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Single-molecule electronic materials.
Conductance of m-conjugated oligomers within
quasi-correlated tight-binding model

A.V.Luzanov

SSI "Institute of Single Crystals”, National Academy of Sciences of
Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Received July 3, 2018

For computing electric conductance through organic nanowire of conjugated type we
make use of the recently proposed quasi-correlated tight-binding (QCTB) method. The
appropriate Green’s function (GF) matrices are constructed, and simple numerical algo-
rithms are given for them. Moreover, the GF analytical solutions are obtained for finite-
sized polyene chains and other systems. A special attention is paid to conjugated oligomers
with various strength of electron correlation. In particular, we find that in polyquinoids
the conventional Huckel and restricted Hartree-Fock methods lead, in contrast to QCTB, to
a nonphysical increase of GF matrix elements for far separate contacts.
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Hna BeIYucIeHUHT dJMeKTPUUECKON TPOBOAUMOCTH Uepe3 OpraHUYecKUil HAHOIIPOBOJ COIPS-
JKeHHOTO THUIIA BBEJEH KBAa3UKOPPEIATMOHHBIN MeTox cuabHOM cBasu (QCTB). IloctpoeHsbl cooT-
BeTCcTByIoie MaTpunsl ¢Gyarmuu I'pumna (GF) um paspaboTanbl HeCHOKHBIE BBIUMCIEHHBIE
cxeMmbl. Ilonmyuensl aHamuTuuecKue BBIpasKeHUsA A7 GF KOHEUHBIX TONMEHOBBIX IETIOUEK U
npyrux cucteM. OcobeHHOe BHUMAHNE YAEJIEHO COTMPAKEHHBIM OJIUTOMEPAM C Pa3IUUHON CTere-
HBIO HJIEKTPOHHOI Koppeaarnuu. B uacTHOCTU, 00HAPYIKEHO, UTO B TMOJUXWHOWIAX CTAHIAPTHAS
cxemMa o XIOKKEJTI0 M OTpaHUYeHHBIN Meron Xaptpm-Pora mpuBogaT, B orauyue ot QCTB, k
He(UBUYHOMY BO3pacTAHMIO 2jeMeHTOB GF OoTHaméHHBIX KOHTAKTOB.

EaexTponni marepianu 3 okpemux moJaexkyi. IlpoBigHicTs T-cynpsiskeHnx oJqiromepis
Ha 3acajax KBa3iKopeJANiiHOTO METOAY CHJIBHOrO 3B’A3KY. A.B.JIys3anos.

Insa obumciieHb eMeKTPUYHOI MPOBIAHOCTI yepe3 OpraHiuHUIT HAHOADIT CYNPAKEHOTO TUITY
BIPOBAIIKEHO KBasikopenamiiiumit mertonq cuabHoro 3B’aA3Ky (QCTB). IlobGymosamo Bigmosimmi
matpuili Gyuknii I'puny (GF) ta pospobieno HeckaamHi obumciioBanbHi cxemu. Kpim 1woro,
otpuMano ananmiTuuni Bupasu GF cTocoBHO KiHIEBMX TOJTi€HOBMX JAHIIOMKKIB Ta iHMINX cHc-
TeM. OcobaUBY yBary MPUAIMEHO CYNPAKEHUM OJIiroMepaM i3 PisHOI0 CHJIOI eJeKTPOHHOI Kope-
adamii. 3oxkpeMa sHalieHo, 110 ¥ TMOJiXiHOIZaX craHgapTHa cxXeMa 38 XIOKKeJeM Ta o0MerKeHuit
rapTpi-QoKiBCHKUIT MeTO BeAyTh, Ha Bigmimy Big QCTB, g0 HedisuuHOTO 3pOCTAaHHA €JIEMEHTIB
GF Bigmamenux KOHTAKTIB.
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1. Introduction

The phenomenon of single molecule con-
ductivity has attracted considerable interest
in condensed matter physics and material
science from both theoretical and applied
points of view [1-4]. The quantum conduc-
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theory of
(mMm) junction is primarily based on the
nonequilibrium Green’s function (GF) tech-
nique described in details in [1, 5, 6]. In
this field various customary quantum chem-
istry models are frequently applied. Typical
are one-electron semiempirical calculations
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of GF from which the conventional electron
transmission through mMm junction can be
easily studied. The most popular remain
one-electron Huckel-like schemes that pro-
vide the tight-binding (TB) approximation
for valent m-electrons (see the most up-to-
date review [7]). However, some vital prob-
lems had not yet been subject to adequate
consideration. The key issue here is whether
the Huckel model is sufficiently reliable, at
least qualitatively, for finding GF, espe-
cially in extended systems. Evidently, a
comprehensive answer to this issue cannot
be given in advance, and it motivated us to
make an appropriate comparative analysis
staying within the limits of current m-elec-
tron theories. Previous studies in the same
line, particularly in [8, 9], also support an
argument for more research in this topic.

It would be no less important to suggest
electron-correlation models which could sim-
ply and easily be implemented for comput-
ing mMm junction conductance in the case
of sufficiently large conjugated molecules.
In the present paper the quasi-correlated
tight-binding (QCTB) approximation from
[10-12] is proposed for this purpose. The
method we are developing here is applied to
typical m-conjugated oligomers and to
strongly correlated m-systems such as non-
Kekulean hydrocarbons.

2. Molecular conductance in a
simplest one-electron scheme

We start with notations and definitions.
Within conventional theories of ballistic elec-
tron transport through molecule the funda-
mental magnitude is the electric conductance,
g,p» for the given molecule coupled to two
current-carrying metal leads a and b. The
given mMm junction will be termed the a—b
connection. In the present paper we will deal
with m-conjugated systems only, and we may
use the same symbols a and b for the m-orbi-
tals coupled with the respective leads. Then,
the commonly used relation for the conduc-
tance is of the form [1]

Zap/ 80 = 4Farb|Gab|2, 1

where G, is (a,b) matrix element of an one-
electron retarded GF for m-system, and g is
the quantum conductance unit. Further-
more, phenomenological parameters I'; and I’
appear in Eq. (1) as a result of the so-called
wide-band approximation (WBA) [1] (see also
[13—15]). They represent an effect of broad-
ing energy levels due to coupling the mole-
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cule to lead contacts. In the paper, a—b con-
nections by the same-type leads will be only
considered, so we put I', = I',=I".

The retarded GF matrix, G, is the key
matrix of any consistent quantum theory of
molecular conductance, and this GF is the
main concern of the present paper too. Gen-
erally, GF is energy dependent matrix: G =
G(E). In the simple TB approximation we
work with the conventional omne-electron
Hamiltonian matrix A% defined in a m-AO
basis. For bipartite (alternant) hydrocar-
bons, we can always represent £0 as a skew-
diagonal block matrix of the form

he = _( 0 B} (2)
Bt O

where B describes interactions between
"starred” and Tunstarred” cites only (the
latter are taken from two disjoint carbon
atom sets). In our case it is pertinent to
think about B as a matrix composed of one
and the same elements |BO| is the CC bond
resonance integral) for any pair of con-
nected carbon atoms. Other elements of B
are zero by definition; for more detail we
refer the reader to [16].

At this TB level, we compute the stand-
ard GF as an usual matrix resolvent of A9.
But the above mentioned broading of energy
levels should be additionally involved in an
effective molecular GF of mMm junction.
Throughout the paper the simplest WBA
scheme from [13, 14] will be employed by
using, instead of a full tunneling-width ma-
trix, the one-parametric diagonal matrix
(iIDI where I is the identity matrix of ap-
propriate order. The final expression used
in our TB computations of GF is

G™B = [(E + iD)I - ho] L. (3)

From now on, we will apply a suitable
shorter notation:

G™(z) = (z - K971, (3”)
where a complex energy z is equal to
E=E +il. (4)

Moreover, the identity matrix is not ex-
plicitly written, that is z=zI in all matrix
expressions here and elsewhere. It is neces-
sary to stress again that the TB Huckel
scheme may be too crude for computing GF,
as will be seen from many examples.
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Fig. 1. GF elements within QCTB for connections 1-1, 2-2 etc. in the 1/|BO| units for; A=A, is

given by Eq. (10).

3. Green’s function for QCTB

We initially outline basic points of the
QCTB method which was elaborated before
in [10-12] for analyzing electron correla-
tion in spin-singlet m-electron structures.
Instead of the initial Hamiltonian £9, Eq.
(2), we need to define two one-electron
Hamiltonians. These are

o _ 5 B _(-90B (5)
(23 o (2

where in matrix expressions 6 =98I, and a
number § is a spin orbital splitting parame-
ter. By the latter we introduce spin-polari-
zation effects as a crude model of the m-
electron correlation caused by the inter-elec-
tronic (Coulomb) repulsion.

Now we turn to our problem. Starting
from the above Hamiltonians one can easily
construct the corresponding GF matrices of
the type (3). But only their symmetric com-
bination has a sense for spin-singlet states.
It leads us to the following GF definition at
the QCTB level (for spin-singlet states):

(E-h1+(E-h)1 (6
: .

GQCTB(E) —

Thanks to the specific block-matrix
structure of Eq. (5), we can reduce Eq. (6)
to the equivalent compact form
__E+h0 (7)

GQCTB(F) = —
( ) E2—52— (hO)Z

(the proof is given in Appendix A).

Here we give only one simple result en-
suing from Eq. (7). Usually, the most inter-
esting point on the energy scale is the
Fermi level Ep (in fact Ep is the reference
point on this scale). In case of the Hamil-
tonians in Egs. (2) and (5), Er = 0 and this
value will be used in our TB and QCTB
computations. Let us compare the corre-
sponding GF at Ep = 0 that is matrix G(0):

GTB(0) = —(h%1, (8)

and
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—h0 (9)

QCTB - ___
GO = o

We see that in the case of singular TB
Hamiltonian (then A0 has zero eigenvalues),
GTB(0) is not correctly defined (while, more
precisely, we must work with GTB(i07), see
section 7). At any rate, the TB m-orbital
energy spectrum may be not correct, espe-
cially for large-scale m-conjugated networks,
and it can entail problems in computing and
interpreting GTB. Unlike the TB method, in
QCTB the TB zero-energy eigenvalues or al-
most-zero-energy TB-eigenvalues are re-
moved due to the nonnull §, and this gives
us the correctly defined GRCTB(0), as seen
from Eq. (9). Notice that in practical com-
putations we use, as previously in [10-12],
8 = 7/24 (in the [By| units).

4. Short polyene chains

We will study here two models of linear
polyenes: regular chains and bond alter-
nated chains. The regular polyene chain
with identical CC bond lengths is a paradig-
matic for the analytical consideration of
spectral TB problems (see any textbook on
quantum chemistry). For the same regular
chain, the required expression for GTB was
furnished long ago in [17] within the re-
lated chain-vibration theory. However, more
appropriate representations of GTB were
given afterwards in [18—21]. Based on their
finding, the GQCTB full analytical results
can be easily obtained via Egs. (6) and (7) in
form of Egs. (B7)—(B10) of Appendix B.

Below we first revisit the example of the
butadiene molecule which is frequently ana-
lyzed in the literature [7, 8, 21-23]. The
corresponding QCTB expressions obtained
from Egs. (B7)—(B10), turn out to be indica-
tive of the general situation (Fig. 1).

In Fig. 1 we denote by A = A4 a secular de-
terminant of the QCTB problem for butadiene:

Ag=1-3(E2-58%) + (E2-8%2. (10)

If needed, E in the above can be replaced
with £ Eq. (4). Considering the case of § =
0, we return to the usual secular TB deter-
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minant Ay = 1 — 3E2 + E4, which has the
known roots (gold ratio number (1 + V5)/2
and others). It is thus no wonder that these
roots (the TB orbital energies in the |[30|
units) are the same E values at which the
conductance peaks occur. Of course, this is
the well known fact (e.g., see Fig. 3 in
[22]). Less evident is why the GF nodes (an-
tiresonances in terms of [24]) occur as well.
By definition, antiresonances are zeros of
electron transmission, that is, the E values
at which the molecular conductance disap-
pears or becomes very small. It is the so-
called destructive quantum interference. In
case of the butadiene molecule we see from
Fig. (1) that for 8 = 0 the antiresonances
occur at E = 1 and E = tV2. To better un-
derstand the causes for this, we consider
analytical results for polyene chains in a
suitable form of Egs. (B2)—(B8). In particu-
lar, for the butadiene we have

1{A, 1 an
GTB(E) = 3
o () Ay 1 A1A2)

with Ay = —E, Ay =1 — E2, and Ay = —E(2 -
E2). Now recall that for the given &, A, is
the TB (Huckel) secular determinant for the
k-atomic polyene chain (recall Eq. (B1) in
Appendix B). Hence, the antiresonances, for
instance in the butadiene, correspond to or-
bital energies of the allylic and ethylenic
fragments (besides, a free atom center with
its own A; = —E). Analogously, one can ana-
lyze G*QSTB(E). We now see that the GF ma-

trix elements are factorized to be corre-
sponding to the polyene subsystems, i.e.,
shorter chains [e. g., see Egs. (B2) and
(B3)]. This previously not well highlighted
fact is apparently not accidental. At least,
there is a nontrivial theorem due to Barrett
stating that elements of inverse of tridiago-
nal matrices are all factorizable [25]. It is
an interesting issue which is worth discuss-
ing separately. Notice the related study [26]
in which coupled subsystems are analyzed.
In moving to QCTB, the structure of Eq.
(11) is preserved; only A4 etc. are replaced
by their QCTB counterparts (by Eq. (10)
etc.), so that the positions of resonances
and antiresonances are shifted approxi-
mately by 82/2 for small 3.

Additional effects arise when taking into
account a bond alternation in the polyene
chain. In this case we must invoke the ap-
propriate parameter T = Bc_c/Bc=c, a ration
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of single and double bond resonance 7m-inte-
grals. For the most important GF elements
the analytical results are derived in Appen-
dix B [see Eq. (B11)]. To be more specific,
consider, say, G?ETB in Eq. (B14) for the
butadiene molecule. In the case of small val-
ues of E, §, and a small alternation measure
1 -1, we find that GRGT® = [t + (51 -2)
(E2 - 52)]. For E = 0 we have G%(EB = —1(1 — 582),
so that an inclusion of bond alternation and

correlation effects (via ) leads to a coopera-
tive effect of lessening of G%?TB (recall that

0<t <),

In the above examples QCTB makes only
comparably small quantitative correction to
the TB results. However, there are exist
situations where electron correlation and
other electronic effects may significantly
influence even the qualitative behavior of
molecular conductance, and in our example
of the butadiene molecule we encounter this
issue. Really, when analyzing the conduc-
tance through allowed channel 2—-3, we ob-
serve in Fig. 1 that at £E =0 the 2-3 con-
nection is locked within the TB scheme. In
terms of [7] this is an example of the GF
"hard zeros”. Nonetheless, as seen from
Fig. 1, QCTB permits the electric current
through the 2-8 connection. In Fig. 1 we
did not take account for bond alternation,
but if doing that (see the last points in
Appendix B) we will find from Eq. (B14)
that G%?TB does not vanish at E =0 any-

way, and it is approximately equal to 152.
Hence, if used more advanced mn-schemes,
the above-mentioned hard zero turns out to
be rather small but not exactly zero. In the
next sections we get confirmation of these
simple QCTB regularities.

5. Comparison with more exact
approaches

We make now comparisons between TB,
QCTB, and m-electron full configurational
interaction (FCI) method. This method
should be treated as the most rigorous m-ap-
proach. In its consistent form, n-FCI was
presented in [27], and then extended in
many works. We follow the n-FCI matrix
formulation given in [28, 29]. All our FCI
computations were made using this tech-
nique along with an auxiliary one from [30]
which is inevitably required for finding the
Dyson amplitudes. The latter are one of the
building blocks of GF computations at the
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FCI level (e.g., see Eq. (1) and the next re-
lations in [9]).

In calculations of effective GF and con-
ductance spectra we made using broading
parameter I' = 0.05 eV in agreement with
[9]. In all the plots we show conductance (in
the gy units) spectra for g,;, as a function of
energy argument E and make using the
logarithmic ordinate. Moreover, in all tables
and figures, the specific connections are
shown by stars and cycles; the spectra are
plotted for the various m-models in this
way: FCI (in red), QCTB (in green ), and TB
(black dashed).

Few words about the m-parameters we
employ in the numerical calculations. In
case of the polyenes and other structures
with alternating bond lengths we use the TB
Hamiltonian with parameter t= 11/13, so
that Bc_c = 11/1260 and BC=C = 13/1260,
with g = —-2.4 eV being the adopted reso-
nance integral of the aromatic m-bond (this
alternation scheme was taken from [31]).
The same parameters will be used in m-com-
putations within FCI and restricted Har-
tree-Fock (RHF) schemes.

Another special point is how to compare
the TB and QCTB data with those of RHF
and FCI. The case of the ethylene molecule
helps us to understand the problem. Indeed,
for this two m-electron molecule the nondi-
agonal (1,2) element of 40 is B, in TB, and
that of the RHF effective Hamiltonian
(Fockian) is equal to B,p = By — v12/2. Here
Y12 is the Coulomb two-center repulsion inte-
gral for the nearest two sites (we adopt y;5 =
7.553 eV). The TB and RHF values of Gy, 1/
and 1/[38#, respectively, significantly differ
each other (in eV71, -1/2.4 and —1/6.18, re-
spectively). Almost the same value 1/[38# is
obtained for Gy, in n-FCI; a similar picture
is observed in most other examples. To
minimize an inevitable gap between differ-
ent approaches we rescale by factor
Bo/Bes=0.3886 all RHF and FCI values of
the GF matrices. An analogous problem en-
countered earlier when compared the TB
(Huckel) and RHF energies [32]. In all ta-
bles for RHF and FCI we give such rescaled
GF elements. In doing so it is worth bearing
in mind that after rescaling, G'f,z = GEEIF in
the ethylene molecule. By passing, notice that
no changes in the geometrical parameters
were done when we performed computations
for the polyenic systems with alternated bond
lengths — only the above given alternation of
resonance integrals was made.
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In Table 1 we show the results for m-sys-
tems of the butadiene, C4Hg, and decapen-
taene CygH4, molecules. We notice at once
that qualitatively the results for C4gH,, are
quite similar to those of C4Hg. In Table 1,
the results for the closest 2—-3 connection in
C4Hg are additionally given. In the case of
this 2—83 connection we find that the respec-
tive FCI picture is in fact the same as that
predicted by QCTB in the previous section.

Our results for the 2-3 connection in
C4Hg have some common features with
those for the cross-conjugated model sys-
tems explored in [8]. In the cited work the
antiresonances disappeared when the second
and third order interactions are added to
the topological matrix B. (see Fig. 6 in
[81]). Stress again that even at the QCTB
level the m-electron correlation comes to the
same effect. In other words, there are no
GF "hard zeros” at the FCI and even RHF
level too. Remark that in the adopted m-
parametrization for the bond-alternated
polyenes we must multiply elements [GTB(0)
in Eq. (B13) by 12/11 in order to obtain the
needed values (in the |BO| units) given in
Table 1.

In whole, QCTB provides a qualitatively
good data whereas there are the marked,
sometimes large, quantitative deviations be-
tween QCTB and FCI (recall a logarithmic
ordinate axis scale in the plots). With in-
creasing |E| values, the TB model as well as
QCTB are numerically further away from
the exact m-FCI theory. Naturally, simple
approaches which ignore many-center inter-
actions, come at a price. That is why RHF
can (but not always, of course) provide a
better picture than QCTB. Concurrently, we
see an insignificant difference between
QCTB and TB for sufficiently large E. This
feature becomes transparent when compar-
ing Egs. (A6) and (A7) with Eq. (3), and
recalling that & is small in practice
(82 = 0.1).

6. Chain-like m-electronic
molecular wires

In this section we study GF in suffi-
ciently large molecular wires based on sev-
eral typical conjugated oligomers: polyenes,
polyacenes, polyperylenes and polyxylyle-
nes. They are displayed in Fig. 2, and la-
beled by I, II, III, and IV, respectively. In
this figure by "o” we signify the position of
the left-attached electrode, and by the num-
bered star symbols 1,2, ,.., v., the possible
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Table 1. Conductance spectra and the G,  matrix elements at £ = 0 within the various approaches

for regular (t = 1) and alternating (t = 11/13) polyene molecules

Structure Conductance spectrum GI | GREF | GQCTB | (1B
-0.518 | -0.603 | -0.792 -1.000
-0.447 | -0.509 | -0.649 -0.781
0.170 | 0.102 0.068 0.000
0.124 | 0.084 0.047 0.
(r=11/13)
-8 -6 -4 -2 2 4 6 8
i g 1 i X
NTEETN
\ N / ) \I 0.086 | 0.097 | 0250 | 0472
g
\ /
-3 -6 -4 -2 2 4 6 38
(r=11/13)

positions of the right-attached electrode (v
denotes the maximal number of the consid-
ered contact pairs). Furthermore, the se-
lected pairs o-1, 0-2, etc. are just the con-
nections which are allowed by the known
selection rule (A10). At once we will notice
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that usual long-distance effects should be
decreasing with distance. Hence, it seems
reasonable to expect vanishing of matrix
elements G, for too far separated m-atomic
centers a and b. Failure to implement these
natural expectations means, in fact, an un-
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Fig. 2. Chemical formulae of the main stud-
ied systems.

suitable model for molecular conductance
effects. For our computations, we took the
systems from Fig. 2 with v =10 for I and
II, and v =9 for III and IV.

The obtained results are given in plots of
Fig. 3. In the plots we exhibit the depend-
ency of G,;«(0) on number k (in fact, an
effective distance dependency) for oligomers
I-IV. The results are based on the main
three m-approximations: TB (dashed lines),
QCTB (green lines), and RHF (blue lines).
We start the discussion by the alternating
bond polyene system CyoH,, (I in Fig. 38).
From Fig. 8 we see that qualitatively all the
approximations do behave correctly, i. e.,
provide a systematic reduction of |G0’k*(0)|
with increasing k. At the same time, quanti-

I(r=1V13)

I

05) e
04
03
02
0.1

1 2 3 4 5 6 7 8 9

Fig. 3. Dependence of Go,k=’=(0) on
corresponds to k.
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tatively the TB method shows a too slow
decrease of |G, ,«(0)| in comparison with the
more correct (at least in this case) QCTB and
RHF models. The decacene molecule example
(IT in Fig. 3) yields a similar qualitative and
only a little different quantitative picture.

For III and IV, a drastically different
situation is observed. We see that the
perylene oligomer III demonstrates the un-
natural almost constant |G, ,«(0)| values
within TB, unlike the well behaved values
of the RHF and QCTB models. The last sys-
tem IV gives a quite "pathological™ increase
of |G, ;+«(0)| for large k in TB as well as in
RHF. Only QCTB produces a reasonable pic-
ture for all the cases — that is gives a
systematic decreasing |Go,k*(0)| (in the case
of IV, the green line (QCTB) is almost
merged with the abscissa for large k). We
recognize that electron correlation plays a
crucial role in large quinoid systems, so
that TB and sometimes RHF are inapplica-
ble even qualitatively in this case.

7. Peculiarities of non-Kekule
structures

Particularly interesting is the case of
singlet open-shell m-conjugated molecules.
They represent a nice class of strongly cor-
related systems [33], which requires the
high-level electron-structure theories. Nev-
ertheless, as we will see now, some low-level

I

"length” k for I, II, III, and IV from Fig. 2. The abscissa

Functional materials, 26, 1, 2019
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LY
2
1
2

0

Fig. 4.

models can be invoked as well at least for a
crude simulation of the GF matrices.

Here we need to recall the one fundamen-
tal property of bipartites. Let us denote by
n: and n, respectively, a number of the

corresponding starred and unstarred sites in
the given bipartite. Then one can state that
S =(n+—n,)/2 is a ground state total elec-

tron spin of this network. This is the re-
markable Lieb rule which is exactly valid
for FCI with the Hubbard Hamiltonian [34]
(the analogous rule for valence bond models
was given in [35]). Of course, the Lieb rule
works for our bipartites as well. In particu-
lar, the system in Fig. 4 is the singlet mole-
cule but with a diradical nature (open-shell
singlet). The latter follows from the fact
that this molecule is of the non-Kekule type
(no Kekule structure can be drawn). Then
det|hO| = (det|B|)2 = 0, (consult any chemical
graph theory book, e.g. [16] for interrela-
tion between det/h0| and a number of Kekule
structures). Clearly, singlet non-Kekule
molecules have nonbonding m-levels with or-
bital energies €j = EF = 0, so h0 will be a
rank-deficient matrix, and not convention-
ally invertible.

While the usual (A%)~1 does not exist in
this case, the real part of GF at the Fermi
level GTB(0) does. This is a result of the
rigorous definition of the retarded GF.
Namely, even thou we take I' = 0, the re-
tarded GTB(0) at E = 0 should be formally
taken as GTB(i0") = (i0" — 0)~1 where sym-
bol 0 is conventionally understood as a
passage to the limit y — 0. Then

GTB(0) = Re[GTB(0)] = (12)

=lim(y2 + BBT)"1B.
y—0
Such matrices are directly related to the
Moore-Penrose pseudoinverse (e.g., see theo-
rem 3.4.1 in [36]). By the passage to the
limit in Eq. (12) one removes the matrix
singularity which occur due to nonbonding
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2+62 -1 -1
2+62 -1 -1 A
52 24+62 2462

A= (1+6%) (4+82%)

The analytical GF blocks for TME within TB and QCTB.

MOs. Thus, at E =0 we in fact
GIB(0) as the pseudoinverse of BT.

In addition, we describe below
algorithm for computer algebra systems,
which allows us to construct the GTB and
GQCCT gnalytical (explicit) expressions, in
particular, for non-Kekule ("singular™)
structures. In our work, the specific results
were obtained through the use of the soft-
ware package Mathematica 5.2 [37].

The method is based on finite-step recur-
sion for the matrix pseudoinversion proce-
dure of type Hamilton-Cayley method (Eq.
(5.4.2.1) in [36]). Such numerical computa-
tions were performed in quantum chemistry
too, e. g., see [38]. In the algorithm, for the
given matrix A, we generate a sequence of
numbers F,(k) and matrices G(k), starting
from £ and o(9). The recursion is carried
out as follows:

calculate

a simple

TrAc*+D) (13)

olktl) = £(k) — Ack, EktD) =
k+1

where £ =0, 1..., p -1, with p being a pre-
scribed rank of A. Then the A pseudoinverse
is of the form: A# = 6/E(P). When comput-
ing G80CT we make a choice: A = 82 + BBT
and p = n., so that GRCTB(0) = BA#, and for

nonzero § it will be a conventional full-rank
inverse.

The above is a rather general scheme
which is readily coded in the Mathematica
language. In passing, we remark that ma-
trix GEP(O) = B# (then in Eq. (13) we put A
= BBT ) provides a natural generalization of
the Ruedenberg-Pauling bond orders for
singular bipartite structures of non-Kekule
type. As to the Ruedebgerg-Pauling bond
orders see recent works [39-41].

As example of the simplest non-Kekule
n-structure we consider the tetramethylene
ethylene (TME) molecule the needed
blocks G,, are presented in Fig. 4. Recall

that in this figure GIP(0) is matrix of the
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Fig. 5. TME conductance spectra for the "for-
bidden™ 1,-2. connection within FCI (in red),
QCTB (in green), and TB (in dashed black).

’singular’ Ruedenberg bond orders (i. e.,
GTB(0) = B¥), rather than the usual one

which does not exist for TME.

Note also that for usual (Kekulean)
structures with zero HOMO-LUMO gaps the
numerical pseudoinversion technique was
discussed recently in [42].

From Fig. 4 we see that in the obtained
QCTB matrix no singularity appears what-
soever, even when setting spin-splitting pa-
rameter 8 = 0 that returns us to the correct
TB Green’s function matrix. It is possible to
get the same GF by setting from the very
beginning 6 =0 in Eq. (18), but choosing
another rank p=n:—1. Interestingly,
within TB the above mentioned GF hard
zero arises for TME too (for the allowed
connection 1, — 1). But it also disappears if
moving from TB to QCTB — then 0 — 32/A
in G,,, as seen from Fig. 4 for 1. — 3.

We can demonstrate with the same TME
example that there exist yet another TB
quasi-singularities which are also elimi-
nated by passing to QCTB. They appear
owing to the imaginary part of the com-
puted GF matrix. We recall that only the
real part of GF is block skew-diagonal, as in
Eq. (A10). Concurrently, the GF imaginary
part at the Fermi level should be obtained
from Gy=G(il'), and the imaginary part is a
block diagonal matrix:

(G O (14)
Im[GO] _( 0 Goo}
(see Egs. (A6)—(A8) for E =il). It seems
that this selection rule was not previously
formulated.

A more careful analysis of Eq. (A8), pro-
vides evidence for an abnormal behavior of
Im[Gg] inherent to non-Kekule n-systems at
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Fig. 6. The chemical structure of the allyl-
decorated polyene chain with a high-order
non-Kekulean character.

the TB level. To verify this, we compute GF
for connection of the TME molecule, and
show the results in Fig. 5. The obtained
data are fully consistent with the expecta-
tions. Both QCTB and FCI confirm the arti-
ficial character of the G; singularity for
non-Kekule structures. We see once again
that QCTB provides a qualitatively reason-
able picture of molecular conductance in a
highly correlated system.

To conclude this section we suggest a
new-type of non-Kekule structures. We will
generate them from the polyene chains
decorated by allylic groups, as seen in the
example exhibited in Fig. 5. In such super
non-Kekule systems we have, as previously,
ny=n.=N/2, so the ground state spin
should be the same: S = 0. But parallel to
this, a number of nonbonding MOs is equal
to the number of allylic groups, that is very
large number for sufficiently long decorated
chains. E.g., we have 10 nonbonding MOs
for the system given in Fig. 6.

For the proposed non-Kekule structure,
GF elements at the TB and QCTB levels are
obtained without difficulties. We will dis-
cuss the special allowed connections o—k.
shown on Fig. 6. It turns out that Gg,%w(O) =

-1 for any k, that is within TB the GF
values do not follow the pattern of long-dis-
tance vanishing (the same is in the initial
polyene chain without bond alternation).
Concurrently, for our super non-Kekule

structure the more physical results are pro-
duced by QCTB:

GRGT(0)1<pes =

=-0.489,-0.241,-0.124,-0.073.

8. Conclusion

To summary, we stress again the princi-
pal need to use electron-correlation models
for describing electronic transport through
molecules. For this issue, it is not a simple
matter to choose appropriately efficient and
not time-expensive method applicable to
large-scale molecular networks. Using the
previously given QCTB scheme [10-12], the
present paper proposes a rather crude but

Functional materials, 26, 1, 2019
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very simple solution to the problem. In fact,
we retain an elementary Huckel-type frame-
work of the whole approach, and combine
this with the simplest (one-parametric) spin-
polarization model.

It allowed us to almost trivially con-
struct Green’s function matrices for any n-
structures, even with zero TB orbital energy
gap, for which the conventional Hartree-
Fock method fails. The last two examples in
Fig. 3 together with the unusual non-
Kekule structures (Fig. 6), demonstrate
wide-ranging possibilities of QCTB. It is
also worth mentioning the obtained QCTB
analytical expressions for polyene chains.
At the same time, we cannot forget that
QCTB is in fact a semiquantitative or even
qualitative method for very large systems
where long-range electronic effects might be
essential. Subsequent studies will be able to
clarify a real range of the QCTB applicabil-
ity, and to explore further ways for im-
proving our model. It is pertinent to note
that QCTB was additionally applied in [45]
for discussing the interesting effect of
"spin repulsion” in alternant systems.
Seemingly, the possibilities of QCTB are not
exhausted by the previously treated prob-
lems of effectively unpaired electrons, as in
[10-12], and by molecular electronics, as in
the present work.

Acknowledgement. The paper is dedicated
to the memory of Victor A.Kuprievich who
15 years ago called the author’s attention
to m-correlation problems in mMm junc-
tions. The interesting discussion of the
same subject with Hans Lischka also stimu-
lated (with a lag) this paper.

Appendix A: Matrix partitioning
technique for QCTB

Here we present suitable working expres-
sions derived for GF by the conventional
matrix partitioning technique. Of course,
all the results below are valid for bipartites
only. Let us first consider GF for spin-up
electrons:

G* = (E — hoy1, (A1)

where A% is given in Eq. (5). The block
structure of A% dictates G% = G E) to be

oGO @y
k Gg* Ggo}

Thus, for the given E we must solve the
matrix equation (E — A%)G* =1 for G% of
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the form (A2). After some algebra we get
explicitly the individual blocks:

e, = (B-oF2-s2- gy, B9
Go = (E + 8)[E2 - 82 - BB ,
(A4)

~ -1
G% =—(E2-382-BBT) B,

The expressions for GB(E) = (E — hP)~1
are obtained by replacing 6§ — -6 in Eq. (A3)
and (A4); e. g., GB_ = G%. All this leads to

the correct (spin-symmetrized) GF given by
Eq. (6):

cacrs _ G+ GP _(G3TE GRITEY (A5)
2 Gg{ETB Ggg)TB ’

with the following submatrices:
GCTB = E(E2 - 52 - BBY)"l,  (A6)
GCTB = E(E2 - §2 - BTB) 1,

GRCTB= (E2 - §2 - BBT)'1B, (AT)
GCTB = _BT(E2 - 32 — BBT)L.

When the spin-splitting parameter 8 van-
ishes, these relations produce the TB solu-
tion:

GTB = E(EZ - BBTj1 {;;z B BT)J 5 (A8)
o B

1
—BT(E'Z - BBT) E(EZ - BBT)

From the derived Eqgs. (A6) and (A7) we
will obtain useful rule for formal QCTB
computations. We see by comparing Egs.
(A6) and (A7) with Eq. (A8) that the re-
placement

E’ —> Es, ES = VEz ) (Ag)

should be done to Produce the QCTB blocks
GCTB and GRCTB/E from the TB ones. Be-
sides, from Eqgs. (A5)—(A7) we find the
GQCTB eigenvalues, g namely,

g =(E+¢gj/ (E2—82—8]2),

where g; are the TB orbital energies. It
gives the explicit expression, Eq. (7), for
GQCTB in terms of AO.

Another corollary from the above rela-
tions is the selection rules for GRCTB at the
Fermi energy, namely for the real part of
GF we have the (more or less) known bipar-
tite-symmetry selection rule:
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(A10)

0 G,
Re[G(0)] = ( ‘. OJ

It trivially follows from Egs. (A6) and
(A7) for the QCTB block. As proved in [9],
the rule of type (A10) holds for the most
general (of course, correct) m-electron wave
functions. Thus, the proposed QCTB model
for GF works accurately in this regard.

Appendix B: Some analytical
results for polyene chains

For our purposes we need renumbering
the polyene chain sites in order to make the
numeration consistent with Egs. (A5) and
(A8). Thus, instead of the consecutive nu-
meration we will use numbers 1, 2,..., r,
..., n for the starred sites, and numbers n +
1, n+2, ..., n+s, ..., n+n for the un-
starred sites, and n = N/2. It allows us to
rewrite the previously cited equations from
[39, 40] for each submatrix in Eq. (A8), as
follows. It is possible to associate with the
k-atomic polyene chain the respective secu-
lar determinant A,(z) as function of argu-
ment z, and express this in terms of the
standard Chebyshev polynomial of the sec-
ond kind, U,(2):

AL(2) = Up(2/ 2). (B1)

Furthermore, we need to add the follow-
ing three supplementary functions:

a,(2) = Aoy 2(2)AN11 24(2)/An(2), (B2)
brs(Z) = _AZr—2(Z)AN—2s(Z)/AN(Z)’

Crg(2) = —Aog 1(2)AN_1_9/(2)/An(2). (B3)

Then the respective submatrices elements
of the GF (A8), in the |8y units, can be cast
into the form (r <s)

[GTB(E)],s = a,4(E), (B4)

[thlas(E)]rs = an—r+1,n—s+1(E)'

,,,,,, s> and

the same symmetry rule is for Ggg(E). Fur-
thermore,

[GTB(E)],, = b,(E),2r < 2s+1. (B5)

[GIB(E)], = ¢ f(E),r > s. (B6)

Turn now to the QCTB case. Using rule
(A9), and Egs. (9) and (10) we obtain (r < s)
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[GIB(E)],, = f—saméy, (B7)

have the following QCTB analogues of Egs.
(B4)—(B6):

E = B8
(G BNy = - n-pi ness1 (Bor < 5 (B8)

[G*QSTB(E)]rs = brs(ES)’2r <2stl, (B9)

[GRCTB(E)],, = ¢,(Eg),r > 5.  (B10)
For the simplest case of E = 0 and 8 = 0, we
naturally reproduce the reported result from
[21] (in our notation): [G:{?(O)]rs = (-1)"3,
and [GTB(0)], = [GTE(0)], = 0.

Let us briefly consider a more compli-
cated problem pertaining to a polyene chain
with alternated bond lengths. We present
here only a partial solution, restricting our-
selves by computations of the most interest-
ing GF matrix elements between the first
starred site and any unstarred site of the
chain, that is a set {{GR°TB(E)]; }1o<,- As a

start, consider the TB model for which the
known Lennard-Jones results [43] about the
Huckel spectrum in polyenes will serve as
an initial point. To do this, one needs to
additionally introduce the bond alternation
into the TB Hamiltonian through a parame-
ter T defined in section 4. Using the corre-
sponding TB Hamiltonian matrix and the
secular determinant from [43], we get the
required result by applying the standard
technique of expanding determinant along
rows:

[GIBE),, = (~1)d,_(E)/d,(E), (B11)
where
d(E) =111 - E?U,_4[(r+1)/t - E2/1)/2] -
- TU,5l(t+ 1/1 - E2/1)/2].

The QCTB counterpart of this equation
is made by replacing E — Ej, as in Eq. (A9),

thus giving
[GICTEE)), , = (<0'd,,_(E5)/dy(Eg).  (B12)

In particular, we can explicitly give Eq.
(B11) for E = 0. After simple algebra we
find:

[GTEO), , = (-0 (B13)

Functional materials, 26, 1, 2019
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In transforming Eq. (B11) we used the
known identity for U,((z +z71)/2) (e. g.,
see Table B.2 in [44]). Expression (B13), is,
of course, in a full agreement with the pre-
viously given TB result in [21]; for in-
stance, the element [GIB(0)]; , becomes ex-

ponentially small for

chains, because T < 1.
Consider in further detail the butadiene

example (N = 4) for which one can obtains

the following matrix elements of interest at
the QCTB level:

sufficiently long

GRG'B(E) = —(1 + 8% - E%)/A4, (Bl4)

GIGTB(E) = 1(32 - E2)/ Ay,

where we return to the usual site numera-
tion as in Fig. (1); moreover, Ay = (E2 — §%)% —
(2 + 2)(E2-8%) + 1. In the context of
quantum interference this example is dis-
cussed in section 4.
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