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To study the effects appearing under mechanical stresses, we have used the model of glycinium phosphite
ferroelectric, modified by taking into account the piezoelectric coupling of ordering structure elements with
lattice strains. In the frames of two-particle cluster approximation, the components of polarization vector and
static dielectric permittivity tensor of the crystal, as well as its piezoelectric and thermal characteristics are
calculated. Influence of shear stresses, hydrostatic and uniaxial pressures on the phase transition and physical
characteristics of the crystal is studied.
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1. Introduction

Investigation of properties of ferroelectric materials under external pressures is one of the actual
problems in condensed matter physics. Considerable part of these materials are compounds, where the
order-disorder phase transitions take place. Their behaviour is properly described by quantum-statistical
models. The most known examples of this class of materials are crystals with hydrogen bonds.

The application of external pressures with different symmetry is an effective means for a continuous
change of geometric characteristics of hydrogen bonds, which let us more profoundly study the role of
these bonds in mechanisms of phase transitions and in dielectric response of these crystals. Piezoelectrics
in paraelectric phase form a large part of the ferroelectric compounds with hydrogen bonds. Application
of shear stresses make it possible to study the role of piezoelectric interactions in the phase transitions
and in forming the piezoelectric, elastic and dielectric characteristics of these crystals.

It is worth noting that the application of pressures and shear stresses is a very important tool
in investigating the ferroelectric crystals with a complex structure of effective dipole moments. Such
compounds often comprise several sublattices of effective dipoles, which are not always mutually parallel.

The effect of hydrostatic pressure on the KH,POy4 family crystal is the most fully studied experimen-
tally among the compounds with hydrogen bonds. History of these investigations exceeds forty years.
During this period, a great amount of experimental data [1H7] was accumulated. It was determined that
this pressure significantly influences the phase transitions in these crystals while their physical charac-
teristics noticeably change. Unfortunately, the effect of pressures with another symmetry on the above
mentioned crystals is much less studied. It is only known that the phase transition temperature in KH,PO4
and KD, POy noticeably decreases [8] under uniaxial pressure p,, = —o7, along the axis of spontaneous
polarization.

Theoretical description of the behaviour of ferroelectric compounds with hydrogen bonds, including
KH,PO, type, was based on the proton ordering model [9-11]. For the first time, a modification of
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this model on the case of deformed crystals was accomplished in [[12} [13]], where within four-particle
cluster approximation there was originally achieved an agreement of theory with experimental data
for the pressure dependences of the phase transition temperature, Curie-Weiss constant and saturation
polarization. It should be noted that deformational effects in these theories were taken into account
semiphenomenologically, assuming that parameters of tunneling, short-range and effective long-range
interactions are functions of the distance between equilibrium positions of proton on the hydrogen bond ¢
linearly decreasing with pressure. The value of effective dipole moment of the crystal was also considered
to be proportional to the distance 6.

Later on in the papers by Stasyuk and Biletskii [14} [15] there was originally realized a microscopic
substantiation of the methods that take account of the lattice strains with different symmetry in the proton
ordering model. To obtain an effective model of a deformed crystal of KH,PO4 type, the microscopic
Hamiltonian was used that takes into account its proton and lattice subsystems and also piezoelectric and
electrostrictive interactions between pseudospin variables, acoustic and optical phonons as well as takes
account of cubic anharmonism. It was shown by means of separation of a lattice strain in the mean field
approximation that the effect of this strain reduces to the appearance of internal fields that depend on
the lattice symmetry. These fields can include contributions connected both with the internal piezoeffect
and with the pseudospin interaction renormalized by electrostriction. As a result, according to the model,
proposed by the authors, the application of external pressure to the crystal leads to the appearance of
an additional internal field, which is linear on the strains and the mean values of pseudospins describe
the positions of protons on the hydrogen bonds. The energies of these configurations are also considered
to be linearly dependent on the strains. The effect of pressure of different symmetry on these energies
is studied. In [14, [16, [17], the model of a deformed crystal was used for a description of the effects
caused by the action of symmetrized stress o x — 0y, on the KH,POy type ferroelectrics. As a result of
calculations, there was predicted a possibility of the phase transition into the new hypothetic phase with
monoclinic symmetry induced by such a stress.

Within the same approach in [18H22]], there was realized a consistent description of the effects of
external hydrostatic and uniaxial p,, = —o, pressures on the physical characteristics of several KH,PO4
type ferroelectric crystals. On the basis of the same model of a deformed crystal in [23] 24], there was
developed a microscopic theory of the effects of stress o7, and electric field E, on the phase transition
and physical characteristics of KH,PO,4 family compounds that takes account of piezoelectric coupling.

This year eighty years passes since the discovery of ferroelectricity of KH,PO4 crystal. During this
period, a large amount of papers, reviews and monographs (see [22]) was devoted to the investigation
of the phase transition and physical characteristics of KH,PO,4 family compounds. The most noticeable
peculiarity of the physics of these materials is a close cooperation between theory and experiment,
which is an important reason for the progress achieved at that time in the microscopic description of their
properties. It is worth noting that exactly the model of deformed ferroelectric crystals proposed in [14}[15]
ensured a considerable progress in the future development of their microscopic theories. Following the
publication of papers [18-24] in [25], the piezoelectric coupling was taken into account during the
study of the effect of hydrostatic pressure on the physical characteristics of KH,POy4 type crystals. Later
on, within the models of deformed ferroelectric crystals, the investigations of the effect of hydrostatic
pressure on the phase transition and on the physical characteristics of quasionedimensional CsH,POj4
type ferroelectrics [26], monoclinic RbD,POy [27], as well as RbHSO4 [28] were also carried out.

Late in the twentieth century, the ferroelectricity and a unique sensitivity of the crystal glycinium
hydrogenphosphite NH3;CH,COOH-H,PO3 (GPI) to a transverse electric field E, was discovered. GPI
is a very interesting compound due to the combination of structural elements typical of different classes
of crystals. Very important, it contains the covalently bonded phosphite HPO3 groups linked through the
hydrogen O-H. . .O bonds, thus forming the chains running along the c-axis. Such structural components
are usual for non-organic ferroelectric materials, in particular, for crystals of KH,PO,4 family. Besides,
there are four organic glycinium groups NH3;CH,COOH in GPI unit cell that are linked by four additional
hydrogen bonds with phosphite HPO3 groups belonging to two different phosphite chains. At room
temperature, GPI crystalizes in a monoclinic P2 /a space group, which transforms to P2; symmetry [29-
31] below the structural phase transition temperature. As was mentioned above, these crystals belong
to the ferroelectric crystals with hydrogen bonds [32, [33]. There are two structurally inequivalent types
of hydrogen bonds of different length, ~ 2.48 A and ~ 2.51 A. Proton ordering on the hydrogen bonds
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[30L131]] causes antiparallel orientation of the components of dipole moments along the crystallographic
axes a and c in the neighbouring chains. The strains of tetrahedra HPO3 and the corresponding components
of dipole moments along the b-axis in the chains cause the total dipole moment along the b-axis. As a
result, at temperature 225 K, the GPI crystal passes to the ferroelectric state with spontaneous polarization
perpendicular to the chains of hydrogen bonds.

The experiment, carried out in [34], revealed anomalies of permittivity &, in the phase transition
region at £, # 0 and a decrease of the phase transition temperature proportional to EZ2 For the first time,
the explanation of the revealed effects was given on the basis of phenomenologic theory [35] and within
microscopic approach [34} 36]]. Unfortunately, a complete quantitative description of these experimental
data was not obtained. Later on, this problem was solved in [37] on the basis of the model of deformed
GPI crystal proposed in [38], which is generalization of the proton model by Stasyuk and Velychko
[34.136].

The model of deformed GPI crystal [38] made it possible to correctly describe polarization and
components of dielectric permittivity tensor for a mechanically free and clamped crystal, its piezoelectric,
elastic characteristics and heat capacity, influence of longitudinal field E, [39], hydrostatic pressure [40]
and uniaxial pressures [41] on these characteristics, as well as relaxation phenomena [42].

In the present paper, the GPI model [37,138] is modified for the case of a decreasing symmetry under
shear stresses o, and o,,. The effects of different mechanical stresses on the phase transition, dielectric
and piezoelectric characteristics of this crystal are studied.

2. Hamiltonian of the model

We consider the system of protons in GPI, localized on O-H...O bonds between phosphite groups
HPO3, which form zigzag chains along the crystallographic c-axis of the crystal [37,38] (figureT)). For
a better understanding of the model, only phosphite groups are shown in the figure. Dipole moments d ¢
(f =1,...,4) are ascribed to the protons on the bonds. In the ferroelectric phase, the dipole moments
compensate each other (dg; with dg3, dg» with dg4) in directions Z and X (X L (b,¢c), Y || b, Z || ©),
and simultaneously supplement each other in direction Y, creating spontaneous polarization. Pseudospin

variables (rT‘“, e 07‘14 describe reorientation of the dipole moments of the base units: d s = 1 (rgf .

Mean values (5) = %(na — np) are connected with differences in the occupancy of the two possible
molecular positions, n, and np,.
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Figure 1. (Colour online) Orientations of vectors d ¢ in the primitive cell in the ferroelectric phase [33].
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Herein below, for components of vectors and tensors for convenience we use the notations 1, 2 and 3
instead of x, y and z. Hamiltonian of proton subsystem of GPI, which takes into account the short-range
and long-range interactions and the applied electric fields E;, E», E3 along positive directions of the
Cartesian axes X, Y and Z can be written in such a way:

H= NUseea + I:Ishort + I:Ilong + I:IE s (2.1)

where N is the total number of primitive cells. The term Useeq in (2.1)) is the “seed” energy, which relates
to the heavy ion sublattice and does not depend explicitly on the configuration of the proton subsystem. It
includes the elastic, piezoelectric and dielectric parts, expressed in terms of electric fields E; (i = 1,2, 3)
and strains g; (j = 1,...,6).

6 36
1 EOQ 0 0
Useed = U 3 Z c;(Tejejy — Zeij Z ~xiEEy|. (2.2)
Jo'=1 i=1 j=1 = 2
Parameters cEO(T) e i )(”, are the so-called “seed” elastic constants, coefficients of piezoelectric stresses

and dlelectrlc susceptlblhtles respectively, v is the volume of a primitive cell. Matrices cﬁ?, i )(”, are

given by:

EO E0 .EO EO
o ¢y 0 oy 0 0 0 0 & 0 ¢
E0 _E0 _EO EO
¢y Gy Gy 0 ol 0 é?j =€) € &, 0 & 0 |
E0O E0 .EO EO 0 0
Eo_| i3 Gy ¢y 0 gy 0 0 0 0 e, 0 e
Cijr = 0 0 0 cEO o (EO | S0 £0 (2.3)
Cas €46 0 X1 0 Xi3
cfso CzEsO cfso 0 ;550 0 Xiy = 0 x5, O
0 £0
cE0O 0 (EO Xz 0 x5
0 0 0 €46 66 .

In the paraelectric phase, all coefficients e?j =
Other terms in (2.1)) describe the pseudospin part of the Hamiltonian. In particular, the second term
in (2.1) is the Hamiltonian of short-range interactions:

Tgl g2 Og3 Og4a
Hgor = 22( 1ii+w2 ; ; )(6RqRq/ + OR,+R..R,)- (24

In (2.4), o4z is the z-component of pseudospin operator that describes the state of the f-th bond
(f = 1,2,3,4), in the g-th cell. The first Kronecker delta corresponds to the interaction between protons in
the chains near the tetrahedra HPO3 of type “I” (figure[T)), where the second one near the tetrahedra HPO3
of type “II”’, R, is the lattice vector along OZ-axis. Contributions into the energy of interactions between
protons near tetrahedra of different type, as well as the mean values of the pseudospins 7y = {(or),
which are related to tetrahedra of different type, are equal.

Parameters wy, w,, which describe the short-range interactions within chains, are expanded linearly
into series over strains &;:

wi wo + Z 6181 + 6484 + 6686 > (l = 1’ 2’ 3’ 5)’
1

wy wO + Z 01€] — 04E4 — 06E6.- 2.5)

1

The third term in (2.1I) describes the long-range dipole-dipole interactions and indirect (through
the lattice vibrations) interactions between protons, which are taken into account in the mean field
approximation:

N 1 ,Aogr) {ogsr) {ogr) O
Ao = 5 3, Jpplaq)—= 2= = 3 Jpplaq) =5 2.6)
qaq'ff’ qaq'ff’
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Fourier transforms of interaction constants Jr = 3. Jr/(qq’) at k = 0 are linearly expanded over the
strains g;:
J

J

W=

0 0
u = Jio+ Zl//nlsl *+ Y114€4 = Y11686 Jiz=J5+ 29013181 + Y134€4 + Y1366
] 7
0 0
Jo =Jp+ Z 12181 £ Y1244 = Y12686, Jig = Jiy + 2%4181 * Y4484 £ Y14686,
) l ) l

0 0
Jo =Jy+ Z UiEl £ Y2484 * Y226E6 Doy =Jy, + Z Wo41€1 + Y24484 + Y246E6.
] 7

As a result, (2.6) can be written as:

4
Fliong = NHO = 3 wf%, 2.7
q f=1
where
4 41
H = ) gy, Hy = >, STy (2.8)
f’f/:l f’:]

The fourth term in (2.1)) describes the interactions of pseudospins with an external electric field:

N (o
Ag = - wEZL 2.9)
af

_ y .z _ y _ Yy oz _ y .
Here, Iy B (/1.)1(3’ His ﬂi3)’ M3 = (_’u)lc3’ His _/:t§3)’ My = (_#)2(4’ “Hyy /1;4)’ ny = (/4)264» “Hyy _/1;4) are
the effective dipole moments per one pseudospin.

The two-particle cluster approximation for short-range interactions is used for calculation of ther-
modynamic characteristics of GPL In this approximation, thermodynamic potential under stresses o7 is
given by:

6 4
A ry(1)
G = NUseea + NH" = Nv )" 0776 = knT . [21n spe? — 3 Insp e_Bqu], (2.10)
Jj=1 q f=1

)

L, kg is Boltzmann constant, ﬁ,(f) and ﬁ;} are two-particle and one-particle Hamiltonians:

where 5 =

T
4
~(2) Oq1 0q2 0g3 0'q4) Yr Oqf
A :—2( JatZa2 2@ 744y NN PP Taf 2.11
a P T ;ﬁ 2 @11
A Yr Ogr
Al = —Ff%f 2.12)

where such notations are used:

yr = B(A + '7'(f + ufE), jr = BAr + yy. (2.13)

The symbols Ay are the effective fields created by the neighboring bonds from outside the cluster. In the
cluster approximation, the fields A¢ can be determined from the condition of minimum of thermodynamic
potential dG/dA; = 0, which gives the self-consistency condition, stating that the mean values of the
pseudospins (o) = 17y calculated with the two-particle and one-particle Gibbs distribution, respectively,
should coincide:

7y(2) _pg®
_ Spoge P Spoye P

ry(2) ry(1)
Sp e PHq Sp e_’Bqu

nf (2.14)
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Using (2.14) with one-particle distribution function [y = tanh(ijs/2)], we express the effective
fields Ay through the order parameters 7y:

Then, yy are given by:

From the first equality (2.14), we obtain the system of equations for order parameters 7y

1. . . .
N = 5(smh n + sinhny + a® sinh nz + a® sinh ny
3

. a . . a .
+ aaye sinh ns + — sinh ng ¥ aayg sinhn; + — sinh ng), (2.15)
d46 a6

1 . .
N2 = B(smh ny + sinhn, — a” sinhnz ¥ a” sinhny
1

. a . a
F aaye sinh ns + — sinh ng + aaye sinhn; + — sinh ng), (2.16)
ase a6

where
D = coshn; + coshny + a* cosh n3 + a® cosh n4

a a
+ aayg coshns + — cosh ng + aayg coshny + — coshng,
ase ase

a = exp [ - ,B(wo + Z 51‘81')], ase = exp[—p (6484 + 6686)],
1
1 1
ny = z(yl +yptys+tys), np= §(y1 + Y2 = Y3 — Ya),

1 1
n3 = E(yl —p YY), g = E(yl — Y2 Yst ).

1 1
ns = E(yl—y2+y3+y4), n6= E(y1+y2+.’/3_.’/4)’

1 1
ny = 5(—% +yp+ Y3+ ys) ng = E(yl + Y2 — Y3+ y4).

3. Thermodynamic characteristics of GPI

To calculate the dielectric, piezoelectric and elastic characteristics of the GPI, we use the thermody-
namic potential per one primitive cell, obtained in the two-particle cluster approximation:

6
G
9= = Useea + H® — Z(wo + 25181) +2kgTIn2 - Nv Za'jaj
l J=1

1 < s
- EkBTZ:;In(l —n}) = 2kT In D. 3.1)

Minimizing the thermodynamic potential with respect to the strains £;, we have obtained a system of
equations for the strains:

EO0 260 26
o1 =¢p 81+ cl2 & + cl3 &3+ cl5 &5 — ezlE2 -—+ —M;
v vD
1/1111 131 Yo U4l
( n+n) - o s = —(772 ) - o P
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121 141
- lZ—U(mnz +1m3m4) — ﬁ—v(mm +mn3),  (1=1,2,3,5), (3.2)
204
o4 = cﬁom + cfﬁosé e(l)4E1 — eg4E3 + —DM46
l//114 Y134 Y224 12
( U 2)——77?7 ——( - 4)——77277
- —(mnz —1m3n4) — —(771774 - mm), (3.3)
4p 4v
206
06 = cféom + 056086 e16E1 - e26E3 + —DM46
111116 Y136 ‘/’226 Y246
(1 2)—— (2 )——77277
- —(mnz —1314) = —(mm —12173). (34)
4p 4v

Here, the following notations are used:
M, = 2a” coshnz + 2a“ cosh ng + aasg cosh ns + — cosh ng + aasg coshn; + — coshng,
a6 a6

a a
Mye = aase coshns — — cosh ng + aase coshny — — cosh ng.
ase ase

Differentiating the thermodynamic potential over fields E;, we get the expressions for polarizations P;:

1
Py =Y es + el g6+ xTVE + — 5 [15(m1 = m3) = 15,012 — m4)]

1
P, = 62131 + 32282 + 62383 + 62585 + Xzz E2 + = % [/113(771 + 773) #24(772 + 774)]
1
Py = 5,84 + egqee + X33 By + 5= [1i30m = m3) + 45,02 = ma)] - (3.5)

The static isothermic dielectric susceptibilities of a mechanically clamped crystal GPI are given by:

e _ 50 xa X xa xa
Xn=xn t A A [/113 _A ) - 24(A2 A )] (3.6)
e _ &0 y (axb xb Y (AXD xb
X5 = X5 + —A [ (AT + A7) — pd, (A% + A7) ] (3.7)
e _ &0 z XC _ AXC 4 XC _ AXC
X33 = X3 T 5% [ (AT = AT) + 15, (A3 = AY)] - (3.8)
Here, the following notations are used:
2D — %1y —X12 —%13 —%14
A= —%21 2D — #2 —%23 —%04
—%31 -3 2D — 33 —%34
—%41 —%42 %43 2D — 4y
(03 o
nt —%12 —X13 —%14 2D - %y —np % —%14
xa xa
e _| % 2D -3 —x23 %24 e | TR 2D =y %) —%04
B A 2D - % - S B - xeooo - ’
3 32 33 34 31 %32 3 Lz
xa xa
%, —A42 —X43 2D — 44 —¥41 %y %y 2D — iy
(04 (03
2D - %y ' —%13 —%14 2D - x1 —%12 %3 %)
X xa
AXY — %21 0 —X23 —X24 AXY —X21 2D — xy) -3 %)
= xa P = a |
2 —%31 x5 2D — 33 —%34 4 —%31 %3 2D -3z %
(04 (03
—%41 %y %43 2D — 34 —%41 —%4 N
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xp1 = #p11(py + BV)) +xp12(Bvs + BV5) + xp13(@) + BV + #p1aB(vy + BYy),
%y = %p12(@03 + B73) + xp11(Bvy + BV3) + #p1a(@y + BV3) + xp13(Bvy + BV3),

#r3 = xpn(ps = BV) + #p12(Bvy = Bv3) — xp13(95 — BV = %p1a(Bv; = B3,
s = xp12(ey — BY3) +upn1(Bvy — BVy) — %p1a(ey — BV3) — np13(Bv, — BV,
b
H = wp3 By + xp15PM, xyT = wpn By + xpBuy, HFC = up13Bus + Hp1aB,,
+ 1 + + 1 +
(;71_’3:—24'[31/]_, 905’4:—24'/3\/5, (f:],2,3,4),
1 =ny 1-n3,

3
3
Vi =v)* (Z Viigi + lﬁzisgs), VI = YiaEa + Yiess
0+ _ 0 0 + _ 1
V= Z(Jll +J3 vy = Z(lﬂlli £ Y13:),
1 1
Vo = —(J1 +J0,); Wy = Z(lﬁlzi £ Y140,

1
Ve = ( S+ I Y3 = Z(l//22i * Yoa;),

—_ C N S — C — JC S N
i = (ll+3 +l5,6) = milis + 556), %1y = (13 Flg) =il 3 + lyg),
_ c c _ s 1S _ c  _gc _ s _ 1S
Xz = (g + 174g) Wg(lz+4 _g); Hlig = (24 —15¢) Wl(lz—4 I5_6):
—_ C — JC N S N
n2y = (s F s g) =m2 (s + ls.6), %213 = (s + lig) = M2 (15 + B g),
—_ C C N S S
%3 = (2h_y—li4) = ’7%(12+4 —b_g): %214 = (2l £ 15,6) — ’72(12—4 —ls_6):
_ (+]C c s s c s
Alys = (Flhy+156)— ’7§(_lz—4 +15_6): X5 = F(lyq +15,6) + ’72( By +15 ),
I{,5 =coshny + a’® cosh ns; I5,4 =coshny +a 2 coshny;
a a
I5.¢ = aass cosh ns + — cosh ne; I5,s = aass coshny £ — coshng;
ase a46
I},5 = sinhn; + a’ sinh n3; I5,, =sinhny a® sinh ny;
. a . . a .
I5.¢ = aase sinhns + — sinh ng; 5,5 = aase sinhny + — sinhng.
ase ase

Differentiating the expressions (3.5)) over strains &; at a constant field, we obtain the expressions for
isothermic coeflicients of piezoelectric stress ex; (I = 1,2, 3,5):

oP
ey = (6—2) :e(2)1+ ”” T A+ A5) - “24 T A5+ G (1=1.2.3,5), (3.9)
&l E,

where the following notations are used:

%, —%12 —%13 —%14 2D — %y %12 XY —%14
A¢, = %gl 2D —xp  —x23 —%04 . A¢ = —%21 2D — % %gl —%04 ’
xy  —Hn 2D -3z —xm —%31 %3 Xy —%y
o —%42 %43 2D — 4y —%41 —nay Ay 2D — ot
2D —xnn x —%13 —%14 2D - x1 —%12 L
A¢, = —x21 %gl —%23 —%24 A= =21 2D — xp —x23 %y ’
—%31 x5, 2D —x33 —%34 4 —%31 -x32 2D —n33 %5
—%41 xy %43 2D — iy —%41 —%42 2
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g = BWipxpn + Yapep12)(m +m3) + By + ¥3xp12) (0 + 14)
+ By 13 + Yyr1a)(m — n3) + BWor13 + Yyxp1a) 2 — na) + 2B61(pf1 + py2),

=+ 1 + 1 + 1
Yy = Z(wuz +Y131), Uy = Z(lﬂlzz * Ya1), Yy = Z(l/fzzz + Yoar),

P = —2(15,4 - U§l§+4)’ Ply= el g+ n%(ZSC+6 +17.g):

pay = 2y + 11l ), pry=#ls =L g +mUse + 1),

pLj= I5.6F g~ ’7§(l§—6 + 15 g), P = Flsg+ 15— ’7§(lsc—6 +17_g),
B = a*sinhnz + @’ sinh ng, By = a* coshny + a” coshny.

Constants of piezoelectric stress are obtained by differentiating the electric field, found from (3.2)), over
the strains at a constant polarization:

OF
hy = - (—2) = (3.10)
9c1 ) p,  Xn

Molar entropy of the proton subsystem (here, R is the gas constant):

_ R{dg\ _R -
S=-7 (ﬁ)m = Z( ~21n2 +;1n(1 —nf) +2InD
= 2{Bv{ (1 +m3)* + B Im(my + m3) + m3(m — m3)] + 2Bv3 (1 +13)(12 + 14)
+ 2873 (1 — m3) (2 + ma) + Bvi (2 + ma)* + B3 (2 + na) + 1a(p2 — 1a)]
+ Bvy (= m3) + By I — m3) + ma(m + 3)] + 28v5 (1 — 13) (12 — 1)

4
+ 2875 (1 + m3) (02 = ma) + Bvy (2 = ma)* + B35 (2012 — na) — naG2 + ma)1} + %M . (31D

The molar heat capacity of the proton subsystem of GPI crystals can be found from the entropy (3.11):

v [0S
AC —T(aT)a. (3.12)

4. Comparison of theoretical results with the experimental data

To calculate the temperature and field dependences of dielectric and piezoelectric characteristics of

GPI, we have to determine the values of the following model parameters:
s parameter of short-range interactions w’;

 parameters of long-range interactions V}).i (f =1,273);
* deformational potentials ¢;, w;;'l. (f=1,23i=1,...,6);
» components of effective dipole moments “)163; ,u)2‘4; ,1111’3; ug " ,u%; HS 4
» “seed” dielectric susceptibilities ,\(f.o;
7

» “seed” coefficients of piezoelectric stress e?j;

EO

e “seed” elastic constants Cij

To determine the above listed parameters we use the measured temperature dependences for the set
of physical characteristics of GPI, namely Ps(T) [43], C,,(T) [44], €7}, £5; [32]l, d21, do3 [45], as well as
the dependence of phase transition temperature T;(p) [46l 47| on hydrostatic pressure.
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The volume of primitive cell of GPI is the v = 0.601 - 107! cm?
Numerical analysis shows that thermodynamic characteristics depend on two linear combinations of

long-range interactions v = V(1)+ + 2v + v3 and v~ = v(l)‘ + 2v0‘ + vg‘, and practically do not
depend (deviation < 0.1%) on separate Values of the v0* f; * at given v** and v~. The optimal values of
these combinations are v0+/ kg = 10.57 K, vo‘/ kg = —0.8 K; and as concrete values of the vj?’—’ we use
Pt =9t =9t = 2,643 K, )" = 77 = 99" = 0.2 K, where 7)* = )*/kp.

The calculated parameter of short-range interactions w®(x) of GPI crystal is equal to w?/ kg = 800 K.
The optimal yalucs of defprmational potentials ¢;: 07 = 500 K, 9, = 600 K, 63 = 500 K, 04 = 150 K,
05 = 100 K, d¢ = 150 K; 0; = 6;/kg.

The optimal values of the z//f are as follows: z//fl = 93.6 K, z//f2 252.5 K, 1/7;3 110.7 K,
1//f4 1//f6 ll’f4 a//f6 =79.5K, 1//f5 =22.7K, l//fl ‘l’fz a,//f3 ‘/’fs = 0 K, where wfl l!/fl-/kB-

The effective dipole moments in the paraelectric phase are equal to py, = 0.4 - 107 18 esu-cm;
,uij3 =4.05-107'8 esu-cm; M% =4.2-10""8 esu-cm; u)2‘4 =2.3-10""8 esu-cm; ug4 =3.0-10"'8 esu-cm;
M, =22 107!8 esu-cm. In the ferroelectric phase, the y-component of the first dipole moment is
/11”3ferro =3.82- 107! esu-cm. A larger dipole moment 5 in comparison with w,,, and different values
of ,111”3 in the paraelectric and ferroelectric phases agree with the results of lattice dynamics simulations
[48]], where vibrations of the oxygen atoms connected with proton 1 (in our notations), are much more
intensive than the vibrations of oxygen atoms revealed near proton 2.

“Seed” coeflicients of piezoelectric stress, dielectric susceptibilities and elastic constants

—00 Sy =00, x5 =0403, x5 =05 x2=0.0;

cm2 ’

=26.91-10"0 &8 B0 = 145. 10‘0 DL B =11.64- 10‘0 S B =3.91-1010 &5
cm? ’ > > cm? ’
= [64.99 — 0.04(T — Tc)] £10'0 285 2038 101 o 564+ 10 o
=24.41-10"0 5 (0= 584, 1010 an op0_g S5y 1010 i
' fi% ’ 10 dyn e ESOS ' 10 fil;]r? ’
EO0 _ 10 —
cE0=1531-1010 85 B0 = 111010 25 (E0 = 11881010 &5

Now, let us focus on the obtalned results. The influence of hydrostatic pressure py, uniaxial pressures
D1, P2, p3 and mechanical shear stresses 04, 075, 0 first of all causes the changes in the strains g; of the
crystal. In figure [2] there are presented the dependences of strains &; of GPI crystal on the hydrostatic
pn and on uniaxial pressures p;, and in figure |§| — on the shear stresses o7 at temperature difference
AT =T-T.=-5K.

The hydrostatic pressure pp, uniaxial pressures pi, p», p3 and shear stress o5 do not change the
symmetry of the crystal. Therefore, the strains &4 = 0 and &6 = 0. Other strains almost linearly change
with pressure. In particular, the pressure pp causes a decrease of the strains £; and €3 and a weaker
decrease of the strain &;, while the strain &5 weakly increases. When the pressure p; increases, then the

x10° &% x10° &% x10° &% x10° &%
3 3 3 3
a) b) c) d)
2 2l | -2 1 2 _
3 Pad 35 - -7
3 5 ‘J/ ‘J/// 1 2 -7 ~
1 \ ‘ o 1P = 1 = 14 6 1 ‘ ﬁ/ -
-2 " 4686 C 246 :""Lff‘ x;// 46
O=T=\=\=LL_ 0=\=\=:£££= 0>:___ — 0:_\___J_J__
2 =SS N \\\ 2 ~ 3
[N N ~ 4 N
-1 1 -1 S~ A -1 =9 - -
\i \‘
-2 -2 S -2 -2 N
0 2 p, O.1kbar 0 2 p1,0.1kbar 0 2 p, O.1kbar 0 2 pgy 0.1kbar

Figure 2. (Colour online) The dependences of strains €1 (curves 1), &2 (2), €3 (3), 4 (4), &5 (5), g6 (6)
on hydrostatic pressure py, (figure a) and uniaxial pressures py (b), p» (c), p3 (d) at AT = -5 K.
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g x10° 5 x10° &% 5 X105
/
e) 8 f, . 9
4 7 / 6 7
p 6 /9 3 //
3 )4’ 5 7/ J
o ’ 4 / 2 //
’ 3t 7 1 ,72345
1 235 6 2 V; 3 1 ’ I ‘
1‘,/ llL ;7 :L::j::‘;_:_
Otz_g—_':__ 0 :\§ e
-1 —= -1
0 2 ¢,,0.1kbar 0 2 6, 0.1kbar 0 1 2 o, 0.1kbar

Figure 3. (Colour online) The dependences of strains €1 (curves 1), &2 (2), €3 (3), &4 (4), &5 (5), €¢ (6)
on shear stresses 0y(e), 05(f), og(g) at AT = -5 K.

+
W1,2/kB’ K 35 Vi /kB,K

804
8037
802
801 |.
800
7991
798
797
7961
795
0

L L L 2 L L L
0.5 1 1.5p; o, 0.1kbar 0 0.5 1 1.5 p,0;, 0.1kbar

Figure 4. (Colour online) Dependences of parameters of short-range interactions wj > and long-range

interactions vfz 3 of GPI crystal on hydrostatic pressure (curve h), uniaxial pressures p; (1), py (2),

p3 (3) and shear stresses o4 (4), o5 (5), 0 (6) at AT = -5 K.

245
240
235
230
225
220
215
210

205
-2 -1 0 1 pi,csj ,kbar

Figure 5. (Colour online) Dependences of the phase transition temperature 7;, of GPI crystal on hydrostatic
pressure (curve h), uniaxial pressures p; (1), pa (2), p3 (3) and shear stresses oy (4), o5 (5), 0g (6).
Symbols e are experimental data [46].
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strain £; decreases, while the strain £, decreases much weaker, but the strains £3 and &5 increase. In the
presence of uniaxial pressure p, the strain &, decreases, the strain &£, decreases much weaker, but the
strains &3 and g5 increase. In the case of pressure p3, the strains £3 and €5 decrease, but the strains £; and
&) increase. Application of the shear stress o5 causes an increase of the strains &5, €3, and a decrease of
the strains &; and &;.

The influence of the shear stress o4 and og causes an increase of the strains g4 and &g, but other
strains practically do not change.

The change of strains leads to the changes in parameters of short-range interactions w;, w, and
long-range interactions VIZ’ 5 (figure EI), which leads to changes in the mean values of pseudospins 77 and
in all thermodynamic characteristics.

A decrease in the value of w; > and VT,Z,S under hydrostatic py and uniaxial pressures p; leads to a

—6 2
Py 107 Clom’ , P,; 107 Giem®

035 'h1 1’ 21' 31 R —
==-§=\g\:ﬁ:E:::::
0.4_ —-E;;:f\===__,__7_
0.3} SIz- 2 85
0.3} T~ T~
0z 0.25} =
’ h 1 2 3 o

' B -
960 180 200 220 T,k 015 ' ' Fr—

; 0 0.5 1 1.5p, o, , kbar

Figure 6. (Colour online) The temperature de-
pendences of polarization P, of GPI crystal at
zero stresses (curve 0), under hydrostatic pressure
(curve h), uniaxial pressures p; (1), p (2), p3 (3)
and different shear stresses oy (4), 05 (5), og (6).
Value of the pressures and stresses is 2 kbar. Sym-
bols e are experimental data [43]].

Figure 7. (Colour online) Dependences of polar-
ization P, of GPI crystal on hydrostatic pressure
(curve h), uniaxial pressures (p; — 1, pp — 2,
p3 — 3) and shear stresses (04 — 4, 05 — 5,
g — 6) at different AT: -5 K — h,1,2,3,4,5,6;
—-15K—N,17,2",3" 4’5" 6’.

900 2
800}
700}
600 |
500}
400}
300}
200}
100}
0 . ‘
200 210 220 230 T,K 0 1 5 3 p,o, 0.1kbar
Figure 8. (Colour online) The temperature depen-
dences of dielectric permittivity 55 of GPI crystal Figure 9. (Colour online) Dependences of dielectric
at zero stresses (curve 0), under hydrostatic pressure permittivity &9 of GPI crystal on hydrostatic pres-
(h), uniaxial pressures (p; — 1, p» — 2, p3 — 3) sure (curve h), uniaxial pressures (p; — 1, pp — 2,
and shear stresses (04 — 4, 05 —5, 06 — 6). Value p3 — 3) and shear stresses (04 — 4, 05 — 5,
of the pressures and stresses is 2 kbar. Symbols m o — 6) at different AT: 6.5 K — h,1,2,3,4,5,6;
are experimental data taken from [43]]. -20K—h",1"2"3"4'5".6".
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decrease of the phase transition temperature T, of GPI crystal (figure[3), and to a shift of the curves h, 1,
2, 3 on the temperature dependences of spontaneous polarization P, (figure[6), components of dielectric
permittivity €2, (figure[8), &11 (figure[I0), 33 (figure[12), piezoelectric coefficients ey (figure [T4), ha;
(figure[T6), molar heat capacity AC,, (figure [T8).

With an increase of the pressures py, p;, the long-range interactions v;

123 decrease faster than the
short-range interactions w; and w»; that is, relation w »/ vfz 5 increases. This leads to an increase with
pressure of the above enumerated characteristics, excepting the heat capacity, at AT = const (curves h, 1,

2,3 and also ', 17, 2”, 3’ on the pressure dependences in figures 7} [0] [T} [I3] [T3] [I7} [T9).
The shear stress o5, on the contrary, leads to a slight increase of w », vfz 3 and to a decrease of the

relation w2/ v1+2 3 As a result, the temperature 7, increases, but the thermodynamic characteristics at
AT = const slightly decrease (curves 5, 5" on the pressure dependences in figures[7] [0} [T T} [I3] [I3} [T7).

e
21.2 1 ‘ ‘
21+t h o 1
20.8} >
20.6} _ -
20.41 - 2 ]
202} 7 ]
20t P -7 3
P _ - N
19.8} -7 ---Z1C
196, 222==222____-c====
19.4 1 _—“4{—7;7_/_’ _____ i
0 : . : . ' 19.2 ‘ ‘ ‘
140 160 180 200 220 240 T,K 0 1 2 3 o, 0-1kbar

Figure 10. (Colour online) The temperature depen-
dences of dielectric permittivity €11 of GPI crystal
at zero stresses (curve 0), under hydrostatic pressure
(h), uniaxial pressures (p; — 1, pp — 2, p3 — 3)
and shear stresses (04 — 4, 05 —5, 06 — 6). Value
of the pressures and stresses is 2 kbar. Symbols A
are experimental data taken from [32].

Figure 11. (Colour online) Dependences of dielec-
tric permittivity £1; of GPI crystal on hydrostatic
pressure (curve h), uniaxial pressures (p; — 1,
p>» — 2, p3 — 3) and shear stresses (o4 — 4,
o5 —5,06—6)at AT = -5 K.

€
33 €33
400f 220 ‘ h. ]
asol 218} e
w0l 216} -
214} e
250} ] - ]
212 - 2 4
200t 210} - - |
150} 208 | /// -7 3
100} 206r 7 -7 __--ZZ-t
204’2;;==:::::======:
202f ‘===_:§/1 _______
9 : : : ' 200 < ‘ —
160 180 200 220 240 T,K 0 1 5 3 p, o, 0.1kbar
I I

Figure 12. (Colour online) The tempera
dences of dielectric permittivity £33 of

ture depen-
GPI crystal

at zero stresses (curve 0), under hydrostatic pressure

(h), uniaxial pressures (p; — 1, pp —

2,p3—3)

and shear stresses (04 — 4, 05 —5, 06 — 6). Value

of the pressures and stresses is 2 kbar.
are experimental data taken from [32].

Symbols A

Figure 13. (Colour online) Dependences of dielec-
tric permittivity 33 of GPI crystal on hydrostatic
pressure (curve h), uniaxial pressures (p; — 1,
p>» — 2, p3 — 3) and shear stresses (o4 — 4,
o5 —5,06—06)at AT = -5K.
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x10° CT esu/cm?

7 - .
6 L 4

1 — 6
5t 2 — 4 1
41 3

5

3r — h
21 o1
R ‘//411411/
0 1 1
200 210 220 230 T,K

Figure 14. (Colour online) The temperature depen-
dences of coefficients of piezoelectric stress ey of
GPI crystal at zero stresses (curve 0), under hy-
drostatic pressure (h), uniaxial pressures (p; — 1,
P2 — 2, p3 — 3) and shear stresses (04 — 4, 05 —
5, o0g — 6). Value of the pressures and stresses is
2 kbar.

x 10* h21, dyn/esu

0 1 n
180 200 220 T.K

Figure 16. (Colour online) The temperature depen-
dences of constants of piezoelectric stress /p; of
GPI crystal at zero stresses (curve 0), under hy-
drostatic pressure (h), uniaxial pressures (p; — 1,
p2 — 2, p3 — 3) and shear stresses (04 — 4, 05 —
5, 0g — 6). Value of the pressures and stresses is
2 kbar.

The shear stresses o4 and o influence the chain A (ﬁgurem) in the same way as —o4 and —og on the
chain B. Therefore, the temperature 7;. and the thermodynamic characteristics do not depend on the sign
of these stresses (curves 4, 6 on the pressure dependences are symmetric relative to 0). The application
of shear stresses o4 and o to the crystal leads to a crystal symmetry breakdown, and two sublattices
(chains A and B) become nonequivalent. Consequently, the parameters w; and w; split (curves 4 and

95)(104 o esu/cm?
9.4} >
9.3} -
9.2 " <
. [ / :
— /”’
9.1} ~ - A
e - "'_'——_7_—
9t ~ - =z Z = —=---
Lgzz=z="% 1
8.9} TESSsEyo - -
8.8} 4 A512-1
J = <
5 ~
8.7} 6 ]
8.6 ; ; :
0 1 2 3 pi,cj,0.1kbar

Figure 15. (Colour online) Dependences of coeffi-
cients of piezoelectric stress ep; of GPI crystal on
hydrostatic pressure (curve h), uniaxial pressures
(p1 — 1, pp — 2, p3 — 3) and shear stresses (04 —
4,05 —5,06—6)at AT = -4 K.

x 10" h,,, dyh/esu
47 ‘ ‘
h _ A
465} -]
,’// 2\,
46} - 73
/’::”::;::::3\::\:
4sspSEEZZICCCCT7C 080
45} TSI 4
~ _ \é\
4.45¢ RN
4.4 ‘ : :
0 1 2 3 pi,cj,0.1kbar

Figure 17. (Colour online) Dependences of con-
stants of piezoelectric stress hp1 of GPI crystal on
hydrostatic pressure (curve h), uniaxial pressures
(p1 — 1, pp — 2, p3 — 3) and shear stresses (04 —
4,05 —5,06—6)at AT = -4 K.

4, in ﬁgure@instead of one curve 4, and also 6; and 6, instead of 6): interactions between pseudospins

in the chain A become stronger, while in the chain B they become weaker. Strengthening of interactions

in a sublattice causes a phase transition in the crystal and increases temperature 7, (figure 5} curves 4,

6), while the dependence T:.(04,6) is nearly hyperbolic cosine. As a result, the temperature dependences

Py(T) (figure [6), &22(T) (figure [8), e21(T) (figure [T4), hai(T) (figure [16), AC,(T) (figure shift to

higher temperatures.
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Figure 18. (Colour online) The temperature depen-
dences of proton contribution to molar heat capacity
AC), of GPI crystal at zero stresses (curve 0), under
hydrostatic pressure (h), uniaxial pressures (p; — 1,
p2 — 2, p3 — 3) and shear stresses (04 — 4, 05 —
5, o0g — 6). Value of the pressures and stresses is
2 kbar.
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Figure 19. (Colour online) Dependences of AC), of
GPI crystal on hydrostatic pressure (curve h), uni-
axial pressures (p; — 1, pp — 2, p3 — 3) and shear
stresses (04 — 4, 05 — 5, 0g — 6) at AT = -5 K.
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Figure 20. (Colour online) The temperature dependences of polarizations Py and P3 of GPI crystal at
different stresses o4 6. Numbers of lines 4 and 6 mean the direction of the applied stress o4 and o,
respectively, the inferior index shows the value of the stresses (kbar).

The influence of shear stresses 04 and 05 in the plain X Z is qualitatively different. Since the chains A
and B become nonequivalent under these stresses, dipole moments of two sublattices do not compensate
each other in the plain XZ (analogously as in ferrimagnets). As a result, the components of spontaneous

polarization Py and P3 appear in the plane X Z (figure[20)), and the curves &1;(T) (figure[T0] curves 4, 6),
and &33(T) (ﬁgure look like a longitudinal component of dielectric permittivity.

5. Conclusions

In the present paper, the effects of hydrostatic pressure py, uniaxial pressures pj, ps, p3 and shear
stresses 0y, 05, 0% on the phase transition and physical characteristics of this crystal are studied using
the modified proton ordering model of GPI ferroelectric with hydrogen bonds by taking into account the
piezoelectric coupling with strains g; in ferroelectric phase within two-particle cluster approximation.
Regularities of the change in strains &; under pressures py and p; and shear stresses o7; are determined.
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We have revealed that hydrostatic py, and uniaxial p; pressures weaken the short-range and long-range
interactions in GPI crystal, while the long-range interactions weaken more appreciably. As a result, the
temperature 7, almost linearly decreases, and thermodynamic characteristics at AT = const increase.
In the case of o, this is vice versa, the temperature 7; increases, and the values of thermodynamic
characteristics at AT = const decrease.

Shear stresses 04 and o, independently of the sign, lead to a nonlinear increase of the temperature 7¢.
They influence the longitudinal characteristics similar to stress 0s. However, due to a decrease of symme-
try and an incomplete compensation of dipole moments of two sublattices, the transverse components of
polarization Py and P3 appear in the plain XZ, and transverse permittivities £1; and £33 become similar
to longitudinal permittivity ;.

For numerical calculations of thermodynamic characteristics under hydrostatic p,, and uniaxial pres-
sures p; and under shear stresses o, we have not used additional model parameters, in comparison
with the calculations in the case of the absence of external influences. The temperature and pressure
dependences of thermodynamic characteristics of GPI crystal obtained in this work bear the character of
predictions.
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AedopmauiiiHi epekTn B cerHeToeneKTpuky ¢pocdit raiLuHy

1.P. 3aueild P.P. NeBnubkniZ, A.C. Bgosud?

1 HauioHanbHuni1 yHiBepcuTeT “/IbBiBCbKa NonitexHika”, Byn. C. baHgepu, 12, 79013 JlbBiB, YKpaiHa
2 IHCTUTYT di3nkm koHAeHCcoBaHMX cnctem HAH YkpaiHu, Byn. CBeHuiupkoro, 1, 79011 JibBiB, YkpaiHa

Ana pocnigkeHHs edekTiB, WO BUHMKAKOTL Mij Ai€H0 MeXaHIYHUX HaMpyr, BUKOPUCTaHO MoAniKoBaHy Mojenb
cerHetoenekTpuka ¢ocdit riLuHY LASXOM BpaxyBaHHS M'E30eN1eKTPUYHOrO 3B'A3KY CTPYKTYPHUX eNeMeHTIB,
AKi BMOPAAKOBYOTLCA B LMX KpUCTanax, 3 gepopmauismm rpatku. B HabavxeHHi ABOYACTHKOBOrO KiacTtepa
po3paxoBaHO KOMMOHEHTV BeKTOpa NONspMU3aLii Ta TeH30pa CTaTUYHOI AieIeKTPUYHOT MPOHUKHOCTI MeXaHi4HO
3aTMCHYTOrO KPUCTana, a Takox /ioro N'e3oeneKTPUYHi Ta TeNnIoBi XapakTepucTukn. locnigkeHo BNANB 3CyBHUX
Hanpyr, rigpocTaTM4yHOro Ta 0AHOBICHMX TUCKIB Ha Ga30BMiA Nnepexis Ta GisNUHI XapakTepuCTUKK KpucTany.

Knto4voBi cnoBa: cerHeroenekTpyiku, $a3oBuii nepexis, AieNeKTpudHa nPOHUKHICTb, M'€30eeKTPUYHI
KoepilieHTH, MexaHiyHa Hanpyra
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