ' OX ¢ Q )

i,j=1 i=1

V=g —rrl]in g —tDmin{O,iQf f}.

Naturally,

(f —min{O,igf f}) 1o, 20
and
(9 —n;in g-t Dinin{O,iQf ) I, 20,

and these relations imply that is nonnegative o), by virtue of the nonnegativity preservation asstiomp Thus the
lower estimation

rr;in g+t Hnin{o,igf f } <v(x,ty)

is satisfied. By choosing

V= mraxg —v+tmax{0,supf},

the upper bound is proved similarly. This complétesproof.

Theorem 2.4 Let g andf be two fixed functions. Then, the solutienf the problem (2)-(3) satisfies the inequality

su;{e“l min{min ge™ —lnf fe‘“}j <
A>0 |'|1 )\ f

Sv(x,t) < iAnf [eml max{maxge %supfe‘“ H @)
> [1 Qfl

foranyt, 0 (0,T) andxOQ.

PROOF. For any arbitrary numbek >0 we define the functioro(x,t) = v(x,t)e™

solution of the problem

. It can be seen easily thatis a

7_2 Zd:b P e =t (5)
|Jljax16X i=1 |6X1
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V| =ge™.

As V is continuous orf), , it takes its maximum either on the boundé&gy or in Q, at some poin(x°,t°) . In the first
case we trivially have

supv < maxge ™. (6)
Q, My
In the second case, the relations

sup? < 9(x°,t%) , @(xo,to) >0, ﬂ(xo,to) =0 (i=1...,d),
Q, ot 0x,

d aZv 0 .0
-Ya x%t)—x°t% =0
i,jzzl : 0% 0X;

hold. The last two relations and equation (5) intplgt
f(x%,t%) - 0(x°,t°)Ae" 20,

that is

0(x°,t% <

0 +0y4M° -At
f(x",t)e Ssupfe _ )
A o, A

Thus, in general case, using the upper bounds(b)'4 we obtain the estimation

—-At
V(x,t,) Ssupl < max{maxge‘At ,supfe—} .
Q, My Qy )\

Multiplying both sides bye and taking into account that the relation is tiareall positive numbers\ >0, we obtain

the inequality on the right-hand side of (4). Toeér bound can be proved similarly.

Theorem 2.5. The problem (2)-(3) satisfies the maximum-minimyminciple and the nonnegativity preservation
property.

PROOF. Because of Theorem 2.3, it is enough to show that groblem (2)-(3) preserves the nonnegativity. Let
t,0(0,T) be an arbitrary number aficindg two fixed functions with the properties |er >0 andg ||.t1 >0. Then, for
any t,0(O,t,], we have f |Qf02 0 and g |rt02 0, which result in0<v(x,t,) in view of (4). That is/ is nonnegative in

Q.-

1

2. Maximum Norm Contractivity
In this section, we define the maximum norm cornivity property and prove that the problem (2)-(3)
possesses this property.

DerINITION 3.1. The problem (2)-(3) is called contractiveniaximum norm when for all arbitrary three functidns
g=g" and g =g with the property(g"” - g™) l,g.o,;=0 (0<t; <T) the solutionsv" and v"*' of the problem (2)-(3)
satisfy the relation

max|v(x,t;) =V (x,t;)|< max| g”(x,0) =g (x ).

Theorem 3.2 The problem (2)-(3) is contractive in maximum norm
PROOF. Letf, g=g" and g=g™ be three arbitrary functions with the propefty” - g™)l,g.,;=0. Let vV’ and v:*

the solutions of the problem (2)-(3). We consideg functionsv, =Z v’ -v™" with Z=mD%x|gD(x,O)—gm(x 0.

These functions solve the problem
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N _§a OV g (5)

ot A5 oxox, & ox
(V) =C£(9"-9").

It is easy to see thaf+(g"-g™))|, 20. Due to Theorem 2.5, the problem (2)-(3) presethes
nonnegativity. That isy, =Z +v"-v* is nonnegative irQ_, thus we have

0 _\,0 0 _ ~D
max|v-(x,t,) =V (x4 )[smax| g (x,0) - g (x.0)].
This completes the proof.
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