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Reference system approach of non-relativistic electron fluid theory was adapted for calculation of characteristics
of the electron-nuclear model at the densities typical of degenerate dwarfs. Two- and three correlation functions
of degenerate relativistic electron gas have been calculated in the momentum-frequency representation in the
local field approximation. Main contributions of the Coulomb interactions to the energy and equation of state
of the model at T = 0 K have been calculated in the adiabatic approximation.
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1. Introduction

A hundred years have passed since the discovery of degenerate dwarfs [1]. The theory of an internal
structure of cold dwarfs was developed by Chandrasekhar in 1940s, and it was based on the equation of
state of ideal relativistic electron gas at T = 0 K [2, 3]. Generalization of this theory followed in the next
decades, when in the works of many authors there were investigated effects of such important factors as
axial rotation [4, 5], Coulomb interactions [6], incomplete degeneration of an electron subsystem [7, 8],
effects of magnetic fields [9, 10], effects of general relativity [5, 11], processes of neutronization [12],
etc. Interpretation of the whole diversity of properties of the dwarfs obtained from the observations of
space [13, 14], requires constructing a general theory that also takes into account the effects of the above
mentioned factors, among which there are the competing ones.

The effect of interactions that play an important role in determining the structure of dwarfs at
different masses and luminosities, and especially for the case of massive cold dwarfs, is the least studied.
Basing onWigner-Seitz, Thomas-Fermi approximations and non-relativistic randomphase approximation
corresponding to the approximate accounting of two-particle electron correlations, Salpeter [6] showed
that Coulomb interactions lead to a small decrease of pressure of degenerate relativistic electron gas at
T = 0 K, which is still considered to be the basis of Chandasekhar’s theory [10].

Due to the high density (∼ 105 g/cm3), thematter in the cores of degenerate dwarfs has ametal electron
structure with completely collectivized electrons, and the Fermi momentum is of the order m0c. Thus, the
non-relativistic approach is not applicable, and it complicates the calculations, because the correlation
functions of the reference system (of an interacting relativistic electron gas) are less investigated than
the functions of the analogical non-relativistic model. On the other hand, the electron-nuclear model at
“dwarfs” densities is slightly non-ideal, which allows one to use a random phase approximation in order to
account for the interactions. A consistent approach that corresponds to the modern metals many-electron
theory is proposed in [15]. A disadvantage of this work is the use of approximate expressions for two-
and three particle correlation functions of ideal relativistic degenerate electron gas. In the present work
we use an accurate static two-electron correlation function and a three-particle correlation function in
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the long-wavelength approximation, which improves the reliability of the results for the energy of the
ground state of the model and equation of state.

2. General relations

We consider a more realistic, compared to [15], spatially homogeneous electrically neutral model,
which consists of Ne electrons, N1 nuclei of charge z1 and N2 nuclei of charge z2 in the volume V in
thermodynamic limit Ne, V → ∞, Ne/V = const at the temperatures much lower than the temperature
of the electron subsystem degeneration. Generalization for a larger number of nuclei species is obvious.

For the Hamiltonian of the model

Ĥ = Ĥ0 + V̂ee +

2∑
i=1

V̂ i
en + V̂nn , (2.1)

we use a secondary quantization representation for the electrons and a coordinate one for the nuclear
subsystem:

Ĥ0 =
∑
k,s

Ek a+k,sak,s (2.2)

is the Hamiltonian of free electrons (Ek = [(m0c2)2 + ~2k2c2]1/2 − m0c2),

V̂ee =
1

2V

∑
q,0

Vq Î2(q,−q) (2.3)

is the operator of electron-electron interactions,

V̂ i
en = −

1
V

zi
∑
q,0

Vq S(i)−q ρ̂q (2.4)

is the operator of electron interactions with i-th nuclear subsystem,

V̂nn =
1

2V

∑
q,0

Vq

∑
i, j

zizj
[
S(i)q S(j)−q − Niδi, j

]
(2.5)

is the sum of direct nuclear interactions. Here, Vq = 4πe2/q2, S(i)q =
∑Ni

l=0 exp [i(q,Ri
l)] is the structure

factor of i-th nuclear subsystem,

Î2(q,−q) =
∑
k1,k2

∑
s1,s2

a+k1+q,s1
a+k2−q,s2

ak2,s2 ak1,s1,

ρ̂q =
∑
k,s

a+k+q,sak,s , (2.6)

a+k,s, ak,s are the creation and annihilation operators of electrons in quantum states with the given vector k
and the spin variable s, Ri

l
is the radius-vector of l-th nucleus with the charge zi .

For the calculation of a partition function of an electron subsystem in the fixed nuclei field in the
grand canonical ensemble

Z(µ) = Spe exp

[
−β

(
Ĥ0 − µN̂e + V̂ee +

2∑
i=1

V̂ i
en

)]
, (2.7)

we summarize the reference system approach developed in [16, 17] for a description of non-relativistic
model of electron liquid. In the formula (2.7), Ne is the operator of the number of electrons, µ is the
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variable of chemical potential. As in [16], let us move to the “frequency” representation of electron
operators

ak,s(ν∗) =

β∫
0

ak,s(β
′)ψν∗(β

′)dβ′, (2.8)

where ψν∗(β′) = β−1/2 exp (iν∗β′), ν∗ = (2n + 1)πβ−1, n = 0;±1;±2; . . . . In the “frequency” representa-
tion

exp

[
−β

(
Ĥ0 − µN̂e + V̂ee +

∑
i

V̂ i
en

)]
= exp (−βĤµ)Tβ{Ŝee(ν)Ŝen(ν)}, (2.9)

and Ĥµ = Ĥ0 − µN̂e. The operator Tβ is a generalized ordering operator,

Ŝee(ν) = exp
[
− (2βV)−1

∑
q,0

∑
ν

Vq ρ̂q,ν ρ̂−q,−ν

]
,

Ŝen(ν) = exp
[
V−1

2∑
i=1

zi
∑
q,0

Vq S(i)−q ρ̂q,0

]
,

ρ̂q,ν =
∑
k,s

∑
ν∗

a+k+q,s(ν∗ + ν)ak,s(ν∗), (2.10)

moreover, ν = 2πnβ−1; n = 0,±1,±2, . . . , and the calculation of the average of the product of operators
ak,s(ν∗) is performed according to the rule [18, 19]

−〈Tβ{ak1,s1(ν∗)a
+
k2,s2
(ν′∗)}〉Hµ

= Gk1,s1(ν∗)δν∗,ν′∗δs1,s2δk1,k2 , (2.11)

where Gk,s(ν∗) = (iν∗ − Ek + µ)
−1 exp (iδν∗) is the spectral image of one-electron Green’s function of

an ideal system (δ→ +0), which is the reference system for a description of the interacting electron gas
model.

We use model with the Hamiltonian H0 + V̂ee as a reference system to calculate Z(µ):

Z(µ) = exp [−βΩe(µ)]〈Ŝen(ν)〉e ,

exp [−βΩe(µ)] = exp [−βΩ0(µ)]〈Tβ Ŝee(ν)〉0 ,

〈Ŝen(ν)〉e = 〈Tβ{Ŝee(ν)Ŝen(ν)}〉0[〈Tβ Ŝee(ν)〉0]−1. (2.12)

The symbol 〈Â〉0 denotes a statistical averaging over the states, and 〈Â〉e for the states of the reference
system;

Ω0(µ) = −β
−1

∑
k,s

ln {1 + exp [−β(Ek − µ)]} (2.13)

is the grand potential of an ideal system of electrons, and Ωe(µ) is the grand potential of the interacting
electron gas.

Expanding the operator Ŝen(ν) in the formula (2.12) in a power series, averaging by states for the
reference system and presenting the result in an exponential form, we have obtained contributions to the
grand potential of electron-nuclear interactions

Ωen = −
∑
n>2
(n!Vn)−1

∑
i1,i2,...,in

zi1 zi2 . . . zin
∑

q1,...,qn,0
Vq1Vq2 . . .Vqn S(i1)−q1 S(i2)−q2 . . . S

(in)
−qn

× µ̃n(q1, q2, . . . , qn |0)δq1+...+qn,0 , (2.14)
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where

µ̃n(q1, . . . , qn |0) = β−1〈Tβ{ ρ̂q1,0 ρ̂q2,0 . . . ρ̂qn,0}〉
c
e (2.15)

is a cumulant part of the average of the product of n operators ρ̂q,0. This is a static limit of n-particles
correlation function of the reference system

µ̃n(y1, . . . , yn) = µ̃n(q1, . . . , qn |ν1, . . . , νn) = β
−1〈Tβ{ ρ̂q1,ν1 ρ̂q2,ν2 . . . ρ̂qn,νn }〉

c
e . (2.16)

The functions (2.15), (2.16) are a generalization of “many-tails” of non-relativistic theory of the electron-
ion model of metals [16, 17] and have a well-defined physical meaning. In particular, the functions (2.16)
are a spectral representation of n-particles correlation functions, which are given in the coordinate space.
For example, the binary distribution function of the interacting electron gas F2(r) is associated with the
function µ̃2(q,−q|ν,−ν) of the expression

F2(r) = 1 + [βNe(Ne − 1)]−1
∑
ν

∑
q,0

µ̃2(q,−q|ν,−ν) exp [i(q, r)]. (2.17)

The dynamic correlation functions of n-particles (2.16) are determined by the polarization operators
Mn(y1, . . . , yn) of n-particles [17]

µ2(y,−y) = M2(y,−y)

[
1 +

Vq

V
M2(y,−y)

]−1
,

µn(y1, . . . , yn) = Mn(y1, . . . , yn)

n∏
i=1

[
1 +

Vqi

V
M2(yi,−yi)

]−1
, n > 3. (2.18)

These ratios generalize the well-known random phase approximation, in which M2(y,−y) ⇒ µ̃0
2(y,−y),

Mn(y1, . . . , yn) ⇒ µ̃0
n(y1, . . . , yn), where

µ̃0
n(y1, . . . , yn) = β

−1〈Tβ{ ρ̂q1,ν1 . . . ρ̂qn,νn }〉
c
0 (2.19)

is the spectral image of correlation functions of an ideal electron gas model,

M2(y,−y) = µ̃
0
2(y,−y)

[
1 −

Vq

V
µ̃0

2(y,−y)G(y)
]−1

,

Mn(y1, . . . , yn) = µ̃
0
n(y1, . . . , yn)

n∏
i=1

[
1 −

Vqi

V
µ̃0

2(yi,−yi)G(yi)
]−1

(2.20)

for the n > 3, so the problem of calculating the functions (2.16) is reduced to the calculation of correlation
functions of the ideal relativistic gas model (2.19) and the local field correction function G(y) for the
relativistic interacting electron gas.

3. Correlation functions of ideal degenerate relativistic electron gas

Static and dynamic correlation functions of the non-relativistic ideal electron gas are well known.
The analytical expression for µ̃0

2(y,−y) was obtained in [20]. The function µ̃0
3(q1, q2,−q1 − q2 |0, 0, 0)

and the function µ̃0
4(q1,−q1, q2,−q2 |0, . . . , 0) were calculated in [18, 19, 21]. The dynamic functions

µ̃0
3(y1, y2,−y1−y2) and µ̃0

4(y1,−y1, y2,−y2)were first calculated in [16]. The calculation of these functions
for a relativistic model is a complex problem, because the electron spectrum is not a quadratic function
of the wave vector.
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According to the definition (2.19), the functions µ̃0
n(y1, . . . , yn) are a convolution of one-particle

Green’s functions, the same as in a non-relativistic case:

µ0
2(y,−y) = −

1
β

∑
k,s

∑
ν∗

Gk,s(ν∗)Gk+q,s(ν∗ + ν),

µ0
3(y1, y2, y3) =

2
β

∑
k,s

∑
ν∗

Gk,s(ν∗)Gk+q1,s(ν∗ + ν1)Gk−q2,s(ν∗ − ν2)δq1+q2+q3,0δν1+ν2+ν3,0 ,

µ0
4(y1,−y1, y2,−y2) =

1
β

∑
k,s

∑
ν∗

Gk,s(ν∗)Gk−q1,s(ν∗ − ν1)
∑
σ=±1

Gk−σq2,s(ν∗ − σν2)

× [2Gk,s(ν∗) + Gk+q1+σq2,s(ν∗ + ν1 + σν2)]. (3.1)

Factorizing the products of Green’s functions and using the ratio
1
β

∑
ν∗

Gk,s(ν∗) = nk,s = {1 + exp [β(Ek − µ)]}
−1, (3.2)

we obtain representation functions µ̃0
n(y1, . . . , yn):

µ0
2(y,−y) = −2 Re

∑
k,s

nk,s
iν + Ek − Ek+q

,

µ0
3(y1, y2, y3) = δy1+y2+y3,0[γ3(y1,−y2) + γ3(y2,−y3) + γ3(y3,−y1)],

γ3(y1, y2) = 2 Re
∑
k,s

nk,s(iν1 + Ek − Ek+q1)
−1(iν2 + Ek − Ek+q2)

−1 . . . . (3.3)

3.1. Two-particle correlation function

Rewriting the sum over vector k via integral using a spherical coordinate system and integrating by
the angular variables, we obtain a representation:

µ̃0
2(y,−y) =

3Ne

m0c2x2 J2(q∗, ν̃ |x),

J2(q∗, ν̃ |x) =
1

2xq∗

∑
s

∞∫
0

dk∗k∗nk∗,sA(k∗ |q∗, ν̃),

A(k∗ |q∗, ν̃) =
∑
σ=±1

σ

{[
1 + (k∗ + σq∗)2

]1/2
− ν̃ arctan

[
ν̃ −1ησ(k∗, q∗)

]
+

1
2
(1 + k2

∗ )
1/2 ln [ν̃2 + η2

σ(k∗, q∗)]
}
,

ησ(k∗, q∗) =
[
1 + (k∗ + σq∗)2

]1/2
− (1 + k2

∗ )
1/2. (3.4)

Here, there appear dimensionless variables

k∗ =
x |k|
kF

, q∗ =
x |q|
kF

, ν̃ =
ν

m0c2 , (3.5)

where x = ~kF(m0c)−1 is a relativistic parameter [kF = (3π2Ne/V)1/3 is the Fermi wave number]. In the
static case,

q∗x J2(q∗, 0|x) =
2
9
(R+ − R−)

(
1 +

7
4

x2 −
q2
∗

8

)
+

5q∗x
72
(R+ + R−) +

q∗x
12

R0

+
R3

0
3

ln
���� R+ − R0
R− − R0

���� + q∗
8

(
1 +

q2
∗

6

)
[2 ln |x + R0 | − ln |(R+ + x + q∗)(R− + x − q∗)|]
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+
S3
q

6

(
ln

�����1 + 1
2 q2
∗ +

1
2 xq∗ + SqR+

1 + 1
2 q2
∗ −

1
2 xq∗ + SqR−

����� − ln

�����1 + 1
2 q∗x + SqR0

1 − 1
2 q∗x + SqR0

����� − 2 ln

����� x + 1
2 q∗

x − 1
2 q∗

�����
)
,

R0 = (1 + x2)1/2, Sq =
(
1 +

1
4

q2
∗

)1/2
, R± =

[
1 + (q∗ ± x)2

]1/2
. (3.6)

As in the non-relativistic case, the function J2(q∗, 0) has a weak logarithmic peculiarity of type (x −
1
2 q∗) ln |x − 1

2 q∗ | in the vicinity of q∗ = 2x (|q| = 2kF). In general, the correlation functions of a
relativistic model are similar to the corresponding functions of a non-relativistic model, which is clearly
visible from the asymptotic of the function µ̃0

2(q,−q|0):

µ̃0
2(q,−q|0) ⇒


3Ne(1 + x2)1/2

m0c2x2 + . . . by q→ 0;

2Ne

m0c2q∗
+ . . . by q→∞

(3.7)

in the relativistic case,

µ̃0
2(q,−q|0) ⇒


3Ne
2εF
+ . . . by q→ 0;

2Ne

~2q2/2m0
+ . . . by q→∞

(3.8)

in the non-relativistic approximation (2εF ≡ m0c2x2). A peculiarity of the function µ̃0
2(q,−q|0) is its

strong dependence on the relativistic parameter, as shown in figure 1.
In the dynamic case, the µ̃0

2(y,−y) can be represented as the approximation

µ̃0
2(y,−y) ≈

3Ne

m0c2x2 J̃2(q, v |x),

J̃2(q, v |x) =
1
4

C(q∗ |x)
[
1 − v

(
arctan

1 + q∗/2x
v

− arctan
1 − q∗/2x

v

)

 0
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Figure 1.Dependence of the function J2(q∗, 0|x) on the wave vector q at different values of the relativistic
parameter.
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+
x

2q∗

(
1 −

q2
∗

4x2 + v
2
)

ln
v2 + (1 + q∗/2x)2

v2 + (1 − q∗/2x)2

]
,

v = ν∗(2xq∗)−1C(q∗ |x), C(q∗ |x) = (1 + x2 + q2
∗ )

1/2 + (1 + x2)1/2, (3.9)

that only slightly deviates near the maximum from the numerical result, calculated by formula (3.4). In
the non-relativistic limit and the long-wavelength approximation C(q∗ |x) → 2, v → ν(2εFq/kF)−1, and
the function (3.9) coincides with the known expression for a non-relativistic function µ̃0

2(y,−y) [15].
The expression (3.9) is here only for completeness. We used the result of numerical calculations for
the dynamic function µ̃0

2(y,−y) to obtain the correlation energy of the reference system (the model of
interacting electron gas).

3.2. Three-particle correlation function

The function µ̃0
3(y,−y, 0), which is a partial case of three-particle dynamic functions when q2 = −q1,

ν2 = −ν1, at a full degeneration has an exact analytical image:

µ̃0
3(y,−y, 0) =

3Ne

(m0c2)2q∗x3 (1 + x2)1/2 A(x |q∗, ν̃). (3.10)

In the static limit,

µ̃0
3(q,−q, 0|0) = 3Ne

(m0c2x2)2
J3(q,−q, 0|x),

J3(q,−q, 0|x) = R0
q̃

(
R̃+ − R̃− + R0 ln

���� R̃+ − R0

R̃− − R0

����) ,
R̃± = [1 + x2(1 ± q̃)2]1/2, R0 = (1 + x2)1/2. (3.11)

In the formula (3.11), a “non-relativistic” scale was used for the wave vector (q̃ ≡ |q|/kF). In the
long-wavelength limit,

µ̃0
3(q,−q, 0|0) = 3Ne

(m0c2x2)2
(1 + 2x2). (3.12)

Dependence of the dimensionless factor J3(q,−q, 0|x) on the wave vector and the relativistic parameter
is illustrated in figure 2. As in non-relativistic case, the function (3.11) has a logarithmic peculiarity at
q = 2kF.

The formulae (3.6), (3.9) and (3.11), and figures 1, 2 reveal the general property of correlation
functions µ̃0

n(y1, . . . , yn)—a steep decrease for large wave vectors (|qi | > 2kF), providing a convergence
of integrals in the series (2.14).

In general, for a rough estimation of convergence of series (2.14) we consider a chemically homoge-
neous model (z1 = z2 = z, N1 + N2 = Nn), constraining the integration for each independent vector qi

of the area |qi | < 2kF, neglecting the screening interactions, replacing the product of structural factors
Sq1 Sq2 . . . Sqn with Nn, we replace the functions µ̃0

n(q1, . . . , qn |0) with 3Ne(m0c2x2)1−n(1 + x2)
1
2 (n−1),

which approximately corresponds to the long-wavelength asymptotic. For the magnitude of n-th member
of series (2.14) it can be estimated as

Nem0c2zn−1αn
0 x2−n(1 + x2)

1
2 (n−1), (3.13)

where α0 = e2/~c is the fine structure parameter. Hence, the series (2.14) is an expansion for a dimen-
sionless parameter zα0, which varies from 0.014 (helium dwarf) to 0.19 (iron dwarf). For the typical
dwarfs, mainly consisting of nitrogen and oxygen, zα0 ≈ 0.1. That expansion parameter is a small value,
which makes it possible to restrict the consideration to two- and three-electron correlations (we note,
that correlation energy of the reference system is of the order of α2

0). Moreover, for the three-electron
function µ̃0

3(q1, q2,−q1−q2 |0), there can be used an approximate analytical expression, because the main
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Figure 2. Dependence of the static function J3(q,−q, 0|x) on the wave vector q at different values of the
relativistic parameter.

contributions provide the two-electron correlations, and the contribution of three-electron correlations
play a role of a correction.

The calculation of correlation functions µ̃0
3(y1, y2,−y1 − y2) and µ̃0

4(y1,−y1, y2,−y2) in the static
or dynamic cases in the non-relativistic theory is based on Feynman identity [22], which allows one
to integrate over angular variables of vector k at a fixed configuration of vectors q1 and q2 in terms
of γ3(yi, yj). Unfortunately, this identity cannot be used in the exact calculation due to the complex
dependence of relativistic electron energy on the wave vector.

In order to make an approximate calculation using the identity transformation, we present γ3(qi, qj)

as

γ3(qi, qj) = 2
∑
k,s

nk,s(Ẽk + Ẽk+qi
)(Ẽk + Ẽk+q j

)(~c)−4[2(k, qi) + q2
i ]
−1[2(k, qj) + q2

j ]
−1, (3.14)

where Ẽk = [(m0c2)2 + ~2c2k2]1/2. Then, we use the approximation

Ẽk + Ẽk+qi
⇒ m0c2C(q̃i | k̃), C(q̃i | k̃) = [1 + x2(k̃2 + q̃2

i )]
1/2 + (1 + x2 k̃2)1/2, (3.15)

which is asymptotically correct both at small and at large qi . According to the Feynman identity,

1
[2(k, qi) + q2

i ][2(k, qj) + q2
j ]
=

1∫
0

dz
F2(qi, qj |k)

,

F(qi, qj |k) = Ωi j + 2(k, ρi j), Ωi j ≡ q2
j + z(q2

i − q2
j ); ρi j = zqi + (1 − z)qj . (3.16)

Rewriting the sum over vector k via integral, we use dimensionless variable k̃ = |k|/kF, q̃i = |qi |/kF,
and the spherical coordinate system, the Oz axis of which coincides with the vector ρi j , we perform
integration over the angular variables, reducing γ3(qi, qj) to one-dimensional integral:

γ3(qi, qj) =
3Ne

4(m0c2x2)2

1∫
0

dk C(qi |k)C(qj |k) fi j(k),
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fi j(k) =
1√
−δ(k)

ln

����� Ri j + [−δ(k)]−1/2

Ri j − [−δ(k)]−1/2

����� by k < qR;

fi j(k) =
2√
δ(k)

arctan[δ1/2(k)R−1
i j ] by k > qR. (3.17)

Here, the following notations are introduced:

Ri j ≡ Ri j(k) = 2(qi, qj) −
q2
i q2

j

2k2 ; δ(k) = δi j(k) =

(
1 −

q2
R

k2

)
4q2

i q2
j (1 − t2

i j);

qR = (qi − qj)
2[4(1 − t2

i j)]
−1; (3.18)

δ(k) is the invariant of the problem [δ12(k) = δ23(k) = δ31(k)], qR is the radius of the circle, circumscribing
the triangle constructed on the vectors q1, q2,−q1 − q2; ti j is a cosine of the angle between the vectors
qi, qj . In the formulae (3.17), (3.18), the variables k and qi, qj are dimensionless (in unit kF).

The substitution C(qi |k) → 2(1 + x2k2)1/2 corresponds to long-wavelength approximation, which
allows one to rewrite µ̃0

3(q1, q2, q3 |0) in a compact form:

µ̃0
3(q1, q2, q3 |0) �

3Ne

(m0c2x2)2

1∫
0

dk(1 + x2k2)Φ(k |q1, q2, q3),

Φ(k |q1, q2, q3) =
k

a1(k)
1

q1q2q3
ln

����1 + a1(k)D(k)
1 − a1(k)D(k)

���� by k < qR;

Φ(k |q1, q2, q3) =
2k

a2(k)
1

q1q2q3
arctan[a2(k)D(k)] by k > qR. (3.19)

In this formula,

a1(k) =

(
1 −

k2

q2
R

)1/2

; a2(k) =

(
k2

q2
R
− 1

)1/2

;

D(k) =
q1q2q3

4k3

[
1 −
(q2

1 + q2
2 + q2

3)

8k2

]
1

P(k)
;

P(k) = 1 −
q2

1 + q2
2 + q2

3
4k2 +

q4
1 + q4

2 + q4
3

32k4 +
(q1q2q3)

2

64k6 . (3.20)

Dependence of function µ̃0
3(q1, q2,−q1 − q2 |0)(3Ne)

−1(m0c2x2)2 on wave vectors for different t are
illustrated in figures 3, 4.

3.3. The local field correction function

It is well known from the non-relativistic electron fluid theory [16] that the local field correction
function (LFCF) in the weak non-ideal model is a universal function of the variable y = (q, ν). It does
not depend on any parameters and corresponds to the approximation

Gid(y) = −

∑
y1 Vq1 µ̃

0
4(y,−y, y1,−y1)

2βVq[µ̃
0
2(y,−y)]

2
. (3.21)

We have calculated the LFCF, using the correlation functions of the relativistic ideal electronmodel. Sum-
marizing over the frequencies ν1 and ν∗ (which appears in µ̃0

4(y,−y, y1,−y1) and using the formula (3.2),
we obtain a representation:

Gid(y) = −V−1
q [µ̃

0
2(y,−y)]

−2
∑
s

∑
k1,k2

nk1,snk2,s

[
V(k1 − k2) f −k1,k2

(q, ν) − V(k1 + k2 + q) f +k1,k2
(q, ν)

]
,

f ∓k1,k2
(q, ν) = Re

[
(iν + Ek1 − Ek1+q)

−1 ∓ (±iν + Ek2 − Ek2+q)
−1]2

. (3.22)
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Figure 3. The function J3(q1, q2, t) = µ̃0
3(q1, q2,−q1 − q2)(3Ne)−1(m0c2x2)2 at t = 0 and the relativistic

parameter x = 1.0.
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Figure 4. The function J3(q1, q2, t) = µ̃0
3(q1, q2,−q1−q2)(3Ne)−1(m0c2x2)2 at t = 0.5 and the relativistic

parameter x = 1.0.

The behavior of relativistic LFCF at small and large values of vectorq is the same as that of non-relativistic
case [23]:

Gid(y) ⇒


(q/kF)2

4
+ . . . by ν = 0; q � kF;

3(q/kF)2

20
+ . . . by ν � εF; q � kF;

1
3
+ . . . by q � kF and any ν.

(3.23)

For the numerical calculation at the absolute zero temperature, we have used a cylindrical coordinate
system for the vectors k1, k2 [kj = (zj, ρj, ϕj), k2

j = z2
j + ρ

2
j ], in which (kj, q) = qzj , (k1 − k2)

2 =

ρ2
1 + ρ

2
2 + (z1 − z2)

2 − 2ρ1ρ2 cos (ϕ1 − ϕ2), (k1, k2) = z1z2 + ρ1ρ2 cos (ϕ1 − ϕ2). Integrating over the
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Figure 5.Dependence of theLFCFGid(q, ν) on thewave vectorq at frequency ν = 0.01m0c2x2 (curve 1—
x = 0.05; 2 — x = 0.2; 3 — x = 0.5; 4 — x = 1.0; 5 — x = 2.0; 6 — x = 5.0).

angular variables ϕ1, ϕ2, we reduce Gid(y) to the following 4-dimensional integral:

Gid(q, ν) =
q2x4

8
J−2

2 (qx, ν̃x2 |x)

1∫
−1

dz1

1∫
−1

dz2

√
1−z2

1∫
0

ρ1dρ1

√
1−z2

2∫
0

ρ2dρ2

×

[ f +q,ν(z1, z2, ρ1, ρ2)

W+(z1, z2, ρ1, ρ2)
−

f −q,ν(z1, z2, ρ1, ρ2)

W−(z1, z2, ρ1, ρ2)

]
. (3.24)

Here, the following notations are used:

f ±q,ν(z1, z2, ρ1, ρ2) =

(
η1

η2
1 + ν̄

2
±

η2

η2
2 + ν̄

2

)2

− ν̄2

(
1

η2
1 + ν̄

2
−

1
η2

2 + ν̄
2

)2

,

ηi = [1 + x2(z2
i + ρ

2
i )]

1/2 −
{
1 + x2[ρ2

i + (zi + q)2]
}1/2

,

W+(z1, z2, ρ1, ρ2) =
[
(z1 + z2 + q)4 + (ρ2

1 − ρ
2
2)

2 + 2(ρ2
1 + ρ

2
2)(z1 + z2 + q)2

]1/2
,

W−(z1, z2, ρ1, ρ2) =
[
(z1 − z2)

4 + (ρ2
1 − ρ

2
2)

2 + 2(ρ2
1 + ρ

2
2)(z1 − z2)

2]1/2
. (3.25)

For a comparisonGid(q, ν)with LFCF of non-relativistic theory, there were used the variables q = |q|k−1
F ,

ν̄ = x2ν̃, ν̃ = ν(~2k2
F/m)

−1. In figure 5 there is shown a functionGid(q, ν), calculated by the formula (3.24)
at ν̃ = 0.01, which is very close to the static limit. It is obvious that the asymptotic behavior Gid(q, ν) for
small and large values of the |q| almost does not depend on the relativistic parameter. The deviation of
a relativistic correction from non-relativistic one is significant near its maximum, which monotonously
decreases with an increase of relativistic parameter. Figure 6 illustrates the behavior of Gid(q, ν) at a very
high value of frequency (ν̃ = 0.5). In general, the behavior of the correction corresponds to the one of
non-relativistic theory, and some deviations are caused by frequency renormalization at x > 1.

4. The energy of ground state

As we know from the theory of non-relativistic electron fluid, the transition from thermodynamic
description to the quantum mechanics is performed by the following procedure: instead of the chemical
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Figure 6.Dependence of the LFCFGid(q, ν) on the wave vector q at frequency ν = 0.5m0c2x2 (curve 1—
x = 0.05; 2 — x = 0.2; 3 — x = 0.5; 4 — x = 1.0; 5 — x = 2.0; 6 — x = 5.0).

potential of interacting system µ there should be used a chemical potential of the ideal system µ0, and
in the Ω(µ) there should be considered only the so-called “normal” components, because the chemical
potential shift µ− µ0 is compensated with contributions of the so-called “abnormal” components, which
arise in the correlation functions µ̃0

n(y1, . . . , yn) at n > 4. In the Green’s function approach, this fact was
first discovered in [24] and in the reference system approach — in [17] within the perturbation theory.

Taking into account a weak non-ideal matter of dwarfs, we will consider only two- and three-particle
electron correlations. In this approach, the ground state energy of the model is given as follows:

E ' Ee +
1

2V

∑
q,0

Vq

∑
i, j

zizj
[
S(i)q S(j)−q − Niδi, j

]
−

3∑
n=2
(n!Vn)−1

∑
i1,i2,...,in

zi1 zi2 . . . zin

×
∑

q1,q1,...,qn,0
Vq1 . . .Vqn S(i1)−q1 . . . S

(in)
−qn

δq1+...+qn,0 µ̃n(q1 . . . qn |0). (4.1)

Here, Ee is the ground state energy of the reference system (an interacting relativistic electron gas), which
can be calculated using the expression

Ee = E0 +
1

2βV

∑
q,0

∑
ν

Vq

1∫
0

µ̃λ2 (y,−y)dλ, (4.2)

where µ̃λ2 (y,−y) is the two-particle dynamic correlation function of the auxiliary model of electrons with
the potential of interactions λVq , and E0 is the energy of the ideal electron system

E0 =
∑
k,s

nk,s(µ0)Ek . (4.3)

Extracting from the second term of formula (4.2) the contribution of ideal correlation

EHF = −
1

2βV

∑
q,0

Vq

∑
ν

µ̃0
2(y,−y) = −

1
2V

∑
q,0

∑
k,s

Vq nk+q/2,snk−q/2,s (4.4)

and considering, that Gid(y) does not depend on the “coupling constant” λ, we have represented Ee in a
traditional form

Ee = E0 + EHF + Ec , (4.5)
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where

Ec =
1

2β

∑
q,0

∑
ν

ln[1 + L(y)] − L(y)
1 − Gid(y)

, L(y) =
Vq

V
µ̃0

2(y,−y)[1 − Gid(y)] (4.6)

is the so-called correlation energy (the contribution of non-ideal correlations). In units m0c2 we obtain

Ee = Nem0c2
[
ε0(x) −

3
4π
α0x + α2

0 εc(x)
]
, (4.7)

where

ε0(x) = (2x)−3
{
3x(1 + x2)1/2(1 + 2x2) − 8x3 − 3 ln

[
x + (1 + x2)1/2

]}
(4.8)

is the contribution of an ideal system per one electron, −3α0x(4π)−1 is the contribution of interactions of
the Hartree-Fock approximation, α2

0εc(x) is the correlation contribution. According to our calculations,
the εc(x) can be approximated with the following expression:

εc(x) = −
b0
2

x∫
0

dt
b1a + t1/2

t3/2 + tb1a + b2t1/2a2 + b3a3
1 + a1t + a2t2

1 + td0
,

a = (α0η)
1/2; a1 = 2.25328; a2 = 4.87991; d0 = 0.924022;

b0 = 0.0621814; b1 = 9.81379; b2 = 2.82214; b3 = 0.73701. (4.9)

At a1 = a2 = d0 = 0, the expression matches the approximation for the correlation energy [25], which is
calculated using the Monte-Carlo method [26] εMC

c (x). As we can see in figure 7, in the range x 6 1, the
expression (4.9) is close to εMC

c (x), and the deviation εc(x) from εMC
c (x) in the region x > 1 is caused by

different asymptotics of these functions εc(x) → − b0
2

a2
d0

x + . . . , εMC
c (x) → −

b0
2 ln x + . . . at x � 1.

In order to calculate the contributions of electron-nuclear interactions in the products of structure
factors in the formula (4.1), we have selected one-particle and two-particle sums by the coordinates of
nuclei, and the three-nuclear effective interactions were neglected. In this approach,

E ' Ee + Epol + Econf , (4.10)
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Figure 7. Dependence of functions ε(2)pol(x), 10 · ε(3)pol(x) and εc(x) on the relativistic parameter.
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where Epol is the polarization energy of electron fluid by nuclei, which does not depend on the structure
of the nuclear subsystem,

Epol = E (2)pol + E (3)pol ,

E (2)pol = −
z2

1 N1 + z2
2 N2

2!V2

∑
q

V2
q µ̃2(q,−q|0),

E (3)pol = −
z3

1 N1 + z3
2 N2

3!V3

∑
q1,q2

Vq1Vq2V−q1−q2 µ̃3(q1, q2,−q1 − q2 |0). (4.11)

The configuration energy is determined by the structure of a nuclear subsystem, and expressed through an
effective two-particle potential of interactions of the nuclei, which is formed by two- and three-electron
correlations:

Econf =
∑
i=1,2

z2
i

2!V

∑
q

Vq

[
1 −

Vq

V
µ̃2(q,−q|0) − zi

V2

∑
q1

Vq1V−q−q1 µ̃3(q, q1,−q − q1 |0)
]
S(i)2 (q,−q)

+
z1z2
V

∑
q

Vq

[
1 −

Vq

V
µ̃2(q,−q|0) − z1 + z2

2V2

∑
q1

Vq1V−q−q1 µ̃3(q, q1,−q − q1 |0)
]
S(1)q S(2)−q ,

S(i)2 (q,−q) =
Ni∑

j1,j2=1
exp

[
i(q,Rj1 − Rj2)

]
. (4.12)

4.1. The approximation of two-electron correlations

Let us rewrite the component E (2)pol, calculated in the local field approximation, in the form

E (2)pol = Nem0c2 〈z
2〉

〈z〉
α

3/2
0 ε

(2)
pol(x), (4.13)

where the dimensionless function ε(2)pol(x) is of the same order as εc(x), and 〈zn〉 = (zn1 N1 + zn2 N2)(N1 +

N2)
−1. The function ε(2)pol(x) can be approximated by the following expression:

ε
(2)
pol(x) = −

x∫
0

c0 + c1t + c2t2 + c3t3

1 + d1t + d2t2 + d3t3 dt;

c0 = 4.06151; c1 = 32.6118; c2 = −43.6587; c3 = 104.13;
d1 = 73.8252; d2 = −67.1028; d3 = 189.781. (4.14)

As it is shown in figure 7, ε(2)pol(x) has linear asymptotics at x � 1, as well as εc(x). However, the
polarization energy E (2)pol exceeds the correlation energy of the reference system by about 〈z〉α−1/2

0 ≈ 10〈z〉
times, and for 〈z〉 ∼ 10 it is comparable with EHF.

The configuration energywas calculated in the coordinate representation and, introducing the effective
two-nuclear interactions, yielded

V i1,i2
2

(
R(i1)j1
− R(i2)j2

)
=

1
V

∑
q

V2(q) exp
{
i
[
q,R(i1)j1

− R(i2)j2

]}
,

V2(q) = Vq

[
1 −

Vq

V
µ̃2(q,−q|0)

]
. (4.15)
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In the formula (4.15) the sum of the vector q includes a component with q = 0. Therefore,

E (2)conf =
1
V

∑
q,0

V2(q)

[
1
2

∑
i=1,2

S(i)2 (q,−q)z2
i + z1z2S(1)q S(2)−q

]
=

1
2

∑
i=1,2

z2
i

∑
j1,j2=1

V2
(
R(i)j1 − R(i)j2

)
+ z1z2

N1∑
j1=1

N2∑
j2=1

V2
(
R(1)j1 − R(2)j2

)
−

1
2

N2
e lim

q→0

[
V2(q)

V

]
. (4.16)

To simplify the calculation of the lattice sum, we adopt a simple model of nuclei distribution:

N
(1)
j =

N1
N1 + N2

Nj , N
(2)
j =

N2
N1 + N2

Nj , (4.17)

whereNj is the number of all knots on the j-th coordination sphere, andN (i)j is the number of the knots
occupied by nuclei with charge zi (i = 1, 2). In this model,

E (2)conf =
Ne
2
〈z〉

∑
j>1
NjV2(Rj) −

Nem0c2

6

[
x2

(1 + x2)1/2
−

xα0
π

]
, (4.18)

where Rj is the radius of the j-th coordination sphere.
The effective two-particle potential is screened, and at small and medium distances between nuclei it

is close to the expression

V(R) =
e2

R
exp(−R/R0), (4.19)

and the screening radius

R0 =

√
π

2
α

1/2
0 aB

[
x1/2(1 + x2)1/4

]−1 (4.20)

is of the order 0.1aB (where aB = ~2/m0e2 is the Bohr radius). At large distances, V2(R) oscillates, but
with a small amplitude,

V2(R) ≈
e2

aB

(
R0

2xR

)3
cos(2xR/R0). (4.21)

The configuration energy for a simple cubic lattice of nuclei is calculated numerically and can be
represented as

E (2)conf = Nem0c2〈z〉2/3α0ε
(2)
L (x |〈z〉), (4.22)

with a dimensionless factor approximated by the expression

ε
(2)
L (x |〈z〉) = −

x∫
0

a1 + ta2 + t2a3

1 + ta4 + t2a5 + t3a6
tdt, (4.23)

where all the coefficients a1, . . . , a6 are the functions of 〈z〉, that is

ai(〈z〉) =
ai0 + 〈z〉ai1 + 〈z〉

2ai2
ai3 + 〈z〉ai4 + 〈z〉2ai5

. (4.24)

The cofficients ai j of the formula (4.24) are listed in table 1. In figure 8 there is shown a dependence of
the configuration energy on the relativistic parameter.
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Table 1. Coefficients ai j from (4.24).

i
∖

j 0 1 2 3 4 5
0 −128.112 −138.098 −3.30915 0 3.74936 0.882489
1 −633.899 297.304 −19.5138 1 −0.707632 1.01638
2 −1691 216.967 −8.71667 0 1.48694 0.12998
3 2.37539 1.74513 0.0417739 0 0.0212583 0.0056168
4 913.016 −452.217 30.3618 1 −0.750844 0.702212
5 5.68901 −0.704184 0.0277872 0 0.00203554 0.000234399
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Figure 8.Dependence of the lattice energy ε(2)L (x |〈z〉) on the nuclear charge and the relativistic parameter.

4.2. The effect of three-electron correlations

According to the formula (4.11), the contribution of three-particle correlations is represented as

E (3)pol = Nem0c2 〈z
3〉

〈z〉
α

5/2
0 ε

(3)
pol(x). (4.25)

The result of numerical calculations is illustrated in figure 7, which shows that for x > 1 the ratio
ε
(3)
pol(x) ≈ 0.1ε(2)pol(x) is satisfied. Therefore, at sufficiently large values of nuclei charges, E (3)pol is not less
than the correlation energy of the reference system: at 〈z〉 > 6, the contribution E (3)pol is close to the
correlation energy, at 〈z〉 > 12, it exceeds the correlation energy by 5 times, and at 〈z〉 = 26 — more
than by 20 times. The result of numerical calculation ε(3)pol(x) is approximated by the expression

ε
(3)
pol(x) = −ax − c0

∞∫
x

1 + c1/t + c2t
1 + d1t + d2t2 + d3t3 dt,

a = 0.0450; c0 = 0.12607; c1 = −0.93695; c2 = 78.8552;
d1 = −23.2602; d2 = 114.5030; d3 = 164.060. (4.26)

From the formulae (4.13), (4.25) it follows that E (3)pol/E
(2)
pol ∼ 0.1zα0, it determines the order of three-

electron correlations contribution value.
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Similar to the formula (4.15), we have introduced a correction to the effective two-nuclear potential
by the three-electron correlations

V (3)2 (R) = −V3
∑

q
Vq

∑
q1

Vq1V−q−q1 µ̃3(q, q1,−q − q1 |0) exp[i(q,R)], (4.27)

where the sum over the vector q includes the component q = 0. As shown in figure 9, V (3)2 (R) is a weak
attracting potential of the type of quantum package screening potential, which is close to the expression

V (3)2 (R) = −
e2

R
α2

0 A(x)
{
1 − exp

[
−

R
R0
γ(x)

]}
exp(−R/R0). (4.28)

The functions A(x) and γ(x) are determined as follows:

A(x) =
8 I2(x)
(πx)2

, γ(x) =
α

3/2
0 x1/2(1 + x2)3/4

2
√
π

·
I1(x)
I2(x)

;

I1(x) =

∞∫
0

dq1
ε(q1)

∞∫
0

dq2
ε(q2)

1∫
−1

dt
q2

3ε(q3)
f3(q1, q2, t), I2(x) =

∞∫
0

dq
q2ε2(q)

J3(q);

J3(q) =
(m0c2x2)2

3Ne
µ̃0

3(q,−q, 0|0); f3(q1, q2, t) =
(m0c2x2)2

3Ne(1 + x2)
µ̃0

3(q1, q2,−q1 − q1 |0);

q3 ≡ |q1 + q2 |. (4.29)

The contribution to the configuration energy of the model by the three-particle correlations in the
model (4.17) takes the form, similar to the formula (4.18):

E (3)conf =
1
2

Ne〈z2〉
∑
j>1
NjV

(3)
2 (Rj) +

4
3π2 Neα

2
0 〈z〉m0c2(1 + x2)−1/2I2(x). (4.30)

This contribution is calculated for a simple cubic lattice of nuclei and is represented by

E (3)conf = Nem0c2α2
0 〈z

2〉ε
(3)
L (x |〈z〉). (4.31)
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Figure 10.Dependence of the lattice energy ε(3)L (x |〈z〉) on the nuclear charge and the relativistic parameter.

The dependence of a dimensionless factor ε(3)L (x |〈z〉) is illustrated in figure 10. At sufficiently large
nuclei charges 〈z〉 and x > 2, the function ε(3)L (x |〈z〉) ∼ 0.1ε(2)L (x |〈z〉), but it has a positive sign. It is
approximated by the expression

ε
(3)
L (x |〈z〉) = −

a0(〈z〉) + a1(〈z〉)x + a2(〈z〉)x2

x
. (4.32)

The coefficients of the formula (4.32) are shown in table 2.

Table 2. Coefficients from (4.32).

〈z〉 a0 a1 a2

2 0.160403 0.422066 −0.707095
4 0.118181 0.351743 −0.320001
6 0.0978784 0.321462 −0.203819
8 0.08553532 0.302602 −0.150039
12 0.0701315 0.278365 −0.100583
26 0.04788678 0.236761 −0.0549487

5. The equation of state of the model atT = 0 K
For the well-known dependence of the model energy on the relativistic parameter we calculate the

equation of state of cold degenerate matter using the expression

P(x) =
dE
dV
=

x4

Ne

(m0c
~

)3
(3π2)−1 dE

dx
. (5.1)

Within the accepted approximation

P(x) =
πm4

0c5

3h3 [F (x) + f2(x) + f3(x)]. (5.2)
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Table 3.Dependence of the functions F (x) · x−4, f2(x) · x−4 and f3(x) · x−4 on the relativistic parameter x
according to the formulae (5.2)–(5.4) and (5.5).

x F(x) · x−4 f2(x) · x
−4 f3(x) · x

−4

z = 2 z = 6 z1 = 7; z2 = 8 z = 12 z = 2 z = 6 z1 = 7; z2 = 8 z = 12
0.5 0.737488 −0.025120 −0.0899288 −0.113384 −0.208687 0.00151018 0.00503624 0.00724728 0.0123084
0.6 0.857456 −0.0249008 −0.0898362 −0.113389 −0.209377 0.00144201 0.0045685 0.00653182 0.0107583
0.7 0.966234 −0.0247355 −0.0896437 −0.11323 −0.209566 0.00140653 0.00431288 0.00610532 0.00988929
0.8 1.06412 −0.0246194 −0.0894304 −0.113012 −0.209487 0.00138662 0.00415774 0.00582077 0.00935182
0.9 1.15175 −0.0245407 −0.0892304 −0.112788 −0.20927 0.00137469 0.00405367 0.00561505 0.00899025
1.0 1.22991 −0.0244886 −0.0890553 −0.11258 −0.208989 0.00136685 0.00397618 0.00545736 0.00872662
1.1 1.29949 −0.0244546 −0.0889067 −0.112394 −0.208686 0.00136085 0.00391243 0.00533111 0.00851882
1.2 1.36139 −0.0244329 −0.0887823 −0.112234 −0.208385 0.00135532 0.00385556 0.00522669 0.00834323
1.3 1.41647 −0.0244195 −0.0886788 −0.112096 −0.208099 0.00134944 0.00380207 0.00513813 0.00818666
1.4 1.46551 −0.0244117 −0.0885926 −0.111979 −0.207833 0.00134276 0.0037504 0.00506157 0.008042
1.5 1.50924 −0.0244077 −0.0885206 −0.111878 −0.207591 0.00133514 0.00370008 0.00499435 0.00790579
1.6 1.5483 −0.0244062 −0.0884603 −0.111793 −0.207371 0.00132663 0.00365119 0.00493463 0.00777667
1.7 1.58327 −0.0244065 −0.0884095 −0.111719 −0.207173 0.00131746 0.00360403 0.00488104 0.00765433
1.8 1.61463 −0.024408 −0.0883666 −0.111656 −0.206995 0.00130788 0.00355898 0.00483256 0.00753897
1.9 1.64282 −0.0244103 −0.08833 −0.111602 −0.206836 0.0012982 0.00351632 0.00478842 0.00743084
2.0 1.66822 −0.0244131 −0.0882987 −0.111555 −0.206693 0.00128866 0.00347628 0.00474798 0.00733015
3.0 1.82417 −0.0244459 −0.0881427 −0.111308 −0.205863 0.00122235 0.00321213 0.00447214 0.00668381
4.0 1.89283 −0.0244708 −0.0880955 −0.111226 −0.205545 0.00119715 0.0031007 0.00431866 0.00642247
5.0 1.92833 −0.024488 −0.0880781 −0.111192 −0.205404 0.00118685 0.00304877 0.00422167 0.00630395

Here,

F (x) = x(2x2 − 3)(1 + x2)1/2 + 3 ln [x + (1 + x2)1/2] (5.3)

is the contribution of the ideal degenerate relativistic spatially homogeneous electron gas;

f2(x) = −2α0x4
{

1
π
−

4
3

d
dx

[
〈z〉2/3ε(2)L (x |〈z〉) +

〈z2〉

〈z〉
α

1/2
0 ε

(2)
pol(x) + α0εc(x)

]}
(5.4)

is the contribution of Coulomb interactions in the two-electron correlations approximation;

f3(x) = 8α2
0 x4 d

dx

[
〈z2〉ε

(3)
L (x |〈z〉) +

〈z3〉

〈z〉
α

1/2
0 ε

(3)
pol(x)

]
(5.5)

is the contribution of the three-particle electron correlations.
In the region x > 1, all contributions [with the exception of ε(3)L (x |〈z〉)] to the model energy caused

by interactions are negative monotonously decreasing functions of the relativistic parameter. In the two-
electron correlations approximation, the equation of state (5.2) numerically is very close to the result of
Salpeter [6].

In table 3 there is shown a dependence of terms F (x), f2(x), f3(x) on the relativistic parameter
for the helium (z1 = z2 = 2), carbon (z1 = z2 = 6), nitrogen-oxygen (z1 = 7, z2 = 8; N1 = N2) and
magnesium (z1 = z2 = 12) dwarf models. A relative decrease of pressure caused by the interactions
[F (x) + f2(x) + f3(x)]F −1(x) is illustrated in figure 11.

6. Conclusions

Reference system approach was adapted for the description of a degenerate relativistic electron
subsystem. There were investigated the features of two- and three-particle correlation functions in a wide
domain of a relativistic parameter, as well as there was obtained an exact expression for the static two-
particle correlation function. For the first time, the expressions for the three-particle correlation function
were approximated and the local field correction of interacting relativistic electron gas was studied, which
is the basis for the calculation of the energy and structural characteristics of degenerated dwarfs. The
energy of the ground state of the electron-nuclear model, as well as the equation of state of the model,
have been calculated in a wide range of the relativistic parameter at absolute zero temperature. As it was
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Figure 11. The ratio of pressure P(x) to the pressure of the ideal relativistic electron gas P0(x) as
function of the relativistic parameter and nuclear charge (curve 1 — z1 = z2 = 2, 2 — z1 = z2 = 6,
3 — z1 = 7; z2 = 8; 4 — z1 = z2 = 12).

shown in our calculation, the contributions of Coulomb interactions to the energy of the ground state
and pressure, caused by two-electron correlations are important and increase with an increase of nuclear
charge. The contributions caused by three-electron correlations are much smaller but they exceed the
contribution of correlation energy of the electron fluid, especially at large values of the nuclear charge.
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Базисний пiдхiд в теорiї вироджених карликiв

М.В. Ваврух, Д.В. Дзiковський, Н.Л. Тишко
Львiвський нацiональний унiверситет iменi Iвана Франка, кафедра астрофiзики,
вул. Кирила i Мефодiя, 8, 79005 Львiв, Україна
Базисний пiдхiд нерелятивiстської теорiї електронної рiдини адаптовано до розрахунку характеристик
електрон-ядерної моделi при густинах, що вiдповiдають виродженим карликам. Розраховано дво- та три-
частинковi кореляцiйнi функцiї виродженого релятивiстського електронного газу в iмпульсно-частотному
представленнi у наближеннi локального поля. В адiабатичному наближеннi обчислено основнi внески
кулонiвських взаємодiй в енергiю та рiвняння стану моделi при T = 0 K.
Ключовi слова: електрон-ядерна модель, кореляцiйнi функцiї, поправка на локальне поле, енергiя

моделi при T = 0 K, рiвняння стану
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