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A theory of equilibrium states of electrons above a liquid helium surface in the presence of an external clamping
field is built based on the first principles of quantum statistics for the system of many identical Fermi-particles.
The approach is based on the variation principle modified for the considered system and on Thomas-Fermi
model. In terms of the developed theory we obtain the self-consistency equations that connect the parameters
of the system description, i.e., the potential of a static electric field, the distribution function of electrons and
the surface profile of a liquid dielectric. The equations are used to study the phase transition of the system to
a spatially periodic state. To demonstrate the capabilities of the proposed method, the characteristics of the
phase transition of the system to a spatially periodic state of a trough type are analyzed.
Key words: electrons, gas-liquid interfaces, variational approach, perturbation theory, phase transitions
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1. Introduction

In spite of more than forty year history [1–4], the studies of phenomena associated with the formation
of spatially periodic states in a system of charged particles above dielectric surface are still relevant. The
possibility of spatially periodic ordering in 3D system of charges (electrons in metals) was predicted by
Wigner [5]. Due to this research, a new term called “Wigner crystallization” (WC) appeared. The other
way of reaching the phase transition with the formation of 3D spatially periodic structures in similar
systems was shown in [6]. Unlike 3D systems, the stable spatially periodic states in the system of electrons
near the boundary between two media were experimentally registered in [7–13]. The chronology of the
research is given in monographs [14, 15] and in review papers [16–18].

The theoretical papers studying both 2D WC effects [7] and the formation of macroscopic dimple
lattices [8] are usually based on the concept of the energy spectrum of a single (i.e., “levitating”)
electron above the dielectric surface. This concept considers a single electron above a planar dielectric
surface together with its electrostatic image as an analogue of a hydrogen-like atom [19]. Obviously, the
description of a many-particle system of charges above the dielectric surface using this approach faces
mathematical and methodological issues, because the image method is a mathematical technique to avoid
a consistent solution of the Poisson equation for a single charge above the metallic or dielectric surface.
The mentioned issues can be avoided by describing the system in terms of a microscopic theory. Such a
theory must consider a quantum-mechanical system of many particles [20–24], and take into account the
external pressing electric field. This field is important in forming such systems, since the field induced
by the charges (electrons) in a dielectric is insufficient to keep them near its surface.

The basics of the microscopic approach were formulated in [20]. This approach uses a variation
principle and the modified Thomas-Fermi model. The approach allows one to obtain self-consistency
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equations relating the parameters of such a system description (the potential of a static electric field, the
distribution function of charges (electrons) and the profile of a liquid dielectric surface). The comparative
results of the developed theory versus the experimental data [8] are in qualitative agreement.

The present paper studies a system of electrons above the liquid helium surface in an external pressing
field in terms of the quasi-classical approach presented in [20] and developed in [23, 24]. Unlike these
papers, the current paper analysis is not limited to non-degeneracy or quasi-neutrality of the system.
Quasi-neutrality of the system assumes that the external field is compensated by the field of electrons
far from the dielectric surface. This paper considers the “charged” problem, where the pressing field can
be larger than the electrons are capable of compensating. Unlike papers [20–23], this research also goes
beyond Boltzmann’s statistics. The statistical approach to the description of spatially inhomogeneous
states in Coulomb systems was also used in papers [25–28]. However, these studies were based on
the usage of the modified electrostatic potential of a single electron and on the methods of functional
integration to calculate grand statistical sums.

2. Self-consistency equations for the system of electrons above liquid

helium surface

The present paper research is based on the variation principle proposed in [20], so let us remind the
main points of the theory. We consider the system of electrons with charge −e (e > 0), mass m, spin 1/2,
momentum p and energy εp = p2/2m. The electrons are located in vacuum z > ξ(ρ) (region “1”) above
the surface of liquid helium film ξ(ρ) > z > −d (region “2”) having thickness d, dielectric constant ε and
surface tension α. Let us assume that the film is located on a flat solid dielectric substrate (region “3”) with
dielectric constant εd � ε. The surface profile of the helium film is described by function ξ(ρ) ≡ ξ(x, y),
where ρ ≡ {x, y} is the radius vector in z = 0 plane of the Cartesian coordinate system {z, x, y}. The
boundaries between regions “1”–“3” along the direction of ρ are assumed to be unlimited. To avoid
questions on the “repulsion” of electrons along ρ, we assume that the system is located in a vessel with
walls at ρ → ∞, forbidding electrons from leaving the system in ρ direction. An external clamping
electric field E (e) directed along z-axis prevents electrons from leaving the system in z-direction. In
region “1”, the system is described by the distribution function fp(r) of electrons, their electric potential
ϕ(i)1 (r), the potential ϕ(e)1 (r) of the clamping field E (e) and helium surface profile ξ(ρ). Region “2” is
described by helium surface profile ξ(ρ) and the total potential ϕ2 = ϕ

(i)
2 + ϕ

(e)
2 . Region “3” is described

by the total potential ϕ3 = ϕ
(i)
3 + ϕ

(e)
3 in the solid substrate.

To obtain self-consistency equations for equilibrium values of the main parameters fp(r), ξ(ρ) and
ϕ(i)1 (r) describing the system, it is necessary to obtain the maximum of the system entropy S

S = −
2

(2π~)3

∫
d3r d3p

[
f̄ ln f̄ +

(
1 − f̄

)
ln

(
1 − f̄

) ]
, f̄ =

(2π~)3

2
fp (r) , (2.1)

if the following conditions take place. First, for a fixed E (e) value, the total number of electrons N =∫
d3r d3p fp(r), their total momentum P =

∫
d3r d3p fp(r)p (equal to zero, as the system stays at rest) and

the total energy of the system [20]

Et =

∫
V1

d3r
K − en

[
ϕ(i)1
2
+ ϕ(e)1

]
+

E (e)
1

2

8π

 +
∫
V2

d3r
εE2

2
8π
+

∫
V3

d3r
ε
d

E2
3

8π
+
α

2

∫
dS

[
(∇ξ)2 + (κξ)2

]
(2.2)

remain unchanged. In (2.2) K =
∫

d3p fpεp, Ej = −∇ϕj , E(e)
j = −∇ϕ

(e)
j , Vj, j = 1, 2, 3, are the volumes

of regions “1”, “2” and “3”, respectively, and dS = d2ρ{1 + [∇ρξ(ρ)]2}1/2, ∇ρ ≡ ∂/∂ρ, ϕj = ϕ
(i)
j + ϕ

(e)
j .

Secondly, in the absence of electrons above the film, its surface profile cannot be transformed. Thirdly,
Poisson equation must take place in all three regions of the system. The electron density in (2.2) has the
form:

n (r) =
∫

d3p fp (r) . (2.3)
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Let us also make the following remark. As the helium film consists of an incompressible fluid, its total
volume must be fixed. However, the interaction of liquid helium film with the electrons pressed by the
external electric field to its surface leads to the lowering of the helium surface profile ξ(ρ) (see [8, 9]).
Moreover, the surface profile of this deflection remains flat up to a certain critical value of the external
clamping field. At a glance, this fact contradicts the incompressibility condition for the volume of liquid
helium film. In real experiments, the external electric field is provided by placing a positively charged
plate of a flat capacitor into helium below its surface. The linear dimensions of helium surface subsidence
are comparable to the linear dimensions of the plate L [8, 9]. Thus, the decrease of helium volume above
the condenser plate due to the subsidence of the film surface under the action of electrons pressed by
the external electric field must be compensated by its increase outside the plate. In the present paper, we
consider the flat helium surface region assuming that the edge effect of an increase of the helium surface
profile takes place near the vessel walls at |ρ | → ∞. This edge effect being ignored allows one to skip
the condition for helium volume incompressibility while solving the variation problem.

The problem of obtaining the conditional maximum of entropy can be replaced by the problem of
obtaining the unconditional minimum of a grand thermodynamic potential Ω̃ (for more details, see [20]):

Ω̃ = −S + Y0E + YiPi + Y4N +
∫

d2ρ λξ (ρ) ξ (ρ)
��
N=0 +

∫
d3r λ (r) [∆ϕ (r) + 4πQn (r)] , (2.4)

whereY0,Yi ,Y4, λ(r), λξ (ρ) are the Lagrange multipliers corresponding to the above conditions. To obtain
the minimum of Ω̃, it is necessary to calculate the following conditions for the variation derivatives:

δΩ̃

δ f

����
ξ,ϕ(i)

= 0,
δΩ̃

δϕ(i)

����
f ,ξ

= 0,
δΩ̃

δξ

����
f ,ϕ(i)
= 0.

Solving the variation problem results in the following equations (for details, see [20]):{
2T
α

∫
d3p

ln
(
1 − f̄

)
(2π~)3

+
ε

8π

[
E (e)

2
2
− E2

2

]}
z=ξ

= κ2ξ

√
1 + (∇ξ)2 − ∇


∇ξ

[
2 + κ2ξ2 + 3(∇ξ)2

]
2
√

1 + (∇ξ)2

 ,
(2.5)

where the distribution function fp(r) is expressed by

fp (r) = θ
(
z − ξ (ρ)

) 2
(2π~)3

[
1 + exp T−1 (

εp − µ − eϕ1
) ]−1

, (2.6)

θ(z) is the Heaviside unit function, and κ in (2.5) is given by [29]

κ (d) =
√
ρ

α
(g + f ), f =

g0dv
d4 (d + dv)

(
3 +

d
d + dv

)
, (2.7)

where dv = 1.65 · 10−5 cm and g0 = 2.2 · 10−14 cm5· s−2, g is the gravity acceleration, α is the surface
tension of the liquid helium, ρ is its density and f is Van der Waals constant, which in the case of a
massive liquid helium film (d → ∞) can be neglected compared to g. In the case of a thin helium film,
the gravitational force acting on helium atoms is negligibly small compared to Van der Waals forces.
This situation takes place for films thinner than d ∼ 10−4 cm.

Equations (2.5), (2.6) together with the equations for the potentials of the electric fields, both external
ϕ(e)(r) and total ϕ(r) = ϕ(i)(r) + ϕ(e)(r) in all three regions of the system:

∆ϕ1 (r) − 4πen (r) = 0, ∆ϕ2 (r) = 0, ∆ϕ3 (r) = 0, ∆ϕ(e)j (r) = 0, j = 1, 2, 3, (2.8)

forma systemof self-consistency equations.However, itmust be supplemented by the boundary conditions
for the potentials and electric fields at boundaries z = ξ(ρ) and z = −d. Since there are no surface charges
at the boundaries, these boundary conditions together with the finiteness conditions for the electric fields
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have the form:

ϕ1 (z, ρ)
��
z=ξ = ϕ2 (z, ρ)

��
z=ξ ,

{(
n(ρ) · ∇

)
[εϕ2 (z, ρ) − ϕ1 (z, ρ)]

}
z=ξ
= 0,

ϕ2 (z, ρ)
��
z=−d = ϕ3 (z, ρ)

��
z=−d ,

[
ε
∂ϕ2 (z, ρ)

∂z
− εd

∂ϕ3 (z, ρ)
∂z

]
z=−d

= 0,
����∂ϕj

∂z

���� < +∞, (2.9)

where n(ρ) = [1 + (∇ξ)2]−1/2{−∂ξ/∂x,−∂ξ/∂y, 1} is the normal to the surface profile ξ(ρ) at point ρ.
Let us also note that the conditions similar to equation (2.9) take place for ϕ̃(e)j (z, ρ) ( j = 1, 2, 3).

3. Scenario of the phase transition with the formation of spatially peri-

odic structures

The external electric field E (e) that presses the electrons to the helium surface can lead to its subsidence
in the region of this field action (see, e.g., [14–18, 20]). Since the bottom of this deflection remains flat, it
can be described by ξ̄ parameter (the subsidence depth). If the plane surface of undeformed helium is at
z = 0, then in the deformation case ξ̄ < 0. Increasing E (e), increases ξ̄, which remains flat up to a certain
critical value of the electric field E (e)

c . If E (e) > E (e)
c , the surface profile acquires a periodic structure.

The control parameter for such a phase transition can be not only E (e) but also the temperature T and
the number of electrons per unit of helium surface area ns (defined below). Further on, the equation
describing a “critical” surface relating E (e), T and ns at the transition point is obtained.

According to the above described scenario, near the critical point, the surface profile of liquid helium
in a phase with lower symmetry has the form [20–24]:

ξ (ρ) = ξ̄ + ξ̃ (ρ) ,
��ξ̄�� � ��ξ̃ (ρ)�� , (3.1)

where ξ̃(ρ) is a spatially-inhomogeneous order parameter formed as a result of the phase transition on
the background of the flat surface z = ξ̄. In the symmetric phase, ξ̃(ρ) = 0, while in the asymmetric
phase, it describes the spatially periodic structure of the surface. In the theory of phase transitions,
“asymmetric phase” is considered to be the phase (formed due to a phase transition) with the symmetry
lower than the initial symmetric phase. If the inequality in equation (3.1) takes place in the vicinity of the
phase transition point and ξ̃(ρ) vanishes at the point itself, then the second-order phase transition takes
place [30].

Further on, we consider the case where the surface profile slightly differs from the plane profile
and we also assume that ξ(ρ) slowly changes along the coordinates x and y, i.e., |∂ξ(ρ)/∂x | � 1 and
|∂ξ(ρ)/∂y | � 1. If equations (2.9), (3.1) take place, we can expect that the distribution of electrons and
fields will slightly differ from the corresponding distributions in the flat surface case. Thus, the potentials
of the total ϕj and external ϕ(e)j fields ( j = 1, 2, 3) can be written in a similar way to equation (3.1), i.e.,
ϕj(z, ρ) = ϕ̄j(z) + ϕ̃j(z, ρ), where ϕ̄j(z) are the potentials of the total electric field in “1”–“3” regions in
the flat surface case. Here, ϕ̃j(z, ρ) are the low perturbations (|ϕ̄j(z)| � |ϕ̃j(z, ρ)|) of the potentials in all
regions caused by the surface inhomogeneity ξ̃(ρ).

Let us assume the order parameter ξ̃(ρ) to be spatially periodic. In this case, applying the averaging
over the period 〈. . .〉 to equation (3.1), we have

ξ̄ ≡ 〈ξ (ρ)〉 , ξ̃ (ρ) = ξ (ρ) − 〈ξ (ρ)〉 , ξ̃ (ρ) =
∑
q,0

ξqeiqρ, ξq =
1
(2π)2

∫
d2ρ ξ (ρ) e−iqρ . (3.2)

Taking into account equations (3.1), (3.2), we also search ϕ̃j(z, ρ) and ϕ̃(e)j (z, ρ) in the form of periodic
functions. Therefore, these perturbations also obey the relations similar to (3.2). We do not present them
to avoid the aggregation of similar formulae. Let us also note that according to equation (3.2), 〈ξ(ρ)〉 is
not equal to zero in the most general case. This is due to the skipping helium incompressibility condition
during the variation procedure mentioned in the previous section remark.
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Since the phase transition is a second-order transition, the order parameter ξ̃(ρ) can be obtained as
a function of the control parameters T , E (e), ns near the critical values Tc, E (e)

c and nsc by means of
the perturbation theory in small parameters ξ̃(ρ), ϕ̃j(z, ρ), ϕ̃(e)j (z, ρ), T − Tc, E (e) − E (e)

c and ns − nsc.
Expanding equations (2.5)–(2.8) in these perturbations and averaging them [see equation (3.2)], we obtain
the equations describing the system of electrons above a flat helium surface and being a background for
the periodic structures research. To obtain the critical parameters of a phase transition, it is necessary
to consider the next orders of the perturbation theory. We search ξ̃q, ϕ̃jq(z) and ϕ̃(e)jq (z) in the following
form:

ξ̃q(z) =
∞∑
l=1

ξ̃
(l)
q , ∆ (q) =

{
0, q , 0,
1, q = 0,

ξ̃
(1)
q = ξ̃

(1)
q0 [∆ (q − q0) + ∆ (q + q0)] , ξ̃

(2)
q = ξ̃

(2)
2q0
[∆ (q − 2q0) + ∆ (q + 2q0)] .

(3.3)

The quantities ϕ̃(1)jq (z) and ϕ̃
(1)
jq0
(z), ϕ̃(2)jq (z) and ϕ̃

(2)
j2q0
(z), ϕ̃(e)(1)jq (z) and ϕ̃(e)(1)jq0

(z), ϕ̃(e)(2)jq (z) and ϕ̃(e)(2)
j2q0
(z) are

related in a similar way to equation (3.3). In equation (3.3), for the purpose of simplicity, the periodic
structure is assumed to be one-dimensional with a period a along the x-axis, so q0 = q0x = 2π/a. We do
not present here the whole system of self-consistency equations in the basic, first, and other orders of the
perturbation theory, because a similar procedure of their obtaining is given in [20, 23, 24].

It is important to emphasize that the search for a solution for ξ̃(ρ) in the 1D case is caused by
two circumstances. Firstly, this case simplifies the procedure for obtaining analytical solutions for self-
consistency equations (2.5), (2.6), (2.8) and (2.9), because in the case of 2D periodic structures, the
calculations become too cumbersome. Secondly, the authors of [31] registered the appearance of similar
one-period wave-type structures further evolving to the hexagonal type. The justification for the existence
of one-periodic solutions can be a solution to the dynamic stability problem of such structures in the
system considered. However, solving this problem is out of the scope of the present paper.

4. The distribution of electrons and electrostatic fields above flat he-

lium surface

According to the approach used in [20, 23, 24], the basic approximation of the first equation in
equation (2.8) has the form:

∆ϕ̄1 (z) = 4πen (ϕ̄1) , n (ϕ̄1) =

√
2a−3/2

0
π2e3

∞∫
0

dεε1/2
(
1 + exp

ε − ψ

T

)−1
, ψ = µ + eϕ̄1 (z) , (4.1)

where a0 ≡
~2

me2 is the first Bohr radius and ψ is usually referred to as the electrochemical potential.
Equation (4.1) has the form similar to the Thomas-Fermi equation that describes the potential of a many-
electron atom in the semiclassical approximation [32]. The present paper also uses the semiclassical
approximation, and Wigner distribution function fp(r) for electrons depends on the coordinate r and
momentum p simultaneously. The condition for the applicability of this approximation will be obtained
at the end of this section. Analogically to the system of electrons in the field of the atom nucleus, in the
system of electrons above liquid helium in an external field, the role of the nuclear field is taken by the
external clamping field. However, unlike the Thomas-Fermi equation, equation (4.1) is obtained from
the above formulated variation principle and is of the Cartesian symmetry type rather than of spherical
type. Taking into account the noted similarities and differences between the electron system in the field
of the atom nucleus and the system electrons above the helium surface in the external clamping field,
we can consider equation (4.1) as a certain modification of the Thomas-Fermi equation. The solution of
both equations requires the application of numerical methods, and the solution of equation (4.1) is given
below.
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The order of equation (4.1) can be lowered (see [20]):

∂ϕ̄1
∂z
= −


π3/229/2e2

3a4
0

(
Ta0

πe2

)5/2 ∞∫
0

dx x3/2

1 + ex−χ(z)
+ C1


1/2

, x =
ε

T
, χ (z) ≡

ψ

T
. (4.2)

Since there are no electrons far from the surface and, hence, in this region the distribution function
tends to zero, it is easy to determine the integration constant C1 = E2

∞, where E∞ = − lim
z→+∞

ϕ̄′1(z). In this
case, equation (4.2) takes the form:

E1 (z) = E∞

[
1 − 25/2Li5/2

(
−e χ(z)

) z2
0

a2
0

(
a0T
πe2

)1/2
]1/2

, z0 =
T

eE∞
, Lis (t) =

t
Γ (s)

∞∫
0

xs−1dx
ex − t

, (4.3)

where we introduce the polylogarithmic function Lis(t), that can also be used to rewrite the electron
density equation (2.3). Then, integrating it by z from ξ̄ to +∞, we obtain:

4πens = E0 − E∞ , ns =

∞∫
ξ

dz n(z), n(z) = −
(
Ta0

πe2

)3/2Li3/2
(
−e χ(z)

)
√

2a3
0

, (4.4)

where E0 = −ϕ̄
′
1(z)|z=ξ̄ and ns is the total number of electrons in the system above the surface area

unit. Equation (4.4) together with equation (4.3) at z = ξ̄ give an implicit equation for obtaining the
non-dimensionalized electrochemical potential on the liquid helium surface χξ = χ(z = ξ̄) as a function
of T , E (e) and ns:

E∞
4πe


[
1 − 25/2 z2

0

a2
0

(
Ta0

πe2

)1/2
Li5/2 (−e χξ )

]1/2

− 1
 = ns. (4.5)

On the other hand, equation (4.5) is also a condition for normalizing the electrochemical potential at fixed
values of T , E (e) and ns, if the condition Li5/2(−e χ∞) = 0 is satisfied. The last condition is satisfied due
to the absence of electrons at infinity. This fact was also used by us to determine the integration constant
in equation (4.2).

To obtain the relation between E (e)
1 and E1(z) = E (i)

1 (z)+ E (e)
1 we must obtain the electric field E (i)

1 (z)
of electrons with density equation (2.3). The z-component of E (i)

1 (z) at point (x, y, z) induced by an
elementary volume dx ′dy′dz′ of electrons at point (x ′, y′, z′) is dE (i)

1z (z) = −(z − z′)en(z′)dx ′dy′dz′ ×
[x ′2 + y′2 + (z − z′)2]−3/2. Since the system is infinite along (x, y) coordinates, the integrals of the
projections E (i)

1x, E
(i)
1y over V1 volume vanish. Thus, E (i)

1 (z) can be calculated by integrating dE (i)
1z (z)

over the volume above the helium surface E (i)
1z (z) =

∫
V1

dE (i)
1z (z) = −2πe[

∫ z
ξ̄

dz′n(z′)−
∫∞
z

dz′n(z′)]. The
calculation of the integral in E (i)

1 (z) requires the application of numerical methods, but considering its
limit cases at z → ξ̄ and z → +∞, can give a simple physical interpretation of E (i)

1 (z). In the first case, we
get E (i)

1z (z = ξ̄) = 2πens. In the second case, E (i)
1z (z → +∞) = −2πens. Thus, the field induced by electrons

on both sides from their location (i.e., in the first case, all electrons are located above the observation
point, in the second — below) is equivalent to the field of a charged plate with the surface charge density
ens. E (e) can be obtained, e.g., as the difference limz→+∞[E1(z) − E (i)

1 (z)] = E (e)
1 = E∞ + 2πens. In

quasi-neutral case at z → +∞, the external pressing field E (e) is compensated by the field of electrons
E (i)

1 (z), so, E∞ = 0, and we obtain the relation coinciding with the result of paper [24]:

E (e)
1 = 2πens. (4.6)

As E1(z > ξ̄) > 0 [see equations (4.2), (4.3)], we have the condition E (e)
1 > 2πens (otherwise,

limz→+∞ E1(z) may be less than zero). Let us remind that for the quasi-neutral case we consider the
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situation where the external clamping field E (e)
1 is compensated by the field of electrons E (i)

1 at a substan-
tial distance from the helium surface.

According to equation (4.3), the expression for χ(z) can be obtained in quadrature and the solution
for the main approximation of equation (2.8) with the boundary conditions of equation (2.9) of the
perturbation theory has the form:

χ∫
χξ

dχ′
[
1 − 25/2Li5/2

(
−e χ

′ ) z2
0

a2
0

(
a0T
πe2

)1/2
]−1/2

=
ξ̄ − z

z0
, ϕ̄2 (z) = −

E0
ε

(
z − ξ̄

)
+ ϕ0 ,

ϕ̄3 (z) = −
E0
εd
(z + d) +

E0
ε

(
d + ξ̄

)
+ ϕ0 , ϕ̄(e)1 (z) = −E (e)

1
(
z − ξ̄

)
+ ϕ(e)0 ,

ϕ̄(e)2 (z) = −
E (e)

1
ε

(
z − ξ̄

)
+ ϕ(e)0 , ϕ̄(e)3 (z) = −

E (e)
1
εd
(z + d) +

E (e)
1
ε

(
d + ξ̄

)
+ ϕ(e)0 ,

(4.7)

where ϕ̄1(z = ξ̄) ≡ ϕ0 and ϕ̄(e)1 (z = ξ̄) ≡ ϕ
(e)
0 .

Based on equations (2.5), (4.5), (4.7), the surface level subsidence ξ̄ in terms of the problemparameters
has the form:

ξ̄ = −
(4πens)2

8πακ2

[
E (e)

2πens

(
1 +

1
2ε

)
+

1
4ε

]
. (4.8)

As seen from equation (4.8), an increase of the values of E (e) and ns may cause the breaking of the
natural condition: ��ξ̄�� < d. (4.9)

Obviously, the value of lowering of the helium surface level |ξ̄ | leads to the film thickness value d − |ξ̄ |.
Thus, when calculating the equation (4.8), the value of κ(d) should be replaced by κ(d − |ξ̄ |). This takes
into account the effect of lowering of the surface level ξ̄(d, ns, E (e)) correctly, but its obtaining requires
using numerical methods. Numerical estimates of equation (4.8) show that for E (e) = 5000 V/cm,
ns = 5 · 108 cm−2, T = 5 K and d = 0.1 cm condition (4.9) takes place even in the case of strong
inequality |ξ̄ | � d. Taking into account the experimental data of [8–10], where the values of E (e), ns and
T are lower than the above mentioned, and the value of d is higher, the results obtained in the present
paper can be compared with the experimental data using equation (4.8).

In paper [24], the problem of describing the distribution of charges (electrons) above the liquid
dielectric surface in the quasi-neutral case (E (e) = 2πens) was considered. Paper [20] considered a
system of a non-degenerate gas of charges (electrons) above the liquid dielectric surface in the “charged”
case (E (e) > 2πens). The present paper can be considered as a generalization of these two articles [20, 24].
Therefore, the results of these papers can be obtained as the limit cases of equations (4.3), (4.4), (4.7)
and (4.8). In particular, by setting E (e) = 2πens, we can obtain the results of the quasi-neutral problem [24],
e.g., the electric field E1q(z) = T25/4

ea0
(
Ta0
πe2 )

1/4[−Li5/2(−e χ(z))]1/2. In order to carry out the limit case
of a non-degenerate gas of electrons, let us consider the range of T , E (e) and ns values, where the
particle distribution function equation (2.6) is close to Boltzmann’s distribution, i.e., e

ε−ψ
T � 1. This

inequality allows one to obtain the main approximation of an arbitrary order polylogarithmic function
Lis(−e χ(z)) ≈ −e χ [see equation (4.3)] and integrate the first equation in equation (4.7), so χn(z) can
be obtained (“n” subscript marks the non-degeneracy case). Using equations (4.3), (4.4), (4.8), we can
calculate the density nn(z) and electric field E1n(z) distributions as well. Doing this and taking into
account equations (2.6), (4.5) allows one to obtain the non-degeneracy region of the gas of electrons in
{T, E, ns} space:

∆n � 1, ∆n = 21/2
π

3/2nse4E (e)a3/2
0 T−5/2. (4.10)

Using the approximation in equation (4.10), we obtain the expression for the electric field E1n(z) =
E∞

1+X(z)
1−X(z) , where X(z) ≡ E0−E∞

E0+E∞
exp( ξ̄−zz0

), which corresponds to the results of [20]. Considering the
approximation in equation (4.10) in quasi-neutral case (E (e) → 2πens), we obtain the results of [23],
where a non-degenerate gas of charges (electrons) in the quasi-neutral case was considered, i.e., for the
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(a) Quasi-neutral system, E (e) = 2πens (b) Charged system, E (e) > 2πens

Figure 1. E1(z) for different T , ns and E (e) values: ∆n(Tn, E (e)
n = 2πensn, nsn) ≈ 0.05, ∆n(Tn, E (e)

n =

4πensn, nsn) ≈ 0.099, ∆n(Tm, E
(e)
m = 2πensm, nsm) ≈ 0.72, ∆n(Tm, E

(e)
m = 4πensm, nsm) ≈ 1.44.

electric field E1nq(z) =
4πens

1+(z−ξ̄)/(2z0n)
(“nq” index marks such a case). Figure 1 shows the relation between

E1(z), E1q(z), E1n(z) and E1nq(z).
Concluding this section, let us obtain the condition of the semiclassical approximation applicability

considered in the present paper. Let us calculate the mean de Broglie heat wave-length of electrons in the
system as 〈λ〉 having the order of 〈λ〉 ∼ ~ · 〈p2〉−1/2, where 〈p2〉 is the averaged squared momentum (see
below). If the distance between electrons is much smaller than 〈λ〉, the quasi-classical approximation
fails. Assuming that the average distance between electrons near the helium surface is of the order of
(n|z=ξ̄ )

−1/3, we obtain the condition for the quasi-classical approximation applicability:

∆λ = 〈λ〉 ·
(
n|z=ξ̄

)−1/3
, 〈λ〉 ∼ ~ ·

〈
p2〉−1/2

,
〈
p2〉 = ∫

d3r d3p fp (r) p2
/∫

d3r d3p fp (r). (4.11)

Further on, (see table 1), it is shown that the obtained results for the critical parameters of the phase
transition are used in the region of T , E (e) and ns values, where equation (4.11) takes place.

5. Critical parameters of the phase transition in the system to a spa-

tially periodic state

The initial point for the research of the critical parameters of the phase transition is to obtain the
relation between ϕ̃(1)j and the order parameter ξ̃(1). Following the similar procedure from [20, 23, 24],
we can obtain the first harmonics of the Fourier transform of the first approximation of equation (2.8):

∂2ϕ̃
(1)
j

∂z2 − q2
0 ϕ̃
(1)
j = 4πe2 ∂n

∂µ
ϕ̃
(1)
j δj1 ,

∂2ϕ̃
(e)(1)
j

∂z2 = q2
0 ϕ̃
(e)(1)
j , j = 1, 2, 3, δi j =

{
1, i = j
0, i , j . (5.1)

Further on, only some of the solutions ϕ̃(1)j and ϕ̃(e)(1)j for equation (5.1) are needed (see [20, 23, 24] for
the details). Considering the approximation ∆1 � 1, where ∆1 = 4π e2

q2
0
| ∂n∂µ |, the solutions satisfying the
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boundary conditions equation (2.9), have the form:

ϕ̃
(1)
1 = ξ̃

(1)E1 (z)G (q0) , ϕ̃
(1)
2 (z) = ξ̃

(1)E0η (z) F (q0) , ϕ̃
(e)(1)
2 (z) = −ξ̃(1)η (z) E (e)

1 F(e) (q0) ,

η (z) = eq0(z−ξ̄) − Ceq0(ξ̄−z), C =
εd − ε

εd + ε
e−2q0(d+ξ̄), F(e) (q0) =

1 − ε−1

ε (1 + C) + 1 − C
,

G (q0) =
ϕ̄′′1 (1 − C) + (ε − 1) E0q0 (1 + C)

ϕ̄′′1 (1 − C) + E0εq0 (1 + C)
, F (q0) =

ϕ̄′′1
/
ε

ϕ̄′′1 (1 − C) + E0εq0 (1 + C)
.

(5.2)

Substituting equation (5.2) into the first harmonics of the Fourier transform of the first approximation of
equation (2.5) and assuming ξ̃(1) , 0, we have (see [20, 23, 24] for the details):

q0 (C + 1)
[
(1 + ε) E2

0 F (q0) + E (e)
1

2
F(e) (q0)

]
− 4πακ2

[
1 + q2

0κ
−2

(
1 + κ2ξ̄ 2/2

)]
= 0. (5.3)

This equation describes a critical surface in space {T, E (e), ns} as well as the modulus of reciprocal
lattice vector q0 of the periodic structure that appeared. This means that in the most general case, the
phase transition can be considered regarding three critical parameters E (e)

c (T, E (e), ns), Tc(T, E (e), ns) and
nsc(T, E (e), ns). However, the current paper is focused on considering the phase transition occurring at
E (e) > E (e)

c . This option is chosen for the purpose of comparing the obtained results with the experimental
data [8, 9],where the dimple crystals were detected, when the external electric field E (e) exceeded a certain
critical value E (e)

c .
Equation (5.3) is in good agreement with the experimental data [8, 9] (see figure 2 and table 1) as

∆Ec = [E
(e) exp
c − E (e)

c ]/E
(e) exp
c < 0.06, where E (e) exp

c is the experimental value of the clamping field and
E (e)
c is calculated from equation (5.3) using the set of experimental values Texp, nexp

s , q0 = 2π/aexp and
dexp. If nexp

s is not given directly (e.g., [9]), it can be estimated using the number of particles per dimple
Nexp

1 and the distance aexp between the dimples. Assuming the elementary cell of hexagonal lattice to be
a rhombus with aexp side and π/3 internal angle, we have nexp

s ≈ Nexp
1 /(a

exp2 sinπ/3). For both [8, 9]
parameter values ∆1 ∼ 1011, so the approximation used to obtain equation (5.2) is valid. The quasi-
classical approximation is also valid, because the inequality ∆λ � 1 takes place [see equation (4.11) and
table 1].

Expanding the self-consistency equation system in the small perturbations near the phase transition
point up to the next non-vanishing order and calculating its Fourier transform at q = q0, we obtain the

(a) Phase curves for fixed q0 and ns (b) ξ̃ (1) near the critical point E (e)
c for fixed T , ns

Figure 2. (a) — phase curves equation (5.3), (b) — order parameter equation (5.4). Experimental data:
•— [8], �— [9].
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Table 1. Comparison of experimental critical value E (e) exp
c with E (e)c calculated from equation (5.3) using

experimental data [8, 9]. Experimental quantities are marked by “exp” subscript.

Ref. E (e) exp
c , V

cm Texp, K nexp
s , cm−2 Nexp

1 aexp, cm dexp, cm E (e)
c , V

cm ∆Ec ∆λ

[8] 1790 ± 40 4.2 3.73 · 108 107 0.176 > 0.2 1689 0.056 0.094
[9] 2600 2.5 0.92 · 108 5 · 106 0.24 > 0.1 2563 0.014 0.107

expression for the order parameter ξ̃(1):

ξ̃(1) = γ

√
∂n
∂E (e)

[
E (e) − E (e)

c

]
+
∂n
∂T
(T − Tc) +

∂n
∂ns
(ns − nsc), (5.4)

where γ has a rather cumbersome dependence on Tc, nsc, E (e)
c and q0, so we do not present its expression.

Using the experimental data of [9] and fixing T = Tc and ns = nsc, we can see that ξ̃(1) ∼
√

E (e)/E (e)
c − 1

near E (e)
c [see figure 2 (b)]. The first harmonic of the Fourier transform of the density perturbation

n(1) = ∂n
∂ϕ1

ϕ̃
(1)
1 +

∂n
∂ξ ξ̃

(1) is of the form:

n(1) = −T
∂n
∂µ
[1 − G (q0)]

ξ̃(1)

z0
. (5.5)

Numerical estimates show that G(q0) < 1, see equation (5.2), so the density maximum corresponds to
the dimple on the helium surface and vice versa.

6. Conclusion

Thus, in this paper we propose a quantum-statistical theory of equilibrium spatially inhomogeneous
states in the system of electrons above the liquid helium surface in an external constant electric clamping
field. In terms of the built theory, the self-consistency equations (2.5), (2.6), (2.8) describing the system
are obtained. The obtained agreement of the results of the present paper and papers [20, 23, 24] is
demonstrated in figure 1, figure 2 and table 1. Going beyond the Boltzmann statistics, the obtained
self-consistency equations are also used to describe spatially periodic structures formed as a result of the
phase transition near the critical point. The approach also allows one to obtain the phase surface equation
equation (5.3) that relates E (e),T, ns and q0 parameters at the phase transition point. The comparison
between the obtained results and the available experimental data [8, 9] gives a good agreement within the
experimental measurement error (see figure 2). It is shown that the nature of the periodic structures (5.5)
is similar to the experimentally observed one (e.g., [8–10]).

The proposed approach can be improved in two aspects at least. Firstly, it should be generalized to the
case of two reciprocal (or direct) lattice vectors characterizing the periodic structures. As noted above,
in the experiments [31], wavy structures were observed as an intermediate state in the transition from
spatially-homogeneous to “2D” spatially-periodic states. Secondly, quantum effects can be taken into
account, e.g., the exchange interaction. Currently the authors are working on the both issues.
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Про просторово-перiодичне упорядкування у системi

електронiв над поверхнею рiдкого гелiю у зовнiшньому

електричному полi

Д.М. Литвиненко1,2, Ю.В. Слюсаренко1,2, А.I. Кiрдiн1
1 ННЦ ХФТI, вул. Академiчна, 1, 61108 Харкiв, Україна
2 ХНУ iм. В.Н. Каразiна, пл. Свободи, 4, 61108 Харкiв, Україна
Побудовано теорiю рiвноважних станiв електронiв над поверхнею рiдкого гелiю у зовнiшньому прити-
скаючому полi на основi перших принципiв квантової статистики для систем багатьох тотожних Фермi
частинок. В основу пiдходу покладено варiацiйний принцип, модифiкований для розглянутих систем, i
модель Томаса-Фермi. В термiнах розвиненої теорiї отриманi рiвняння самоузгодження, що пов’язують
параметри опису такої системи — потенцiал статичного електричного поля, функцiю розподiлу зарядiв
i профiль поверхнi рiдкого дiелектрика. Цi рiвняння використано для вивчення фазового перетворення
системи до просторово-перiодичних станiв. Як приклад можливостей запропонованого методу, аналiзу-
ються характеристики фазового перетворення системи до просторово-перiодичних станiв жолобкового
типу.
Ключовi слова: електрони, газо-рiдиннi границi, варiацiйний пiдхiд, теорiя збурень, фазовi переходи
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