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In this review paper, we illustrate a possible route to obtain a reliable solution of the 2D Hubbard model and
an explanation for some of the unconventional behaviours of underdoped high-7¢ cuprate superconductors
within the framework of the composite operator method. The latter is described exhaustively in its fundamental
philosophy, various ingredients and robust machinery to clarify the reasons behind its successful applications
to many diverse strongly correlated systems, controversial phenomenologies and puzzling materials.
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1. SCES and composite operator method

The tale of strongly correlated electronic systems (SCES) [1H6] is deeply intertwined to that of
cuprate high-T; superconductors (HTcS) [[7H19] simply because the prototypical model for the former is
exactly the same as the very minimal model to describe the latter [20]: the 2D Hubbard model [21-23]].
This very fact has enormously increased the number of studies performed in the last thirty years, that
is since the discovery of HTcS, on this model and its extensions (the Emery or p-d model among all
others [24126])) and derivatives (the ¢-J model [27, 28], the spin-fermion model [29], . . . ). Consequently,
also the number of analytical and numerical methods newly developed and specially designed to solve
the 2D Hubbard model has been incredibly growing in the last decades [4, 5]. Among these methods,
several approaches employ multi-electron operators, generated by a set of equations of motion, and
the high-order Green’s function (GF) projection. In particular, in the class of operatorial approaches
(the Hubbard approximations [21H23]], an early high-order GF approach [30], the projection operator
method [31} 32], the works of Mori [33]], Rowe [34], and Roth [33]], the spectral density approach [36],
the works of Barabanov [37], Val’kov [38], and Plakida [39H43], and the cluster perturbation theory
in the Hubbard-operator representation [44]]), we have been developing the composite operator method
[4)115]145] 146].

The composite operator method (COM) has been designed and devised and is still currently developed
with the aim of providing an analytical (operatorial) method that would seamlessly account for the natural
emergence in SCES of elementary excitations, that is quasi-particles, whose operatorial description can
only be realized in terms of fields whose commutation relations are inherently non-canonical. Such a
philosophy requires a complete rethinking, more than a mere rewriting, of the whole apparatus of the
GF framework and of the equations of motion (EM) formalism, which are at the basis of the operatorial
approach. As a matter of fact, the standard ingredients of the GF framework (spectral weights, dispersions,
decay rates, . ..) need to be partly reinterpreted in order to properly and effectively describe the system
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under analysis. Moreover, new concepts — and consequently a new terminology — emerge naturally
when the EM formalism is applied to such non-canonical fields.

The presence in the Hamiltonian describing the system under analysis of strongly correlated terms —
terms not quadratic in the canonical fields {aa, by, ...} describing the (quasi-)particles building up
the system (electrons, phonons, magnons, ...) and their internal degrees of freedom A = {4;} (spin,
orbital, site, momentum, branch, . ..) — immediately and naturally leads to the emergence, in the EM
of the canonical fields, of products of the same canonical fields which is not possible to recast as linear
combinations of the canonical fields themselves. Such products of canonical fields are what we define
composite operators (CO): they denote the very essence of strong correlations and operatorially describe
the possible excitations in the system. Such excitations embody the strong interplay of different degrees
of freedom and/or of different families of canonical fields characterizing such systems. A complete basis
for these new operators (a set of operators in terms of which is possible to express all CO emerging at
the first order in the EM hierarchy as linear combinations) contains all possible products of the number
{a;a " bL by, ...} and mixing {a;a P bL by, a;b’u, ...} operators with the canonical fields themselves.
For instance, the complete basis for a single site, single orbital fermionic system is ¢y, ¢|, cIc 115 c? crey;
the latter two operators being the main components of the well-known Hubbard operators: 1, = nsco,
¢5 = (1 = ng) co. In principle, at each order of the EM hierarchy, to find the complete basis to express
all possibly emerging new CO as linear combinations, one more layer of number and mixing operators is
necessary in front of each element of the previous complete basis. The procedure to construct a complete
basis at each order of the EM hierarchy is heavily affected by the Pauli principle for purely fermionic
systems, that is by the algebraic properties of the canonical fields. For instance, in the previous complete
basis we have no c?cTcT because it is simply zero or we have that c$c 11 = —C}LCTC | and no mixing
operators seemed to be present while the fictitious absence is simply related to the fact that the charge
and spin degrees of freedom on the same site are just indissolubly linked. This is so very true that such
algebraic links are at the basis of a further fundamental ingredient of the COM [the Algebra Constraints
(AC)] and unfortunately they are often overlooked leading to doomed-to-fail approximations.

Only in purely fermionic systems with a finite number of degrees of freedom, where the process of
adding layers is limited again by the Pauli principle (e.g., nsnsco = nscy), it is possible to close self-
consistently the system of EM for any possible Hamiltonian, that is for any possible strongly correlated
term. On infinite systems, the possibility to close the hierarchy of EM is related to (i) the effective
expression of the strongly correlated terms and (ii) if they interest those degrees of freedom which are
truly infinite (e.g., sites and momenta for a bulk system). For instance, for the Hubbard model on the
bulk, it is not possible to close the hierarchy of the EM because the degree of freedom in which the
hopping term is diagonal, the momentum, is infinite and mixed by the Hubbard repulsion, which is
instead diagonal in the infinite site space where the hopping term mixes. This is just the very magic of
the Hubbard model!

Then, when it is not possible to close the hierarchy of the EM, one can always choose where to
stop being sure that the processes up to those defined by the CO taken into account will be correctly
described in such an approximation. However, this is only one necessary step towards a complete solution
because to compute the GF G and the correlators C of such CO under the effect of the Hamiltonian H
it is necessary to calculate explicitly their weights and overlaps appearing in the normalization matrix
I and the connections among them appearing in the matrix m [4} 146]. This will allow one to obtain the
eigenenergies E (eigenvalues of the energy matrix ) and the spectral weights o (from the matrix Q of
eigenvectors of &)

n
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where ¢/, belongs to the chosen set of CO (¥, . . ., ¥,), which acts as the basis in the operatorial space,
Jq is the current of ¥, 6J, is the residual current of ¥, defined by ({8J,, z/r,t}) =0, X,p is the residual
self-energy, A,y is the spectral density and fr (w) is the Fermi function. 7 is the Fourier transform from
time to frequency domain. The latter expression on the right for G, is exact if the hierarchy of EM closes
on a finite number n of CO, otherwise it is the approximate expression of G in the n-pole approximation.

This is not the very end of the story since / and m usually contains parameters to be computed.
Some of these parameters are just correlators C,p, of the basis that can be self-consistently computed
through their expression in terms of the GF G (the fluctuation-dissipation theorem), though some others
are higher-order correlators (correlators of CO appearing at higher orders in the hierarchy of the EM)
and need to be computed in some way. COM uses the AC dictated by the algebra obeyed by the CO
in the basis, which leads to relationships between correlators of the basis (e.g., (f(,njr,) = 0), to fix
such parameters achieving a two-fold result: (i) enforce in the solution the AC that are not automatically
satisfied contrarily to what many people erroneously think [45|/47] and (ii) compute all unknowns in the
theory.

There is still something to be computed (or neglected): the residual self-energy X. According to the
physical properties under analysis and the range of temperatures, dopings, and interactions that we want
to explore, we have to choose an approximation to compute the residual self-energy. In the last years,
we have been using the n—pole approximation [46H71], the asymptotic field approach [72H74] and the
non-crossing approximation (NCA) 15, [75H78]].

In the last twenty years, the COM has been applied to several models and materials: Hubbard [46-
55,179, [80ll, p-d [59H62]), #-J [81], t-t’-U [56H58], extended Hubbard (t-U-V) [63l 64]], Kondo [72],
Anderson [73, [74]], two-orbital Hubbard [65} 182} [83], Ising [66} 67], J; — J» [84-89]], Hubbard-Kondo
[9Q], cuprates [15} |68l 169, [75H78]], etc. In this review, we will focus just on the 2D Hubbard model
(section [2) and on the best COM solutions available at the time within the n-pole (section [3) and the
NCA to the residual self-energy (section ) approximation frameworks. In the latter case, we will be in
the condition to give a possible explanation for some of the unconventional behaviours of underdoped
cuprate high-T; superconductors.

2. 2D Hubbard model

The Hamiltonian of the single-orbital 2D Hubbard model reads as

H= -4tzc*(i)-c“(i)+UznT(i)ni(i)—yZn(i), 2.1)

where ¢’ (i) = (c; ), CI (i)) is the electronic field operator in spinorial notation and Heisenberg picture
(i = (i,t;)). - and ® stand for the inner (scalar) and the outer products, respectively, in spin space. i
is a vector of the two-dimensional square Bravais lattice, n, (i) = cj, (i) co- (i) is the particle density
operator for spin o at site i, n(i) = Y., 1o (i) = ' (i) - ¢ (i) is the total particle density operator at
site i, u is the chemical potential, ¢ is the hopping integral and the energy unit hereafter, U is the
Coulomb on-site repulsion and e is the projector on the nearest-neighbor sites with Fourier transform
a(k) = Fragj = %[cos(kxa) + cos(kya)]. For any operator ¢ (i), we use the notation y* (i) = %; k¢ (. ;)
where k;j can be any function of the two sites i and j.
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3. 3-pole solution

3.1. Basis and equations of motion

Following the COM prescription [15} 45] 146, 91]], we have chosen a basic field and, in particular,
we have selected the following composite triplet field operator v (i) = (¢7 (i), n" (i), c; (i)) where n (i) =
n(i)c (i) and &€ (i) = ¢ (i) — n (i), the Hubbard operators, satisfy the following EM:

0 0
i5,60)=—pE@) =4 () —dn (), iz (@)= U - @)+ (@), (3.1

where the higher-order composite field x (i) = %n,,(i)a’” e (i) + ¢ (@{) - c(i) ® ¢ (i) and ny (i) =
c (i) - oy - ¢ (i) is the charge- (1 = 0) and spin- (1 = 1,2,3 = k) density operator, o, = (1,5),
ot = (-1,7), oy with (k = 1, 2, 3) are the Pauli matrices.

The third operator in the basis, ¢y (i), is chosen proportional to the spin component of 7 (i): ¢ (i) =
ng (i) o - ¢® (i). Accordingly, we define 7 (i) = 7 (i) — %cs (i). The use of ¢, (i) will highlight the most
relevant physics as we do expect spin fluctuations to be the most relevant ones. For further details, such
as the EM satisfied by the field ¢, (i), see reference [46].

3.2. Normalization I matrix

In the paramagnetic and homogeneous case, the entries of the normalization matrix I(k) =
F{w G, 1),¥" (j,1)}) have the following expressions

n n
hi(k) =1 = 1—5, Iz (k) =0, Izz(k)=122=§, (3.2)
3 3
I3 (k) =3Ce. + sk xs’, D3 (k) =3C, - sa k) xy, (3.3)
3 1 3 3
I3 (k) =4C¢ . + ECUU +3a (k) (ﬁ + ZCZIC) + Eﬁ (K) X2 + Zn(k) Xs (3.4)

where n = (n(i)) is the filling, y¥ = %<”Z (i) ni (D)) is the spin-spin correlation function at distances
determined by the projector « and fy = %(cT (i) - ok - ¢® (i) nf (i)) is a higher-order (up to three different
sites are involved) spin-spin correlation function. We have also introduced the following definitions, which
are based on those related to the correlation functions of the fields of the basis: Cy, = (¢ (i) <pj, (7)) and

Cg o = (P%. (i) goj, (1)), where no summation over o is intended. B (k) and 7 (k) are the projectors onto
the second-nearest-neighbor sites along the main diagonals and the main axes of the lattice, respectively.

3.3. m-matrix

In the same conditions, the entries of the matrix m (K) = Fx <{i%l/] G,1),¢" G, t)}> have the following
expressions

my (k) = —ulyy — 4t [A+ (p+ Iy — L) a (K)], 3.5)
miz (K) = 4t [A+ (p — In) @ (K)], (3.6)
mi3 (K) = = [u+ dra (K)] 113 (k) = 4t (k) Dy (k) = 2t133 (k) = 41lzc, (k), (3.7
my (k) = (U = p) I — 4t [A + pa (K)], (3.8)
ma3 (K) = (U = p) I3 (K) + 21133 (k) + 4t (K) IS, , (3.9)
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m33 (K) = —ulss (K) + mYs + a (K) ms, (3.10)
where A = Cgf — (3, is the difference between upper and lower intra-Hubbard-subband contributions
to the kinetic energy and p = i( )((‘)’ +3x&) - XI(,’ is a combination of the nearest-neighbor charge-charge
X = (n®(i)n(i)), spin-spin x& and pair-pair x¢ = ([c7(i)c, (i)]acj (i) c‘T" (i)) correlation functions.
We can avoid cumbersome and somewhat meaningless calculations (they will lead to the appearance
of many unknown higher-order correlation functions) by restricting ms3 (K) just to the local and the
nearest-neighbor terms: n‘123 and mg;. Given the overall choice of cutting cubic harmonics higher than the
nearest-neighbor ones, for the sake of consistency, we also neglected the 8 (k) and n (K) terms in I33 (K).
We checked that this latter simplification does not lead to any appreciable difference: within the explored
paramagnetic solution, )(g and y{ have not very significative values.

By checking systematically all operatorial relations existing among the fields of the basis, we can
recognize the following AC

Cé:é::l—n'l'D, anzo, CUU:__D’ (3.11)
Cee, =3C¢..  Cye, =0, (3.12)

where D = (nq (i) n| (i)) is the double occupancy. These relations lead to the following very relevant
ones: n =2(1 — Cgg — Cypy) and D = 1 — Cgg — 2Cy,.

On the other hand, we can compute x(', xi', x,, and f; by operatorial projection, which is equivalent
to the well-established one-loop approximation [91H93|| for same-time correlations functions

2 2 2 o \2
X“~n2—2ln(cg”) +n(CZ) S hi(CE,)" + 2 (CE) o CecCe .
0 Cnn ’ * 2hnln - Cnn ’ P Crm ’ ‘
I ~—lca —3)(“ 2_2] —2C3§ C“Z—lc. —2('1” o~ e
* 27 4\ I Iy \7e€ 7 47 Ly \ 7 47"

As a matter of fact, the energy matrix (k) = m(k)I~'(k) is sure to have real eigenvalues if the normal-
ization matrix / (k) is semi-positive[]| Then, the presence of x& and f; in the normalization matrix / (k)
imposes a special care in evaluating their values. Accordingly, we have decided to avoid using AC to fix
them, and to fix y; and yx;, for the sake of consistency. AC, in the attempt to preserve the operatorial
relations they stem from, can lead to values of the unknowns slightly off their physical bounds in the
spirit of using them as mere parameters to achieve the ultimate task of satisfying the operatorial algebra
at the level of averages.

In figure [I] we report the behaviour of the chemical potential u and of the double occupancy D
as functions of the filling n for U = 1, 2 and 4 and T = 1/6. The COM 3-pole solution [COM(3p)]
is clearly in very good agreement for all values of U reported in the whole range of filling n with
the 12 x 12-site qMC [94] and 2-site DCA [95] numerical data. COM(3p) also catches the change of
concavity in the chemical potential in proximity of half filling between U = 1,2 and U = 4 [figure[I](top
row)] reported by the DCA data. Also the COM 2-pole solution with the p parameter positive [COM(2p,
p > 0)] manages, but not COM(2p, p < 0), Hubbard I and Roth solutions, which always present the same
concavity. U = 4 already drives quite strong electronic correlations, and the chemical potential shows
a tendency towards a gap opening at n = 1. The double occupancy D [figure [T] (bottom row)] reports a
clear change of correlation-strength regime between U = 1,2 and U = 4: it goes from a parabolic-like
behaviour resembling the non-interacting one (n*/4) atU = 1,2 [figure |1| (bottom-left/central panels)]
to a behaviour presenting a change of slope on approaching half filling at U = 4 [figure [I] (bottom-right
panel)]. COM(3p) only describes correctly these features. COM(3p) evidently has [see figure [I] (bottom-
central/right panels)] the capability to correctly interpolate between the two COM(2p) solutions sticking
to COM(2p, p < 0) at low-intermediate values of filling and even improving on COM(2p, p > 0) at larger
values of filling.

'The product of two symmetric matrices has real eigenvalues if one of the two is semi-positive, that is, it has positive or null
eigenvalues.
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Figure 1. (Colour online) Scaled chemical potential u — U /2 (top row) and double occupancy D (bottom
row) as functions of the filling n for U = 1 (left-hand column), 2 (central column) and 4 (right-hand
column) and 7 = 1/6 for COM(3p) (black lines), COM(2p,p > 0) (dashed red line) and COM(2p,p < 0)
(dotted blue line). COM results are compared with 12 X 12-site qMC [94] and 2-site DCA [95]] numerical
data (red and blue circles, respectively) as well as with the results of Hubbard I (dot-dashed green line)
and Roth (dot-dot-dashed magenta line) methods (only at U = 4). The thin black dashed and dotted lines
in central and right-hand columns are COM(3p) results for U = 1 and U = 2, respectively. From [46]
with kind permission of The European Physical Journal (EPJ).

4. Residual self-energy and cuprate superconductors

4.1. Theory

In this case, we choose as basic field just the composite doublet field operator y (i) = (£7 (i), 7" (i)). By
considering the two-time thermodynamic GF [96-98], we define the retarded GF G(i, j) = (R[w (i) " (j)])
= 0(t; — 1;){{y (@), w7 (j)}) that satisfies the following equation

A@)GG, YAT(D ) = A3:)Golis HIAT(D ) + (RIST@)ST ()] » @.1)

where the derivative operator A(d;) = ia% —&(=iV;) and the propagator G°(i, j) is defined by the equation

A(0,)G°(, j) = i6(t; — t))I(i, j). By introducing the Fourier transform, equation li can be formally
solved as

1
Gk w) = &= 200 —2(k, w)l(k), 4.2)
where the self-energy X(k,w) has the expression X(k,w) = Bj. (k w)l~'(k) with B(k,w) =
F(R[6J(i)6JT(j)]). Equation is the Dyson equation for composite fields and represents the starting
point for a perturbative calculation in terms of the propagator G%(k, w) = #(k)l (k), which corresponds
to the 2-pole approximation and can be easily obtained by the calculations in the previous sections.

The calculation of the self-energy X(k, w) requires the calculation of the higher-order propagator
B(k, w). We shall compute this quantity by using the non-crossing approximation (NCA). By neglecting
the pair term ¢(i)c"®(i)c(i), the source J(i) can be written as J(i, 1) = 2 a(i,j, )y (j, 1) where

an(ij, 1) = —udyj — dtasy — 2tot n,(Nagg,  ap(ij 1) = —4tag — 2tot ny(i)ajj,
ax (i, 1) = 2to!n,(Nagj, axn(jt) = (U — p)dy + 2to n,(i)aj. 4.3)

Then, for the calculation of B;.,-(i, j) = (R[6J(i)6J (j)])irr» we approximate 6J(i,f) ~ 2ila(ij, 1)-
(a(i,j,0))¥(,t) and, therefore, B;..(i,j) = 41°F(,j)(1 — o) where we defined F(i,j) =
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(R[o-”én,,(i)c"(i)c*"(j)én/l(j)cr”]) with 6n, (i) = n,(i) = (n,(i)). The self-energy is then written as

172 -1}
Yk, w) = 42 F(k, w) M oo (4.4)
_111122 122

In order to calculate the retarded function F(i, j), first we use the spectral theorem to express

+0o0

+00
i A 1 1 +e P
FG,j)= = | dwe @™ — J do' —————C(i - jw), 4.5

) an we 2n Y oW tie (=)o) 4)
where C(i — j, w’) is the correlation function C(i, j) = (o-”én,l(i)c"(i)cm(j)én,l(j)o“l). Next, we use the
NCA and approximate (0'”6n,1(i)c“(i)c'I"’(j)én,l(j)o"l) e <6nﬂ(i)6n,u(j))(c"(i)c'm(j)). By means of this
decoupling and using again the spectral theorem, we finally have

+00
1
Fkw) = Ede’

—00

1 a’
w—w +i6 2m)3

J d*pdQa’(p)

X Im[GCC(p’ Q)] Im[)((k - P’ wl - Q)] s (46)

BQ Blw’ - Q)}
2

tanh — + coth
an 5 co

where G..(k, w) = thb:l Gab(k, w)is the retarded electronic GF and y (k, w) = %, F(R[6n,,(i)on,(j)])
is the total charge and spin dynamical susceptibility. The result (4.6) shows that the self-energy calculation
requires the knowledge of the bosonic propagator. Remarkably, up to this point, the system of equations
for the GF and the anomalous self-energy is similar to the one derived in the two-particle self-consistent
approach (TPSC) [99,(100], the DMFT+ZX approach [101H105] and a Mori-like approach by Plakida and
coworkers [41H43]]. It would be the way to compute the dynamical spin and charge susceptibilities to be
completely different because, instead of relying on a phenomenological model and neglecting the charge
susceptibility like these approaches do, we will use a self-consistent two-pole approximation [51].

Finally, the electronic GF G(k, w) is computed through the following self-consistency scheme: we first
compute G°(k, w) and Xu(K, w) in the two-pole approximation, then X(k, w) and consequently G(k, w).
Finally, we check how much the fermionic parameters (u, A, and p) changed and decide whether to stop
or to continue by computing new y,, (k, w) and Z(k, w) after G(k, ).

4.2. Results

We intend to characterize some electronic properties by computing the spectral function A(k, w) =
—# Im[G..(k, w)] and the density of states per spin N(w) = @ IdzkA(k, w). We also investigate the
electronic self-energy X..(k, w), defined through the equation

1
w— k) - Zee(kw)’

Geelkw) = 4.7
where €)(k) = —u — 4ta(Kk) is the non-interacting dispersion, and introduce the quantity r(k) = (k) +
2! .(k,w = 0) that determines the Fermi surface locus in the momentum space, r(k) = 0, in a Fermi
liquid. The actual Fermi surface (or its relic in a non-Fermi-liquid) is given by the relative maxima of
A(k, w = 0), which takes into account, on equal footing, both X/ .(k, w) and £/.(k, w), and is directly
related, within the sudden approximation and forgetting any selection rules, to the effective ARPES
measurements.

4.2.1. Spectral Function and Dispersion

The electronic dispersion, or better its relic in a strongly correlated system, can be obtained through
the relative maxima of A(k, w). In figure[2] we show the latter, in scale of grays (red is for the above-scale
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Figure 2. (Colour online) Spectral function A(K, w) close to the chemical potential (w = 0) along the
principal directions [[' = (0, 0) —» S = (n/2, n/2) > M =(m, 1), M - X = (7, 0), X —» Y = (0, m)
andY — I'lfor U =8, T = 0.02 and n = 0.92. From [/15]].

values), along the principal directions [T’ = (0, 0) — S = («t/2, n/2) > M = (7, ), M — X = (7, 0),
X—>Y=(0mandY — Il for U =8, T =0.02 and n = 0.92. The light gray lines and uniform areas
are labeled with the values of X”(k, w). The dark green lines are guides to the eye, signaling the direction
of the dispersion just before the visible kink separating the black and the red areas of the dispersion.
The latter is well-defined (red areas) only in the regions where X”'(k, w) is zero or almost negligible.
In the regions where £"(k, w) is instead finite, A(K, w) assumes very low values, very difficult to be
detected by ARPES, which, accordingly, would report only the red areas in the picture. This is crucial
to understand the experimental evidences on the Fermi surface in the underdoped regime and to explain
ARPES findings together with those of quantum oscillations measurements.

The dispersion loses significance close to M where A(k, w) loses weight as X”/(k, w) increases:
correspondingly, y3 (K, w) is strongly peaked at M due to the strong antiferromagnetic correlations in
the system. The bandwidth reduces from 4¢ to values of the order J = 41> /U = 0.5t¢, as expected for the
dispersion of few holes in a strong antiferromagnetic background. The characteristics of the dispersion
are also compatible with this scenario, such as the sequence of minima and maxima, actually driven by
the doubling of the Brillouin zone induced by the strong antiferromagnetic correlations, as well as the
dynamical formation of a ¢’ diagonal hopping indicated by the pronounced warping of the dispersion
along the X — Y direction. Moreover, remarkably, the dispersion at X(Y) coming from both I' and M
is substantially flat: this feature is in very good agreement both with gMC computations (see [106]] and
references therein) and with ARPES experiments [107], which detect a similar behaviour for overdoped
systems. It is worth noting that such flatness at X(Y) is present for larger dopings too (n = 0.7, 0.78
and 0.85), as shown in figure 3 of reference [15]], and that the extension of the plateau increases upon
decreasing the doping. It is now clear that the dispersion warping along X — Y, displayed in figure[2] is
also responsible for two maxima in N (w): one related to the van-Hove singularities at X and Y and one
to the dispersion maximum close to S. The entity of the dip between these two maxima just depends on
the number of available well-defined (red) states in k present between these two values of w. This will
determine the formation of a more or less pronounced pseudogap in N (w), as we will discuss after the
analysis of the region close to M.

Definitely, the absence of spectral weight close to M and, in particular and surprisingly, at w = 0
(i.e., on the Fermi surface, in contradiction with the Fermi-liquid scenario), is the most relevant result of
this study: it will determine almost all relevant and anomalous features of the single-particle properties.
Last, but not least, quite remarkable is also the presence of kinks in the dispersion in both the nodal
(' = M) and the antinodal (X — T') directions, as highlighted by the dark green guidelines, in
qualitative agreement with some ARPES experiments [108]. Remarkably, similar results for the single-
particle excitation spectrum were obtained in the self-consistent projection operator method [[109} [110],
the operator projection method [111H113]] and a Mori-like approach by Plakida and coworkers [42} 43|
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4.2.2. Spectral Function and Fermi Surface

Considering A(k, w = 0), we attain the closest concept to Fermi surface for a strongly correlated
system. In figure [3] we show A(K, w = 0) as a function of k in a quarter of the Brillouin zone for U = 8
and (left) n = 0.85 and T = 0.01 and (right) n = 0.92 and T = 0.02. According to the interpretation of the
ARPES measurements in the sudden approximation [107, [108]], the Fermi surface can be defined as the
locus in k space of the relative maxima of A(k, w = 0). Such a definition leads to a possible explanation of
ARPES measurements, but also allows one to go beyond them, with their finite resolution and sensitivity,
aiming at a reconciliation with other types of measurements, in particular quantum oscillations ones,
which seemingly report results in disagreement, also up to dichotomy in some cases, with ARPES.

The evolution of the Fermi surface topology on increasing n is the consequence of two Lifshitz
transitions [114], at n = 0.82 and n = 0.9. The first Lifshitz transition (n = 0.82, not shown) is due to the
crossing of the chemical potential by the van Hove singularity: the exact doping can be easily identified by
looking at the chemical potential behaviour as a function of n (not shown). The second transition (n = 0.9,
not shown) is characterized by the formation of a hole pocket in the proximity of S. Changes in the Fermi-
surface topology were also found in other studies on the cuprates [37, 42, [115]. A very detailed analysis
for the Lifshitz transitions in the #-J model was performed by Korshunov and Ovchinnikov [116]: they
obtained the model parameters from ab initio calculations for cuprates [117] and found a large overdoped
Fermi surface for n < 0.76, two concentric Fermi surfaces for 0.76 < n < 0.85 and a small hole Fermi
surface around S for n > 0.85. Consequently, in reference [[118]], Ovchinnikov et al. characterized better
these two quantum phase transitions, obtaining a logarithmic singularity for N (w = 0) atn = 0.85 and a
stepwise feature at n = 0.76.

Then, in figure 3] we report results for n = 0.85 and n = 0.92 as representatives of two non-trivial
topologies of the Fermi surface. We can clearly distinguish two arcs that for n = 0.92 somehow join.
Given the current sensitivities, only the arc with the larger intensities, among the two, may be visible to
ARPES: at n = 0.92, the region close to S is the only one with an appreciable signal. The less-intense
arc, reported in reference [42] too, is the relic of a shadow band, as clearly seen in figure [2 and thus
never changes its curvature, in contrast to what happens to the other arc, subject to the crossing of the
van Hove singularity (n = 0.82, not shown).

Three additional ingredients can help us better understand the evolution with doping of the Fermi
surface: (i) the n(k) = 0.5 locus (solid line), i.e., the Fermi surface if the system would be non-interacting;
(ii) the r(k) = 0 locus (dashed line), i.e., the Fermi surface if the system would be a Fermi liquid or
a state close to it conceptually; (iii) the values (grey lines and labels) of X/.(k,w = 0). Through the
combined analysis of these three ingredients with the positions and intensities of the relative maxima of
A(k, w = 0), we can understand better what these latter imply and classify the behaviour of the system
on changing filling. At high dopings (not shown), the positions of the two arcs match exactly r(k) = 0
lines: this fact corroborates our definition of Fermi surface, making it versatile and valid beyond the

k w2

0 w8 w4 3w8 w2 5m8 34 78 m
k

0 w8 w4 3wW8 w2 5w8 34 78 m
k

X X

Figure 3. (Colour online) Spectral function at the chemical potential A(k,w = 0) as a function of
momentum Kk for U = 8, T = 0.01 and (left) n = 0.85 and (right) n = 0.92 (T = 0.02). The solid line
marks the locus n(k) = 0.5, the dashed line marks the locus r(k) = 0, the gray lines are labeled with the
values of /7. (k, w = 0), and the dotted line is a guide to the eye and marks the reduced (antiferromagnetic)
Brillouin zone. From [15].
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Fermi liquid picture without contradicting this latter. Increasing the filling, we find the first topological
transition from a Fermi surface closed around I' (hole like in cuprates language) to a Fermi surface closed
around M (electron like in cuprates language) at n = 0.82 (not shown), where the van Hove singularity is
at w = 0 [see figure[3|(left-hand panel) for n = 0.85, a close doping]. Close to the antinodal points (X and
Y), a net discrepancy between the position of the relative maxima of A(K, w = 0) and the line n(k) = 0.5
arises on decreasing doping. This feature does not only allow the topological transition, absent for the
n(k) = 0.5 locus that reaches the anti-diagonal (X — Y) at n = 1 satisfying the Luttinger theorem, but
it also accounts for the broadening of the relative maxima of A(k, w = 0) close to the anti-nodal points.
The broadening is due to the small, but finite, value of £/.(k, w = 0) in those regions, signaling the
net enhancement of the correlation strength, and then the impossibility to consider the system in this
regime as a conventional non- (or weakly-) interacting one within a Fermi-liquid scenario or its ordinary
extensions for ordered phases. The emergence of such features only in well defined regions in k space is
of great interest and goes beyond the problem under analysis (cuprates).

As the most important result, at n = 0.92, the relative maxima of A(k, w = 0) deviate also from the
r(k) = 0 line, at least partially, leading to a completely new scenario: r(k) = 0 defines a pocket, while the
peaks of A(k, w = 0) feature the very same pocket together with quite well-defined wings closing, with
one half of the pocket, a kind of relic of a large Fermi surface. This is the second and most surprising
topological transition for the Fermi surface; in fact, the two arcs, clearly visible for all other dopings,
join and do not close just a pocket, as expected from the conventional theory for an antiferromagnet:
they develop a fully independent branch. The actual Fermi surface is neither a pocket nor a large Fermi
surface. This very unexpected result can be connected to the dichotomy between the experiments (e.g.,
ARPES) pointing to a small and the ones (e.g., quantum oscillations) pointing to a large Fermi surface.

The pocket too is definitely unconventional. In fact, there are two distinct halves of the pocket: one
with very high intensity pinned at S (the only possibly detectable by ARPES) and one with very low
intensity (detectable only by some quantum oscillations experiments). This is our interpretation for the
Fermi arcs, seen in many ARPES experiments [108} [119] and unaccountable for any ordinary theory
based on the Fermi liquid picture, though modified by including an incipient spin or charge ordering.
Clearly, looking only at the Fermi arc (as necessarily in ARPES), the Fermi surface looks ill defined, not
enclosing a definite region of k space, but having access also to the other half of the pocket, such problem
is greatly alleviated. In our understanding, the antiferromagnetic fluctuations are so strong to destroy
the quasi-particle coherence in that region of k space, as similarly reported in the DMFT+ZX approach
[LO14105)] and in a Mori-like approach by Plakida and collaborators [42, 43]]. The Fermi arc is pinned
at S: this pinning of the center of mass of the ARPES-visible Fermi arc has been obtained also in ARPES
experiments [120].

4.2.3. Density of States and Pseudogap

The other main feature in underdoped cuprates is a substantial depletion in the electronic N (w): the
pseudogap. In figure @] (left-hand panel), we show N(w) for U = 8 and four couples of values of filling
and temperature: n = 0.7 and 7 = 0.01, n = 0.78 and T = 0.01, n = 0.85 and T = 0.01, and n = 0.92
and T = 0.02, in the frequency region close to the chemical potential. As a reference, we also show, in
figure [ (right-hand panel), A(k, w ~ 0) atk = § = (/2,7/2), k = S which is where the phantom half
of the pocket touches the diagonal I' — M (i.e., where the dispersion cuts the diagonal I' — M closer to
M),andk = X for U = 8, n = 0.92 and T = 0.02. As apparent in ﬁgure (left-hand panel), N (w) has
two maxima separated by a dip, which plays the role of pseudogap. Its presence is due to the dispersion
warping along the X — Y direction (see figure [2), which induces the two maxima [one due to the
van-Hove singularity at X and one due to the dispersion maximum close to S — see figure [ (right-hand
panel)] and the loss of states, in this frequency window, in the region in k close to M. In order to realize
the weight loss due to the finite value of X//.(k, w = 0) in the region in k close to M, we can look at the
impressive difference between the values of A(S, w = 0) and A(S, w = 0) [figure [4] (right-hand panel)].
Increasing the filling, there is a net spectral weight transfer between the two maxima; in particular, from
the dispersion top close to S to the antinodal point X, where the van Hove singularity resides. At the
lowest doping (n = 0.92), a well formed pseudogap can be seen for w < 0 and will clearly influence the
properties of the system. For n = 0.92, we do not find any divergence of X/ .(k, w = 0), in contrast to
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A(k=k,0)

w

Figure 4. (Colour online) (left) Density of states N(w) as a function of frequency w for U = 8, (black
squares) n = 0.7 and T = 0.01, (red circles) n = 0.78 and T = 0.01, (blue up triangles) n = 0.85 and
T = 0.01, and (green down triangles) n = 0.92 and T = 0.02. (right) Spectral function in proximity of
the chemical potential A(k, w ~ 0) at (black squares) k = S = (nt/2, /2), (red circles) S (in the text), and
(blue triangles) X = (s, 0) for U = 8, n = 0.92 and T = 0.02. From [13].

what is stated in reference [[121]] where this feature is presented as the definite reason for the pseudogap
formation. In our study, the pseudogap is just the result of the weight transfer from the single-particle
density of states to the two-particle one, related to the (antiferro)magnetic excitations occurring in the
system on decreasing doping at low 7. A similar doping behaviour of the pseudogap has been found by
the DMFT+X approach [101H105], a Mori-like approach by Plakida and collaborators [42, 43] and the
cluster perturbation theory [[100} 122} [123]].

5. Conclusions

In this review paper, written in honor of the 80" anniversary of Professor Ihor Stasyuk, we have
illustrated the composite operator method by means of a prototypical example: the 2D Hubbard model
and its application to the description of high-7, cuprate superconductors. The method has been reported
first for a general case in order to appreciate its philosophy and its capability to be applied to any strongly
correlated system in a controlled fashion.
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Nigxia meToAy KOMNO3UTHUX ONepaTopiB A0 ABOBUMIpPHOI
moaeni Xab6apaa Ta KynpaTis

A. lli Ysond® A. Asennai

L dakynbTet disvkm “E.P. Caianiello”, yHiBepcutet CanepHo, 1-84084 ®diwiaHo (CanepHo), Itania

Z CNR-SPIN, yHiBepcuTeT CanepHo, 1-84084 diwiaHo (CanepHo), Itanisa

3 BiggineHHs CNISM B CanepHo, yHiBepcuteT CanepHo, 1-84084 diwiaHo (CanepHo), Itanis

Y Uil ornagoBiiA CTaTTi MU NOKA3yeEMO MONXJUIMBUIA LUASX A0 OTPMMAaHHS BipOrifHUX PO3B'A3KiB ANs ABOBUMIp-
HOT Mogeni Xabbapaa Ta NOSICHEHHS AesKOoi He3BMYHOI NMOBEZIHKM Hej0NeroBaHUX BUCOKOTEMMEePaTYPHUX Ky-
NPaTHUX HAAMNPOBIAHMKIB B paMKax MeToAy KOMMO3UTHMUX onepaTtopiB. CaM MeTog OnmncaHo BUYEpnHO B 1ioro
dyHaameHTanbHil Ginocodii, pisHMX iHrpesieHTax Ta HagiliHIA TexHiui Ans 3'ACyBaHHA NPUYMNH AOro ycniwHoro
3aCTOCYBaHHSA 0 Pi3HOMaHITHUX CUJIbHO CKOPeNbOBaHNX CUCTEM, CynepeYvBux GeHOMeHOoOrili Ta 3aragko-
BMX MaTepianis.

Kntouosi cnoBa: 6araro4acTuHKoBi METOAM, CU/IbHO CKOPENbOBaHI CUCTEMU, MoAeNb Xabbapaa, Kynpaty,
1CeBAOLYININHE, eNeKTPOHHA CTPYKTypa
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