Value distribution of general Dirichlet series. VIII

A. Laurinčikas
Communicated by V. V. Kirichenko

Abstract. A joint limit theorem on the complex plane for a new class of general Dirichlet series is proved.

1. Introduction

Let $s=\sigma+i t$ be a complex variable, $\left\{a_{m}: m \in \mathbb{N}\right\}$ be a sequence of complex numbers, and let $\left\{\lambda_{m}: m \in \mathbb{N}\right\}$ be an increasing sequence of positive numbers, $\lim _{m \rightarrow \infty} \lambda_{m}=+\infty$. The series of the form

$$
\begin{equation*}
f(s)=\sum_{m=1}^{\infty} a_{m} \mathrm{e}^{-\lambda_{m} s} \tag{1}
\end{equation*}
$$

is called a general Dirichlet series. If $\lambda_{m}=\log m$, we obtain the ordinary Dirichlet series

$$
\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}
$$

It is well known that the region of convergence as well as of absolute convergence of Dirichlet series is a half-plane.

The first probabilistic results for Dirichlet series were obtained by H.Bohr and B.Jessen. In [2] and [3] they proved theorems for the Riemann zeta-function which are similar to modern limit theorems in the sense of weak convergence of probability measures. The investigations

[^0]of H.Bohr and B.Jessen were developed and generalized by A. Wintner, V.Borchsenius, A.Selberg, P.D.T.A. Elliott, A.Ghosh, K.Matsumoto, B.Bagchi, E.M.Nikishin, E.Stankus, J.Steuding, W.Schwarz, the author and others. The results of such a kind can be found in [7], [8], [14] and [20].

Limit theorems in the sense of weak convergence of probability measures in various spaces for general Dirichlet series were obtained [4]-[6], [10]-[14] and [18], [19]. Limit theorems on the complex plane for general Dirichlet series were proved in [12]-[14]. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \in \mathbb{R}$, and let, for $T>0$,

$$
\nu_{T}(\ldots)=\frac{1}{T} \text { meas }\{t \in[0, T]: \ldots\}
$$

where in place of dots a condition satisfied by t is to be written. Moreover, let $\mathcal{B}(S)$ be the class of Borel sets of the space S.

Denote by γ the unit circle $\{s \in \mathbb{C}:|s|=1\}$ on the complex plane \mathbb{C}, and define

$$
\Omega=\prod_{m=1}^{\infty} \gamma_{m}
$$

where $\gamma_{m}=\gamma$ for each $m \in \mathbb{N}$. Then the infinite-dimensional torus Ω in view of the Tikhonov theorem is a compact topological Abelian group, therefore the probability Haar measure m_{H} on $(\Omega, \mathcal{B}(\Omega))$ can be defined. This gives a probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(m)$ the projection of $\omega \in \Omega$ to the coordinate space $\gamma_{m}, m \in \mathbb{N}$.

Suppose that the series (1) converges absolutely for $\sigma>\sigma_{a}$. Then the function $f(s)$ is analytic in the half-plane $\left\{s \in \mathbb{C}: \sigma>\sigma_{a}\right\}$. Moreover, we require that the function $f(s)$ should be meromorphically continuable to the half-plane $\left\{s \in \mathbb{C}: \sigma>\sigma_{1}\right\}, \sigma_{1}<\sigma_{a}$, all poles being included in a compact set, and that, for $\sigma>\sigma_{1}$, the estimates

$$
\begin{equation*}
f(\sigma+i t) \ll|t|^{\alpha}, \quad \alpha>0, \quad|t| \geqslant t_{0}>0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-T}^{T}|f(\sigma+i t)|^{2} \mathrm{~d} t \ll T, \quad T \rightarrow \infty \tag{3}
\end{equation*}
$$

should be satisfied. Suppose that the exponents λ_{m} satisfy the inequality

$$
\begin{equation*}
\lambda_{m} \geqslant(\log m)^{\delta} \tag{4}
\end{equation*}
$$

with some positive $\delta>0$. Then in [12] it was proved that under the last conditions, for $\sigma>\sigma_{1}$,

$$
f(\sigma, \omega)=\sum_{m=1}^{\infty} a_{m} \omega(m) \mathrm{e}^{-\lambda_{m} \sigma}
$$

is a complex-valued random variable defined on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. If the system $\left\{\lambda_{m}\right\}$ is linearly independent over the field of rational numbers, then it was obtained in [12] that, for $\sigma>\sigma_{1}$, the probability measure

$$
\begin{equation*}
\nu_{T}(f(\sigma+i t) \in A), \quad A \in \mathcal{B}(\mathbb{C}) \tag{6}
\end{equation*}
$$

converges weakly to the distribution of the random variable $f(\sigma, \omega)$ as $T \rightarrow \infty$.

Condition (4) is rather strong, it limits a class of Dirichlet series for which a limit theorem is true. Suppose that, for $\sigma>\sigma_{1}$,

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{m}\right|^{2} \mathrm{e}^{-2 \lambda_{m} \sigma} \log ^{2} m<\infty \tag{7}
\end{equation*}
$$

Then in [14] the following statement has been obtained.
Theorem A. Suppose that the system $\left\{\lambda_{m}\right\}$ is linearly independent over the field of rational numbers, and conditions (2), (3) and (7) are satisfied. Then the probability measure (6) converges weakly to the distribution of the random element $f(\sigma, \omega)$ as $T \rightarrow \infty$.

In [13] a joint limit theorem on the complex plane for general Dirichlet series was proved. Let, for $\sigma>\sigma_{a j}$,

$$
f_{j}(s)=\sum_{m=1}^{\infty} a_{m j} \mathrm{e}^{-\lambda_{m j} s}
$$

where $\left\{a_{m j}\right\}$ and $\left\{\lambda_{m j}\right\}$ are a sequence of complex numbers and an increasing sequence of positive numbers, $\lim _{m \rightarrow \infty} \lambda_{m j}=+\infty$, respectively, $j=1, \ldots, r, r>1$. Suppose that the function $f_{j}(s)$ is meromorphically continuable to the region $\left\{s \in \mathbb{C}: \sigma>\sigma_{1 j}\right\}, \sigma_{1 j}<\sigma_{a j}, j=1, \ldots, n$, all poles being included in a compact set, and, for $\sigma>\sigma_{1 j}$, the estimates

$$
\begin{equation*}
f_{j}(\sigma+i t) \ll|t|^{\alpha_{j}}, \quad \alpha_{j}>0, \quad|t| \geqslant t_{0}>0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-T}^{T}\left|f_{j}(\sigma+i t)\right|^{2} \mathrm{~d} t \ll T, \quad T \rightarrow \infty \tag{9}
\end{equation*}
$$

$j=1, \ldots, r$, are satisfied. Moreover, we assume that $\lambda_{m j}=\lambda_{m}, j=$ $1, \ldots, r$, and

$$
\begin{equation*}
\lambda_{m} \geqslant c(\log m)^{\delta}, \quad c>0, \quad \delta>0 \tag{10}
\end{equation*}
$$

Let $\mathbb{C}^{r}=\underbrace{\mathbb{C} \times \ldots \times \mathbb{C}}_{r}$. On the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$ define, for $\sigma_{1}>\sigma_{11}, \ldots, \sigma_{r}>\sigma_{1 r}$, an \mathbb{C}^{r}-valued random element $F=F\left(\sigma_{1}, \ldots, \sigma_{r} ; \omega\right)$ by

$$
F=F\left(\sigma_{1}, \ldots, \sigma_{r}, \omega\right)=\left(f_{1}\left(\sigma_{1}, \omega\right), \ldots, f_{n}\left(\sigma_{r}, \omega\right)\right)
$$

where

$$
f_{j}\left(\sigma_{j}, \omega\right)=\sum_{m=1}^{\infty} a_{m j} \omega(m) \mathrm{e}^{-\lambda_{m} \sigma_{j}}, \quad \omega \in \Omega
$$

Theorem B [13]. Suppose that the system $\left\{\lambda_{m}\right\}$ is linearly independent over the field of rational numbers, and that conditions (8)-(10) are satisfied. Then the probability

$$
P_{T}(A) \stackrel{\text { def }}{=} \nu_{T}\left(\left(f_{1}\left(\sigma_{1}+i t\right), \ldots, f_{r}\left(\sigma_{r}+i t\right)\right) \in A\right), \quad A \in \mathcal{B}\left(\mathbb{C}^{r}\right)
$$

for $\sigma_{1}>\sigma_{1 j}, \ldots, \sigma_{r}>\sigma_{1 r}$, converges weakly to the distribution of the random element $F\left(\sigma_{1}, \ldots, \sigma_{r} ; \omega\right)$ as $T \rightarrow \infty$.

The aim of this note is to change condition (10) in Theorem B by a weaker one and to consider a general case of different exponents $\lambda_{m j}$. Therefore, for the proof we will apply a method different from that of [13]. Suppose that, for $\sigma_{j}>\sigma_{1 j}$,

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{m j}\right|^{2} \mathrm{e}^{-2 \lambda_{m j} \sigma_{j}} \log ^{2} m<\infty, \quad j=1, \ldots, r \tag{11}
\end{equation*}
$$

Moreover, define $\Omega^{r}=\Omega_{1} \times \ldots \times \Omega_{r}$ where $\Omega_{j}=\Omega$ for $j=1, \ldots, r$. Then Ω^{r} is also a compact topological Abelian group. Denote by $m_{H r}$ the probability Haar measure on $\left(\Omega^{r}, \mathcal{B}\left(\Omega^{r}\right)\right)$.

In the next section it will be proved that, under condition (11), for $\sigma_{1}>\sigma_{11}, \ldots, \sigma_{r}>\sigma_{1 r}$,

$$
F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right)=\left(f_{1}\left(\sigma_{1}, \omega_{1}\right), \ldots, f_{r}\left(\sigma_{r}, \omega_{r}\right)\right)
$$

where

$$
f_{j}\left(\sigma_{j}, \omega_{j}\right)=\sum_{m=1}^{\infty} a_{m j} \omega_{j}(m) \mathrm{e}^{-\lambda_{m j} \sigma_{j}}, \omega_{j} \in \Omega_{j}, \quad j=1, \ldots, r, \underline{\omega}=\left(\omega_{1}, \ldots, \omega_{r}\right)
$$

is a \mathbb{C}^{n}-valued random element defined on the probability space $\left(\Omega^{r}, \mathcal{B}\left(\Omega^{r}\right), m_{H r}\right)$.
Theorem 1. Suppose that the set $\bigcup_{j=1}^{r} \bigcup_{m=1}^{\infty}\left\{\lambda_{m j}\right\}$ is linearly independent over the field of rational numbers, and that conditions (8), (9) and (11)
are satisfied. Then the probability measure P_{T} converges weakly to the distribution of the random element $F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right)$ as $T \rightarrow \infty$.

Note that joint limit theorems can be used to derive the joint universality for considered functions, see, for example, [16] and [17].

2. The random element $F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right)$

In this section we will prove that, under condition (11), $F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right)$ is a \mathbb{C}^{r}-valued random element. For the proof, we will apply a Rademacher's theorem on series of pairwise orthogonal random variables. Denote by $\mathbb{E} \xi$ the expectation of the random element ξ.
Lemma 2.[20] Suppose that $\left\{X_{n}\right\}$ is a sequence of orthogonal random variables such that

$$
\sum_{m=1}^{\infty} \mathbb{E}\left|X_{m}\right|^{2} \log ^{2} m<\infty
$$

Then the series

$$
\sum_{m=1}^{\infty} X_{m}
$$

converges almost surely.
Theorem 3. Suppose that condition (11) holds. Then $F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right)$, for $\sigma_{1}>\sigma_{11}, \ldots, \sigma_{r}>\sigma_{1 r}$, is a \mathbb{C}^{r}-valued random element defined on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H r}\right)$.

Proof. Clearly, it suffices to prove that, for each $j=1, \ldots, r$,

$$
f_{j}\left(\sigma_{j}, \omega\right)=\sum_{m=1}^{\infty} a_{m j} \omega(m) \mathrm{e}^{-\lambda_{m j} \sigma_{j}}, \quad \omega \in \Omega
$$

for $\sigma_{j}>\sigma_{1 j}$, is a complex-valued random variable on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$.

We fix $j \in\{1, \ldots, r\}$. Let $\sigma>\sigma_{1 j}$ be fixed, and

$$
\xi_{m j}=\xi_{m j}(\omega)=a_{m j} \omega(m) \mathrm{e}^{-\lambda_{m j} \sigma}
$$

Then $\left\{\xi_{m j}\right\}$ is a sequence of pairwise orthogonal complex-valued random variables defined on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Really, denoting by \bar{z} the complex conjugate of $z \in \mathbb{C}$, we find

$$
\begin{aligned}
\mathbb{E}\left(\xi_{m j}, \bar{\xi}_{k j}\right) & =\int_{\Omega} \xi_{m j}(\omega) \bar{\xi}_{k j}(\omega) \mathrm{d} m_{H}=a_{m j} \bar{a}_{k j} \mathrm{e}^{-\left(\lambda_{m j}+\lambda_{k j}\right) \sigma} \int_{\Omega} \omega(m) \overline{\omega(k)} \mathrm{d} m_{H} \\
& = \begin{cases}0 & \text { if } m \neq k \\
\left|a_{m j}\right|^{2} \mathrm{e}^{-2 \lambda_{m j} \sigma} & \text { if } m=k\end{cases}
\end{aligned}
$$

Since $\sigma>\sigma_{1 j}$, hence we have in view of (11) that

$$
\sum_{m=1}^{\infty} \mathbb{E}\left|\xi_{m j}\right|^{2} \log ^{2} m<\infty
$$

This and Lemma 2 show that the series

$$
\begin{equation*}
\sum_{m=1}^{\infty} \xi_{m j}=\sum_{m=1}^{\infty} a_{m j} \omega(m) \mathrm{e}^{-\lambda_{m j} \sigma}=f(\sigma, \omega) \tag{12}
\end{equation*}
$$

converges almost surely with respect the Haar measure m_{H}. Then

$$
\left(\sum_{m=1}^{\infty} a_{m 1} \omega_{1}(m) \mathrm{e}^{-\lambda_{m 1} \sigma_{1}}, \ldots, \sum_{m=1}^{\infty} a_{m r} \omega_{r}(m) \mathrm{e}^{-\lambda_{m r} \sigma_{r}}\right)
$$

converges almost surely in \mathbb{C}^{r}, and this proves the theorem. We note that $m_{H r}=\underbrace{m_{H} \times \ldots \times m_{H}}_{r}$.

3. Joint limit theorems for Dirichlet polynomials

We start with a joint limit theorem on the torus Ω^{r}. Define the probability measure

$$
Q_{T, r}(A)=\nu_{T}\left(\left(\left(\mathrm{e}^{i t \lambda_{m 1}}: m \in \mathbb{N}\right), \ldots,\left(\mathrm{e}^{i t \lambda_{m r}}: m \in \mathbb{N}\right)\right) \in A\right)
$$

Lemma 4. The probability measure $Q_{T, r}$ converges weakly to the Haar measure $m_{H r}$ on $\left(\Omega^{r}, \mathcal{B}\left(\Omega^{r}\right)\right)$ as $T \rightarrow \infty$.

Proof. The dual group of Ω^{r} is

$$
\bigoplus_{j=1}^{r} \bigoplus_{m=1}^{\infty} \mathbb{Z}_{m j}
$$

where $\mathbb{Z}_{m j}=\mathbb{Z}$ for all $m \in \mathbb{N}$ and $j=1, \ldots, r$.

$$
\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)=\left(k_{11}, k_{21}, \ldots, k_{1 r}, k_{2 r}, \ldots\right) \in \bigoplus_{j=1}^{r} \bigoplus_{m=1}^{\infty} \mathbb{Z}_{m j}
$$

where only a finite number of integers $k_{m j}, m \in \mathbb{N}, j=1, \ldots, r$, are distinct from zero, acts on Ω^{r} by
$\left(\underline{x}_{1}, \ldots, \underline{x}_{r}\right) \rightarrow\left(\underline{x}_{1}^{\underline{k}_{1}}, \ldots, \underline{x}_{r}^{\underline{k}_{r}}\right)=\prod_{j=1}^{r} \prod_{m=1}^{\infty} x_{m j}^{k_{m j}}, \quad \underline{x}_{j}=\left(x_{1 j}, x_{2 j}, \ldots\right), x_{m j} \in \gamma$,
$m \in \mathbb{N}, j=1 \ldots, r$. Therefore, the Fourier transform $g_{T, r}\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)$ of the measure $Q_{T, r}$ is

$$
\begin{aligned}
g_{T, r}\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right) & =\int_{\Omega^{r}} \prod_{j=1}^{r} \prod_{m=1}^{\infty} x_{m j}^{k_{m j}} \mathrm{~d} Q_{T, r}=\frac{1}{T} \int_{0}^{T} \prod_{j=1}^{r} \prod_{m=1}^{\infty} \mathrm{e}^{i t k_{m j} \lambda_{m j}} \mathrm{~d} t \\
& =\frac{1}{T} \int_{0}^{T} \exp \left\{i t \sum_{j=1}^{r} \sum_{m=1}^{\infty} k_{m j} \lambda_{m j}\right\} \mathrm{d} t
\end{aligned}
$$

Since the set $\bigcup_{j=1}^{r} \bigcup_{m=1}^{\infty}\left\{\lambda_{m j}\right\}$ is linearly independent over the field of rational numbers, hence we find that

$$
g_{T, r}\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)= \begin{cases}1 & \text { if }\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)=(\underline{0}, \ldots, \underline{0}) \\ \frac{\exp \left\{i T \sum_{j=1}^{r} \sum_{m=1}^{\infty} k_{m j} \lambda_{m j}\right\}-1}{i T \sum_{j=1}^{r} \sum_{m=1}^{\infty} k_{m j} \lambda_{m j}} & \text { if }\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right) \neq(\underline{0}, \ldots, \underline{0})\end{cases}
$$

Therefore,

$$
\lim _{T \rightarrow \infty} g_{T, r}\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)= \begin{cases}1 & \text { if }\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right)=(\underline{0}, \ldots, \underline{0}) \\ 0 & \text { if }\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right) \neq(\underline{0}, \ldots, \underline{0})\end{cases}
$$

This and continuity theorems for probability measures on compact groups [7] show that the probability measure $Q_{T, r}$ converges weakly to the Haar measure $m_{H r}$ as $T \rightarrow \infty$.

Let $\sigma_{2 j}>\sigma_{a j}-\sigma_{1 j}$, and, for $m, n \in \mathbb{N}$,

$$
v_{j}(m, n)=\exp \left\{-\mathrm{e}^{\left(\lambda_{m}-\lambda_{n}\right) \sigma_{2 j}}\right\}, \quad j=1, \ldots, r
$$

Define, for $N_{j} \in \mathbb{N}, \sigma_{j}>\sigma_{1 j}$ and $\widehat{\omega}_{j} \in \Omega$,

$$
\begin{gathered}
f_{N_{j}, j, n}\left(\sigma_{j}+i t\right)=\sum_{m=1}^{N_{j}} a_{m j} v_{j}(m, n) \mathrm{e}^{-\lambda_{m j}\left(\sigma_{j}+i t\right)}, \\
f_{N_{j}, j, n}\left(\sigma_{j}+i t, \widehat{\omega}_{j}\right)=\sum_{m=1}^{N_{j}} a_{m j} \widehat{\omega}_{j}(m) v_{j}(m, n) \mathrm{e}^{-\lambda_{m j}\left(\sigma_{j}+i t\right)}, \quad j=1, \ldots, r,
\end{gathered}
$$

and consider the weak convergence of the probability measures

$$
P_{T, N_{1}, \ldots, N_{r}, n}(A)=\nu_{T}\left(\left(f_{N_{1}, 1, n}\left(\sigma_{1}+i t\right), \ldots, f_{N_{r}, r, n}\left(\sigma_{r}+i t\right)\right) \in A\right.
$$

and

$$
\widehat{P}_{T, N_{1}, \ldots, N_{r}, n}(A)=\nu_{T}\left(\left(f_{N_{1}, 1, n}\left(\sigma_{1}+i t, \widehat{\omega}_{1}\right), \ldots, f_{N_{r}, r, n}\left(\sigma_{r}+i t, \widehat{\omega}_{r}\right)\right) \in A\right.
$$

where $\left(\widehat{\omega}_{1}, \ldots, \widehat{\omega}_{r}\right) \in \Omega^{r}$ and $A \in \mathcal{B}\left(\mathbb{C}^{r}\right)$.
Theorem 5. The probability measures $P_{T, N_{1}, \ldots, N_{r}, n}$ and $\widehat{P}_{T, N_{1}, \ldots, N_{r}, n}$ both converge weakly to the same probability measure on $\left(\mathbb{C}^{r}, \mathcal{B}\left(\mathbb{C}^{r}\right)\right)$ as $T \rightarrow \infty$.

Proof. Let a function $h: \Omega^{r} \rightarrow \mathbb{C}^{r}$ be given by

$$
\begin{aligned}
& h\left(\omega_{1}, \ldots, \omega_{r}\right)=\left(\sum_{m=1}^{N_{1}} a_{m 1} v(m, n) \mathrm{e}^{-\lambda_{m 1} \sigma_{1}} \omega_{1}^{-1}(m), \ldots,\right. \\
&\left.\sum_{m=1}^{N_{r}} a_{m r} v(m, n) \mathrm{e}^{-\lambda_{m r} \sigma_{r}} \omega_{r}^{-1}(m)\right),
\end{aligned}
$$

$\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r}$. Then, clearly,

$$
\begin{aligned}
h\left(\left(\mathrm{e}^{i t \lambda_{m 1}}: m\right.\right. & \left.\in \mathbb{N}), \ldots,\left(\mathrm{e}^{i t \lambda_{m r}}: m \in \mathbb{N}\right)\right) \\
& =\left(f_{N_{1}, 1, n}\left(\sigma_{1}+i t\right), \ldots, f_{N_{r}, r, n}\left(\sigma_{r}+i t\right)\right) \\
& \stackrel{\text { def }}{=} f_{N_{1}, \ldots, N_{r}, n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right),
\end{aligned}
$$

and the function h is continuous. Therefore, $P_{T, N_{1}, \ldots, N_{r}, n}=Q_{T, r} h^{-1}$, and by Theorem 5.1 of [1] and Lemma 4 the probability measure $P_{T, N_{1}, \ldots, N_{r}, n}$ converges weakly to $m_{H r} h^{-1}$ as $T \rightarrow \infty$.

Now let $h_{1}: \Omega^{r} \rightarrow \Omega^{r}$ be defined by the formula

$$
h_{1}\left(\omega_{1}, \ldots, \omega_{r}\right)=\left(\omega_{1} \widehat{\omega}_{1}^{-1}, \ldots, \omega_{r} \widehat{\omega}_{r}^{-1}\right) .
$$

Then we have that

$$
\begin{aligned}
& \left(f_{N_{1}, 1, n}\left(\sigma_{1}+i t, \widehat{\omega}_{1}\right), \ldots, f_{N_{r}, 1, n}\left(\sigma_{r}+i t, \widehat{\omega}_{r}\right)\right)= \\
& h\left(h_{1}\left(\left(\mathrm{e}^{i t \lambda_{m_{1}}}: m \in \mathbb{N}\right), \ldots,\left(\mathrm{e}^{i t \lambda_{m_{r}}}: m \in \mathbb{N}\right)\right)\right) .
\end{aligned}
$$

Similarly to the case of the measure $P_{T, N_{1}, \ldots, N_{r}, n}$ we obtain that the probability measure $P_{T, N_{1}, \ldots, N_{r}, n}$ converges weakly to the measure $m_{H r}\left(h h_{1}\right)^{-1}$ as $T \rightarrow \infty$. The Haar measure $m_{H r}$ is invariant with respect to translations by points from Ω^{r}. Therefore,

$$
m_{H r}\left(h h_{1}\right)^{-1}=\left(m_{H r} h_{1}^{-1}\right) h^{-1}=m_{H r} h^{-1},
$$

and the theorem is proved.

4. Limit theorems for absolutely convergent series

Define, for $\omega_{j} \in \Omega$ and $j=1, \ldots, r$,

$$
f_{n, j}(s)=\sum_{m=1}^{\infty} a_{m j} v_{j}(m, n) \mathrm{e}^{-\lambda_{m j} s}
$$

and

$$
f_{n, j}\left(s, \omega_{j}\right)=\sum_{m=1}^{\infty} a_{m j} \omega_{j}(m) v_{j}(m, n) \mathrm{e}^{-\lambda_{m j} s}
$$

Then the latter series both converge absolutely for $\sigma>\sigma_{1 j}$. The proof of this is given in [12], Lemma 4. In this section we consider the weak convergence of the probability measures

$$
P_{T, n}(A)=\nu_{T}\left(\left(\left(f_{n, 1}\left(\sigma_{1}+i t\right), \ldots, f_{n, r}\left(\sigma_{r}+i t\right)\right) \in A\right), \quad A \in \mathcal{B}\left(\mathbb{C}^{r}\right)\right.
$$

and

$$
\widehat{P}_{T, n}(A)=\nu_{T}\left(\left(\left(f_{n, 1}\left(\sigma_{1}+i t, \omega_{1}\right), \ldots, f_{n, r}\left(\sigma_{r}+i t, \omega_{r}\right)\right) \in A\right), \quad A \in \mathcal{B}\left(\mathbb{C}^{r}\right)\right.
$$

Theorem 6. Let $\sigma_{j}>\sigma_{1 j}, j=1, \ldots, r$. Then there exists a probability measure P_{n} on $\left(\mathbb{C}^{r}, \mathcal{B}(\mathbb{C})\right)$ such that the measures $P_{T, n}$ and $\widehat{P}_{T, n}$ both converge weakly to P_{n} as $T \rightarrow \infty$.

Proof. We will apply Theorem 5. Without loss of generality we take $N_{1}=\ldots=N_{r} \stackrel{\text { def }}{=} N$. Then by Theorem 5 the measures $P_{T, N_{1}, \ldots, N_{r}, n} \stackrel{\text { def }}{=} P_{T, N, n}$ and $\widehat{P}_{T, N_{1}, \ldots, N_{r}, n} \stackrel{\text { def }}{=} \widehat{P}_{T, N, n}$ both converge weakly to the same measure $P_{N, n}$, say, as $T \rightarrow \infty$.

First we will prove that the family of probability measures $\left\{P_{N, n}\right\}$ is tight for fixed n. Let η be a random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{F}, \mathbb{P})$ and uniformly distributed on $[0,1]$, and let, for $j=1, \ldots, r$,

$$
X_{T, N, j, n}=X_{T, N, j, n}\left(\sigma_{j}\right)=f_{N, j, n}\left(\sigma_{j}+i T \eta\right)
$$

Then we have that

$$
\begin{equation*}
\underline{X}_{T, N, n} \stackrel{\text { def }}{=}\left(X_{T, N, 1, n}, \ldots, X_{T, N, r, n}\right) \underset{T \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} \underline{X}_{N, n} \tag{12}
\end{equation*}
$$

where $\underline{X}_{N, n}$ is a \mathbb{C}^{r}-valued random element with distribution $P_{N, n}$, and $\xrightarrow{\mathcal{D}}$ means the convergence in distribution.

Let $\underline{z}_{1}=\left(z_{11}, \ldots, z_{1 r}\right), \underline{z}_{2}=\left(z_{21}, \ldots, z_{2 r}\right) \in \mathbb{C}^{r}$. Define a metric ρ in \mathbb{C}^{r} by

$$
\rho\left(\underline{z}_{1}, \underline{z}_{2}\right)=\left(\sum_{j=1}^{r}\left|z_{1 j}-z_{2 j}\right|^{2}\right)^{\frac{1}{2}}
$$

Then, clearly, this metric induces the topology of \mathbb{C}^{r}.
Since the series for $f_{n, j}$ converges absolutely for $\sigma>\sigma_{1 j}, j=1, \ldots, r$, we obtain, for $M>0$,

$$
\begin{align*}
& \limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, N, n}, \underline{0}\right)>M\right) \leqslant \\
& \leqslant \frac{1}{M} \sup _{N \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\underline{f}_{N, n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{0}\right) \mathrm{d} t= \\
& =\frac{1}{M} \sup _{N \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{j=1}^{r}\left|f_{N, j, n}\left(\sigma_{j}+i t\right)\right|^{2}\right)^{\frac{1}{2}} \mathrm{~d} t \leqslant \\
& \leqslant \frac{1}{M} \sup _{N \geqslant 1} \limsup _{T \rightarrow \infty}\left(\frac{1}{T} \sum_{j=1}^{r} \int_{0}^{T}\left|f_{N, j, n}\left(\sigma_{j}+i t\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}= \\
& \quad=\frac{1}{M} \sup _{N \geqslant 1}\left(\sum_{j=1}^{r} \sum_{m=1}^{N}\left|a_{m j}\right|^{2} v_{j}^{2}(m, n) \mathrm{e}^{-2 \lambda_{m j} \sigma_{j}}\right)^{\frac{1}{2}} \leqslant R<\infty \tag{13}
\end{align*}
$$

where

$$
\underline{f}_{N, n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)=\left(f_{N, 1, n}\left(\sigma_{1}+i t\right), \ldots, f_{N, r, n}\left(\sigma_{r}+i t\right)\right)
$$

Now we take $M=R \epsilon^{-1}$, where ϵ is an arbitrary positive number. Then (13) yields

$$
\limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, N, n}, \underline{0}\right)>M\right) \leqslant \varepsilon .
$$

This and (12) imply the inequality

$$
\begin{equation*}
\mathbb{P}\left(\rho\left(\underline{X}_{T, N, n}, \underline{0}\right)>M\right) \leqslant \varepsilon . \tag{14}
\end{equation*}
$$

Now we define

$$
K_{\epsilon}=\left\{\underline{z} \in \mathbb{C}^{r}: \rho(\underline{z}, \underline{0}) \leqslant M\right\}
$$

Then, obviously, K_{ϵ} is a compact subset of the space \mathbb{C}^{r}. In view of (14) and of the definition of $P_{N, n}$

$$
P_{N, n}\left(K_{\epsilon}\right) \geqslant 1-\epsilon
$$

for all $N \in \mathbb{N}$. This shows that the tightness of the family $\left\{P_{N, n}\right\}$. Hence, by the Prokhorov theorem, see, for example, [1], the latter family is relatively compact.

By the definition of $f_{n, j}(s)$ and $f_{N, n, j}(s)$, for $\sigma>\sigma_{1 j}$,

$$
\lim _{N \rightarrow \infty} f_{N, j, n}(s)=f_{n, j}(s), \quad j=1, \ldots, r
$$

and the series for $f_{n, j}(s)$ absolutely converges. Therefore, denoting

$$
\underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)=\left(f_{n, 1}\left(\sigma_{1}+i t\right), \ldots, f_{n, r}\left(\sigma_{r}+i t\right)\right)
$$

we have, for every $\epsilon>0$ and $\sigma_{j}>\sigma_{1 j}, j=1, \ldots, r$, that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \nu\left(\rho\left(\underline{f}_{N, n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)\right) \geqslant \epsilon\right) \leqslant \\
\leqslant & \lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{\epsilon T} \int_{0}^{T} \rho\left(\underline{f}_{N, n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)\right) \mathrm{d} t=0 . \tag{15}
\end{align*}
$$

Define, for $\sigma_{j}>\sigma_{1 j}$,

$$
X_{T, j, n}=X_{T, n}\left(\sigma_{j}\right)=f_{n, j}\left(\sigma_{j}+i T \eta\right), \quad j=1, \ldots, r
$$

and put

$$
\underline{X}_{T, n}=\left(X_{T, 1, n}, \ldots, X_{T, r, n}\right) .
$$

Then by (15)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, N, n}, \underline{X}_{T, n}\right) \geqslant \epsilon\right)=0 \tag{16}
\end{equation*}
$$

The family $\left\{P_{N, n}\right\}$ is relatively compact. Therefore, there exists a subsequence $\left\{P_{N^{\prime}, n}\right\} \subset\left\{P_{N, n}\right\}$ which converges weakly to the probability measure P_{n}, say, as $N^{\prime} \rightarrow \infty$. Then

$$
\begin{equation*}
\underline{X}_{N^{\prime}, n} \xrightarrow[N^{\prime} \rightarrow \infty]{\mathcal{D}} P_{n} . \tag{17}
\end{equation*}
$$

The space \mathbb{C}^{r} is separable. Therefore, (12), (16) and (17) show that the conditions of Theorem 4.2 from [1] are satisfied. Consequently,

$$
\begin{equation*}
\underline{X}_{T, n} \underset{T \rightarrow \infty}{\mathcal{D}} P_{n} \tag{18}
\end{equation*}
$$

i.e. the measure $P_{T, n}$ converges weakly to the probability measure P_{n} on $\left(\mathbb{C}^{r}, \mathcal{B}\left(\mathbb{C}^{r}\right)\right)$ as $T \rightarrow \infty$.

In view of (18), the measure P_{n} is independent of the subsequence $\left\{P_{N^{\prime}, n}\right\}$. Therefore, by (17)

$$
\begin{equation*}
\underline{X}_{N, n} \xrightarrow[N \rightarrow \infty]{\mathcal{D}} P_{n} \tag{19}
\end{equation*}
$$

Now, repeating the above arguments for the random elements

$$
\underline{\widehat{X}}_{T, N, n}=\left(\widehat{X}_{T, N, 1, n}, \ldots, \widehat{X}_{T, N, r, n}\right)
$$

and

$$
\underline{\widehat{X}}_{T, n}=\left(\widehat{X}_{T, 1, n}, \ldots, \widehat{X}_{T, r, n}\right)
$$

where

$$
\begin{aligned}
\widehat{X}_{T, N, j, n} & =\widehat{X}_{T, N, j, n}\left(\sigma_{j}, \omega_{j}\right)=f_{N, j, n}\left(\sigma_{j}+i T \eta, \omega_{j}\right), \quad j=1, \ldots, r \\
\widehat{X}_{T, j, n} & =\widehat{X}_{T, j, n}\left(\sigma_{j}, \omega_{j}\right)=f_{j, n}\left(\sigma_{j}+i T \eta, \omega_{j}\right), \quad j=1, \ldots, r
\end{aligned}
$$

and taking into account (19), we obtain that the probability measure $\widehat{P}_{T, n}$ also converges weakly to P_{n} as $T \rightarrow \infty$. The theorem is proved.

5. Approximation in the mean

To pass from the functions $f_{n, j}(s)$ to $f_{j}(s)$ we need an approximation in the mean of $f_{1}(s), \ldots, f_{r}(s)$ and of $f_{1}\left(s, \omega_{1}\right), \ldots, f_{r}\left(s, \omega_{r}\right)$ by $f_{n, 1}(s), \ldots, f_{n, r}(s)$ and by $f_{n, 1}\left(s, \omega_{1}\right), \ldots, f_{n, r}\left(s, \omega_{r}\right)$, respectively. Let

$$
\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)=\left(f_{1}\left(\sigma_{1}+i t\right), \ldots, f_{r}\left(\sigma_{r}+i t\right)\right)
$$

and

$$
\begin{gathered}
\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right)=\left(f_{1}\left(\sigma_{1}+i t, \omega_{1}\right), \ldots, f_{r}\left(\sigma_{r}+i t, \omega_{r}\right)\right) \\
\underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right)=\left(f_{n, 1}\left(\sigma_{1}+i t, \omega_{1}\right), \ldots, f_{n, r}\left(\sigma_{r}+i t, \omega_{r}\right)\right)
\end{gathered}
$$

Theorem 7. Let $\sigma_{j}>\sigma_{1 j}, j=1, \ldots, r$. Then

$$
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)\right) \mathrm{d} t=0
$$

and

$$
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right), \underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right)\right) \mathrm{d} t=0
$$

for almost all $\left(\omega_{1}, \ldots, \omega_{r}\right)$.
Proof. Suppose that the function $f(s)$ satisfies the conditions of Theorem A, and for $\sigma>\sigma_{1}$,

$$
f_{n}(s)=\sum_{m=1}^{\infty} a_{m} v(m, n) \mathrm{e}^{-\lambda_{m} s}
$$

$$
f_{n}(s, \omega)=\sum_{m=1}^{\infty} a_{m} \omega(m) v(m, n) \mathrm{e}^{-\lambda_{m} s}
$$

where $v(m, n)=\exp \left\{-\mathrm{e}^{-\left(\lambda_{n}-\lambda_{m}\right) \sigma_{2}}\right\}$ with $\sigma_{2}>\sigma_{a}-\sigma_{1}$, and $\omega \in \Omega$. Then in [12] it was obtained that, for $\sigma>\sigma_{1}$,

$$
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|f(\sigma+i t)-f_{n}(\sigma+i t)\right| \mathrm{d} t=0
$$

and

$$
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|f(\sigma+i t, \omega)-f_{n}(\sigma+i t, \omega)\right| \mathrm{d} t=0
$$

for almost all $\omega \in \Omega$. Since

$$
\rho\left(\underline{z}_{1}, \underline{z}_{2}\right) \leqslant \sum_{j=1}^{r}\left|z_{1 j}-z_{2 j}\right|
$$

hence the theorem follows.

6. Joint limit theorems for $f_{j}(s)$ and $f_{j}(s, \omega)$

In this section we begin to prove Theorem 1. We will prove limit theorems for the vectors $\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)$ and $\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right)$ defined in Section 5 .

Theorem 8. Let $\sigma_{j}>\sigma_{1 j}, j=1, \ldots, r$. Then the probability measures P_{T} and

$$
\widehat{P}_{T}(A)=\nu_{T}\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right) \in A\right), \quad A \in \mathcal{B}\left(\mathbb{C}^{r}\right)
$$

both converge weakly to the same probability measure on $\left(\mathbb{C}^{r}, \mathcal{B}\left(\mathbb{C}^{r}\right)\right)$ as $T \rightarrow \infty$.

Proof. We argue similarly to the proof of Theorem 6. By Theorem 6 the probability measures $P_{T, n}$ and $\widehat{P}_{T, n}$ converge weakly to the same measure P_{n} on $\left(\mathbb{C}^{r}, \mathcal{B}\left(\mathbb{C}^{r}\right)\right)$ as $T \rightarrow \infty$. We will show that the family of probability measures $\left\{P_{n}: n \in \mathbb{N}\right\}$ is tight. For this, we will preserve the notation of previous sections.

By Theorem 6

$$
\begin{equation*}
\underline{X}_{T, n} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} \underline{X}_{n} \tag{20}
\end{equation*}
$$

where \underline{X}_{n} is a \mathbb{C}^{r}-valued random element with distribution P_{n}. Since the series (11) converges and the series for each $f_{n, j}$ converges absolutely, we
have, for $M>0$,

$$
\begin{aligned}
& \limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, n}, \underline{0}\right)>M\right) \leqslant \\
& \leqslant \frac{1}{M} \sup _{n \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{0}\right) \mathrm{d} t= \\
&= \frac{1}{M} \sup _{n \geqslant 1} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{j=1}^{r}\left|f_{n, j}\left(\sigma_{j}+i t\right)\right|^{2}\right)^{\frac{1}{2}} \mathrm{~d} t \leqslant \\
& \leqslant \frac{1}{M} \sup _{n \geqslant 1} \limsup _{T \rightarrow \infty}\left(\frac{1}{T} \sum_{j=1}^{r} \int_{0}^{T}\left|f_{n, j}\left(\sigma_{j}+i t\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}= \\
&=\frac{1}{M} \sup _{n \geqslant 1}\left(\sum_{j=1}^{r} \sum_{m=1}^{\infty}\left|a_{m j}\right|^{2} v_{j}^{2}(m, n) \mathrm{e}^{-2 \lambda_{m j} \sigma_{j}}\right)^{\frac{1}{2}} \leqslant \\
& \leqslant \frac{1}{M}\left(\sum_{j=1}^{r} \sum_{m=1}^{\infty}\left|a_{m j}\right|^{2} \mathrm{e}^{-2 \lambda_{m j} \sigma_{j}}\right)^{\frac{1}{2}} \leqslant R<\infty
\end{aligned}
$$

Hence, taking $M=R \epsilon^{-1}$, we find that

$$
\limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, n}, \underline{0}\right)>M\right) \leqslant \epsilon
$$

Consequently, in view of (20)

$$
\mathbb{P}\left(\rho\left(\underline{X}_{n}, \underline{0}\right)>M\right) \leqslant \epsilon
$$

This shows that

$$
P_{n}\left(K_{\epsilon}\right) \geqslant 1-\epsilon
$$

for all $n \in \mathbb{N}$, i.e. the family $\left\{P_{n}\right\}$ is tight. Hence, by the Prokhorov theorem, it is relatively compact. Therefore, there exists a subsequence $\left\{P_{n_{1}}\right\} \subset\left\{P_{n}\right\}$ which converges weakly to the probability measure P, say, on $\left(\mathbb{C}^{r}, \mathcal{B}\left(\mathbb{C}^{r}\right)\right)$ as $n_{1} \rightarrow \infty$. Then

$$
\begin{equation*}
\underline{X}_{n_{1}} \xrightarrow[n_{1} \rightarrow \infty]{\mathcal{D}} P . \tag{21}
\end{equation*}
$$

Let, for $\sigma_{j}>\sigma_{1 j}$

$$
X_{T, j}=X_{T, j}\left(\sigma_{j}\right)=f_{j}\left(\sigma_{j}+i T \eta\right), \quad j=1, \ldots, r
$$

and

$$
\underline{X}_{T}=\left(X_{T, 1}, \ldots, X_{T, r}\right) .
$$

Then by the first assertion of Theorem 7

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{T, n}, \underline{X}_{T}\right) \geqslant \epsilon\right) \leqslant \\
& \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{\epsilon T} \int_{0}^{T} \rho\left(\underline{f}_{n}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right), \underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t\right)\right)=0
\end{aligned}
$$

This, (20), (21) and Theorem 4.2 of [1] show that

$$
\begin{equation*}
\underline{X}_{T} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P \tag{23}
\end{equation*}
$$

Now let, for $\sigma_{j}>\sigma_{1 j}$,

$$
\widehat{X}_{T, j}=\widehat{X}_{T, j}\left(\sigma_{j}\right)=f_{j}\left(\sigma_{j}+i T \eta, \omega_{j}\right), \quad j=1, \ldots, r,
$$

and

$$
\underline{X}_{T}=\left(\widehat{X}_{T, 1}, \ldots, \widehat{X}_{T, r}\right) .
$$

Then, reasoning similarly as above for the vectors $\widehat{X}_{T, n}$ and $\underline{\widehat{X}}_{T}$, and using (23) and the second assertion of Theorem 7, we obtain that the probability measure \widehat{P}_{T} also converges to P as $T \rightarrow \infty$. The theorem is proved.

7. Proof of Theorem 1

It remains to identify the limit measure P in Theorem 8 . For this, we will apply some elements of the ergodic theory.

Let $a_{t, j}=\left\{\mathrm{e}^{-i \lambda_{m j} t}: m \in \mathbb{N}\right\}$ for $t \in \mathbb{R}, j=1, \ldots, r$. Then, for each $j,\left\{a_{t, j}: t \in \mathbb{R}\right\}$ is a one-parameter group. We define the one-parameter family $\left\{\varphi_{t, j}: t \in \mathbb{R}\right\}$ of transformations on Ω_{j} by $\varphi_{t, j}=a_{t, j} \omega_{j}$ for $\omega_{j} \in \Omega_{j}, j=1, \ldots, r$. Then we obtain a one parameter group $\left\{\varphi_{t, j}: t \in \mathbb{R}\right\}$ of measurable transformations on $\Omega_{j}, j=1, \ldots, r$.

Define $\left\{\Phi_{t}: t \in \mathbb{R}\right\}=\left\{\varphi_{t, 1}: t \in \mathbb{R}\right\} \times \ldots \times\left\{\varphi_{t, r}: t \in \mathbb{R}\right\}$. Then $\left\{\Phi_{t}: t \in \mathbb{R}\right\}$ is a one-parameter group of measurable transformations on Ω^{r}.
Lemma 9. The one-parameter group $\left\{\Phi_{t}: t \in \mathbb{R}\right\}$ is ergodic.
Proof. In [18] it was proved that $\left\{\varphi_{t, j}: t \in \mathbb{R}\right\}$ for each $j=1, \ldots, r$ is an ergodic one-parameter group. Hence the lemma follows.

Proof of Theorem 1. Let $A \in \mathcal{B}\left(\mathbb{C}^{r}\right)$ be a continuity set of the measure P in Theorem 8. Then, by Theorem 10, for $\sigma_{1}>\sigma_{11}, \ldots, \sigma_{r}>\sigma_{1 r}$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \nu_{T}\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right) \in A\right)=P(A) \tag{24}
\end{equation*}
$$

for almost all $\underline{\omega} \in \Omega^{r}$. Now we fix the set A and define a random variable θ on $\left(\Omega^{r}, \mathcal{B}\left(\Omega^{r}\right), m_{H r}\right)$ by

$$
\theta(\underline{\omega})= \begin{cases}1 & \text { if } F\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right) \in A \\ 0 & \text { if } \underline{F}\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right) \notin A\end{cases}
$$

Then

$$
\mathbb{E}(\theta)=\int_{\Omega_{r}} \theta \mathrm{~d} m_{H r}=m_{H r}\left(\omega \in \Omega: \underline{F}\left(\sigma_{1}, \ldots, \sigma_{r} ; \underline{\omega}\right) \in A\right) \stackrel{\text { def }}{=} P_{F}
$$

is the distribution of the random element \underline{F}. Since by Lemma 9 the oneparameter group $\left\{\Phi_{t}: t \in \mathbb{R}\right\}$ is ergodic, the random process $\theta\left(\Phi_{t}(\underline{\omega})\right)$ is also ergodic. Therefore, by the Birkkhoff-Khinchine theorem

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \theta\left(\Phi_{t}(\underline{\omega})\right) \mathrm{d} t=\mathbb{E}(\theta) \tag{26}
\end{equation*}
$$

for almost all $\underline{\omega} \in \Omega^{r}$. The definitions of θ and of $\left\{\Phi_{t}: t \in \mathbb{R}\right\}$ yield

$$
\frac{1}{T} \int_{0}^{T} \theta\left(\Phi_{t}(\underline{\omega})\right) \mathrm{d} t=\nu_{T}\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right) \in A\right)
$$

Hence and from (25), (26), we deduce that

$$
\lim _{T \rightarrow \infty} \nu_{T}\left(\underline{f}\left(\sigma_{1}, \ldots, \sigma_{r} ; t, \underline{\omega}\right)\right)=P_{F}(A)
$$

for almost all $\underline{\omega} \in \Omega^{r}$. Consequently, by (24)

$$
P(A)=P_{F}(A)
$$

for any continuity set A of the measure P. It is well known that all continuity sets constitute the determining class. Therefore,

$$
P(A)=P_{F}(A)
$$

for all $A \in \mathcal{B}\left(\mathbb{C}^{r}\right)$, and the theorem is proved.

References

[1] P. Billingsley, Convergence of Probability Measures, John Wiley, New York, 1968.
[2] H. Bohr, B. Jessen, Über die Wertverteilung der Riemannschen Zetafunktion, Erste Mitteilung, Acta Math. 54 (1930), 1-35.
[3] H. Bohr, B. Jessen, Über die Wertverteilung der Riemannschen Zetafunktion, Zweite Mitteilung, Acta Math. 58 (1932), 1-55.
[4] J. Genys, A. Laurinčikas, Value distribution of general Dirichlet series. IV, Lith.Math.J. 43(3)(2003), 281-294.
[5] J. Genys, A. Laurinčikas, On joint limit theorem for general Dirichlet series, Nonlinear Analysis: Modelling and Control, 8(2) (2003), 27-39.
[6] J. Genys, A. Laurinčikas, A joint limit theorem for general Dirichlet series, Lith.Math.J. 44(1)(2004), 145-156.
[7] H. Heyer, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[8] D. Joyner, Distribution Theorems for L-functions, Longman Scientific and Technical, Harlow, 1986.
[9] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
[10] A. Laurinčikas, Value-distribution of general Dirichlet series, in : Probability Theory and Math. Statistics: Proceedings of the Seventh Vilnius Conference (1998), B. Grigelionis et al (Eds) VSP/Utrecht, TEV/Vilnius (1999), 405-419.
[11] A. Laurinčikas, Value-distribution of general Dirichlet series. II, Lith.Math.J. 41(4) (2001), 351-360.
[12] A. Laurinčikas, Limit theorems for general Dirichlet series, Theory Stoch. Processes, 8(24) No 3-4 (2002), 256-269.
[13] A. Laurinčikas, A joint limit theorem on the complex plane for general Dirichlet series, Lith.Math.J. 44(3)(2004), 225-231.
[14] A. Laurinčikas, Value-distribution of general Dirichlet series. IV, Nonlinear Analysis: Modelling and Control, 10(3) (2005), 1-13.
[15] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
[16] A. Laurinčikas, K. Matsumoto, The joint universality and the functional independence for Lerch zeta-functions, Nagoya Math.J. 157 (2000), 211-227.
[17] A. Laurinčikas, K. Matsumoto, The joint universality of twisted automorphic L-functions, J.Math.Soc. Japan, 56(3) (2004), 923-939.
[18] A. Laurinčikas, W. Schwarz and J. Steuding, Value distribution of general Dirichlet series. III, in: Analytic and Probab. Methods in Number Theory, Proceedings of the Third Intern. Conference in honour of J. Kubilius, Palanga (2001), A. Dubickas et al (Eds), TEV, Vilnius (2002), 137-156.
[19] A. Laurinčikas, J. Steuding, A joint limit theorem for general Dirichlet series, Lith. Math. J. 42(2) (2002), 163-173.
[20] M. Loève, Probability Theory, Van Nostrand Company, Toronto, New York, London 1955.

Contact information

A. Laurinčikas
Vilnius University, Naugarduko 24, 03225
Vilnius, Lithuania
E-Mail: antanas.laurincikas@maf.vu.lt

Received by the editors: 11.05.2003
and in final form 06.04.2007.

[^0]: 2000 Mathematics Subject Classification: 11M41.
 Key words and phrases: Compact topological group, general Dirichlet series, Haar measure, limit theorem, probability measure, random element, weak convergence.

