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Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-%
anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are fer-
romagnetic (FM) and antiferromagnetic (AFM) in two separate cases. The resulting models separately represent
nearest neighbour (NN) AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been esti-
mated analytically by using both bond operator and Jordan-Wigner representations and numerically by using
exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer
order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the
non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero
for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane
phase is found to exist in most of the anisotropic region similar to the isotropic point.
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1. Introduction

The spin-% Heisenberg chains with an energy gap (spin gap) just above the ground state attract
immense interest since they give rise to many exotic properties in the ground state. The isotropic AFM
and FM spin-% Heisenberg chains are exactly solvable by using the Bethe-Ansatz technique both in the
presence and in the absence of uniform magnetic field in which energy spectrum is gapless below a critical
field [1l]. On the other hand, according to Haldane’s conjecture [2], AFM Heisenberg chain with integer
spin values has a finite spin gap between non-magnetic ground state and the lowest excited state which
is known as the Haldane gap. The Haldane phase can be characterized by the finite value of string order
parameter [3,4]. The existence of this spin gap can be explained from the incongruousness of this system
with the Lieb-Schultz-Mattis (LSM) theorem [5]. According to the modified version of LSM theorem
extended by Affleck and Lieb [6], the SU(2) invariant AFM chains with half-integer spins per unit cell
either have gapless excitations or degenerate ground states in the thermodynamic limit, N — oco. Finally,
it has been extended to more than one dimension and shown to be valid for short range interactions with
global U(1) symmetry and half-integer spin per unit cell [7].

A spin gap in AFM bond alternating spin-% Heisenberg chain was first predicted theoretically in
1962 by Bulaevskii [8]. The nature of triplet excitations at finite temperatures [9] and multimagnon
excitations [10] in bond alternating chain has been studied. Hidden Z, X Z, symmetry breaking along
with the Haldane phase is found by Kohmoto [[11]. Magnetization process in anisotropic bond alternating
chain has been investigated by Totsuka [12]. In the bond alternating spin-% Heisenberg chains, the full
translational symmetry of the lattice is lost since a unit cell contains two lattice sites. These two spin—%
degrees of freedom combine to form either total spin O or 1. This situation does not comply with the
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LSM theorem though the system has global U(1) symmetry. From this point of view, a gap in the
spin excitation may appear in the bond alternating chain. The existence of Haldane gap is found in an
exactly solvable AFM one-dimensional bilinear-biquadratic spin-1 model where the ground state has a
valence bond solid structure in which each integer spin value is described as a symmetric combination
of two half-integer spins forming a singlet state within each pair of adjacent sites [13, [14]. In 1992,
Hida pointed out that isotropic S = % Heisenberg chain with alternating AFM and FM couplings can
be mapped onto the isotropic S = 1 AFM Heisenberg chain when the FM couplings tend to infinity
[15]. Therefore, the existence of Haldane phase can be justified in the S = % Heisenberg chains with
bond alternation. A transition from Haldane phase to gapless phase has been predicted in the presence
of magnetic field [16]. A number of compounds are discovered whose properties can be explained by
invoking either AFM-AFM or AFM-FM types of bond alternating chains. For examples, the compounds
like CuGeOs [17], tetrathiafulvalene (TTF) with bisdithiolene metal complexes [18], TTFCuBDT [19],
MEM-(TCNQ)3 [20] and many others which show spin-Peierls transitions belong to AFM-AFM bond
alternating class. On the other hand, zinc-verdazyl complex [21], @-CuNb,Og [22, 23], NazCu,;SbOg
[24], (CH3),CHNH3CuCl; [25], and DMACuCl; [26] belongs to the S = % AFM-FM bond alternating
class.

In this work, anisotropic bond alternating S = % Heisenberg chains with alternating AFM-AFM and
AFM-FM couplings have been studied separately where the ground state energy, dispersion relations,
ground state orders and the magnitude of spin gap have been obtained for the entire range of anisotropic
parameters. Two different theoretical approaches, say, bond operator and Jordan-Wigner representations
are employed in which the spin model is expressed in terms of bosonic and fermionic operators, respec-
tively. Mean-field analysis on these two approaches gives rise to accurate results of this model in two
different regimes. Ground state energy, dispersion relations, dimer order and spin gap are obtained by
using the bond operator formalism. All those properties in addition to string orders have been separately
estimated by using exact diagonalization method. Coexistence of dimer and string order parameters has
been found. The existence of the spin gap along with the string orders found in most of the anisotropic
region attributes to the Haldane phase. We should like to report that this observation is similar to that
found at the isotropic point of these models as predicted before [15].

The bond alternating spin model is defined by the Hamiltonian

N/2

H= Zl [Jl (SECHSZ' +S, S+ Asii—lséi) +d (Sfisfm +S.S),, + ASZ.S;.H)] . (1.1)

N is the total number of spins which is even. The model has the global U(1) symmetry since the z-
component of the total spin, S, is a good quantum number. The J; bond is always AFM but the J, bond

is considered both AFM and FM, such that —1.0 < j—f < 1.0. A is the anisotropic parameter. For J; = J,
the system remains gapless throughout the anisotropic regime 0 < A < 1, while the spin gap opens up
when J; # J,.

Sectionl contains the results obtained for a four-spin bond alternating plaquette. In sectionsBland @]
investigations based on bond operator and Jordan-Wigner representations are described, respectively. The
spin model is studied numerically by using Lanczos exact diagonalization technique where ground state
energy and spin gap are obtained and reported in section [3l Values of several ground state orders have
been estimated and described in section[l Section [7] contains a discussion of the results obtained.

2. Four-site bond alternating anisotropic Heisenberg plaquette

Before the beginning of an extensive many-particle formalism, let us explain the results of a four-spin
(N = 4) bond alternating S = % anisotropic Heisenberg plaquette. Here, the stronger AFM bonds (J;)
are assumed between the site-pairs (1, 2) and (3, 4), while the FM or weaker AFM bonds (J,) are acting
between the site-pairs (2,3) and (4, 1). The Hamiltonian has been diagonalised in different S} sectors
for obtaining analytic expressions of eigenvalues and eigenfunctions. Eigenvalues (€;) are displayed
in table [l Ground state lies in S\ = 0 sector having energy €. The ground state wave function is

given by Wo = —L— (1 + Xyo + Yys), where g1 = (UL + LD, vo = H(QUIL + L1UD),
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Table 1. Eigenvalues in all S subspaces, where a = %[(A2 + 3)(\]12 + J22) — 1 HA22 b = —% A
and ¢ = arccos[30/(ap)]. q = ey(esey + J7 — I3) — 53[2€2 + 9(eZ + 7 + I2)] and p = —[(A? +3)(I? +
1) - 31 1A%

‘ S ‘ Eigenvalues ‘ S ‘ Eigenvalues
e =LA & =120
e =252 A L-1 | &= =42
0 | g=-2224 g =10
e2:acos§+b %:—Jl;zjz
e = acos ¢+34n +b|2-21|ep= # A
€ = acos ¢+32n +b

ept+es”

W3 = %(Tl“ + 1T, X = eoj;zm and Y = X—2_. Dimer order parameter is defined by the ground state
expectation value [27],

1 -2X =Y2+2XY

OD = <lP()|S . S+] - S+1 ' S+2|\P0> = 2(] + XZ +Y2)

When J; = J, the ground state energy, € = —%(A + V8 + A?%), and Op = O since Y = 1. On the FM
region, when J, = —J;, & = —J; V2 + A2, Op = (1 -2x—x2/2)/[2(1 + x?/2)], where X = (A+ V2 + A2).
When A = 1, ground state energy, € = —%[Jl + X+ \/(Jl + 1)? +3(J; — %)?] and ground state wave

function, ¥y = ﬁ (c[14][32] + d[12][34]), where, C = eoj—2e7’ d= eoj+le7 and the singlet, [i]] is
defined as

. 1
= 1L
I )

5

However, when A = 0, ground state energy, & = —,/le + JZZ, and this is the same for both AFM and

0 0
FM J, and ground state, ¥y = \/%(Z—é[m][?)ﬂ + %[]21[34] - eof/;:;h Yn). Variations of Op are
¢ T, 0

shown in figure [ in the green dotted lines and triangles. Op vanishes exactly over the line J,/J; = 1.0
and otherwise non-zero. It is observed that Op calculated in this four-spin bond alternating plaquette,
captures the true many-particle results closely.

3. Bond operator representation

In the bond operator formalism [28], two spin—% operators, say, 5 and S. around every AFM bond
having exchange strength J; are expressed in terms of a singlet state |s) and three triplet states |t,), |t,),
and |t,) around the same bond. The singlet (S") and triplet (tl, @ = X, y, Z) operators which create these
states out of the vacuum state |0), are

|s) = s'10) = % (T =1,

+ 1
=ti0) = —— -
Ite) = 1;10) \/§(| m =1L,
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Figure 1. (Color online) Plots of dimer order as a function of J,/J; for A = 0.0, 0.3, 0.7, 1.0. Blue
(solid line, circle), red (dashed line, square) and green (dotted line, triangle) correspond to the exact
diagonalization, bond operator and N = 4 plaquette results, respectively. Bond operator lines terminate
at those points where the convergence of self-consistent equations is not attained.

It,) = t5]0) = @ (1) +1 L)),

10y =
It) = 10) = N T +14M).

Only the singlet state changes sign upon interchanging the two spins in each bond. The components of
spin operators, § and S. can be expressed in terms of these singlet and triplet operators as

1 .
§ =5 (ste +th s—ieus 1),
1 3 . ) .
SI:E(—Srta—t(‘lS—leaﬁyt[gty), G.1)
where «, § and y represent the X, y and Z components and the Levi-Civitd symbol, €., represents the

totally anti-symmetric tensor. Summation over the repeated @, S and 7y indices is henceforth assumed
except stated otherwise. By considering the bosonic commutation relations, like

[sST=1  [teti]=0es, [St]=0,

on a particular bond, one can reproduce the S = %, SU(2) commutation relations on a specific site,
[SY, =i €apy . Similarly, by imposing the constraint, or the completeness relation,

s s+tity =1, (3.2)
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on each bond, the value of spin in each site, say, 812 = S,2 = % is retained. Likewise, the anisotropic AFM
bond can be expressed as

S-S +S,,S; +AS, S, = E 5,T sj+E/ t;z .+ B tja/ as

where | represents the bond between the adjacent sites 2i — 1 and 2i, @ = X, y, E; = —(% + %) is the
singlet while Ef = (—% + %) along with the doubly degenerate E* = % are the triplet eigenvalues of the
anisotropic bond. Substituting the operator representation of spins defined in equation (3.1)) into the bond

alternating Hamiltonian of equation (IT)) we have the form:
H=Hy+H; +H,,
HO = Z [Jl (Es S}‘ SI + EtZ tj‘Z tjz + Etat}-atla/) - u (Sj]- SI +t1]-Z tjz +t1ra,t1a/ - 1)] ,
J

5 i 1 toot t gt t t
Hi= =2 3 (Ssatiatl 1 + 551t o + U Gativie — U b 2atl, , + he),

jz j+lz © jxj+lx

7
b, = _2A t t t ot byt t t
2 _TZ Stsjatietl, Sttt Gty -t Gt +he), (33)
7

where the summation j runs over N/2 number of bonds. The portion of the Hamiltonian containing
triple-t operators vanishes due to reflection symmetry [28]. Exploiting the translational invariance of the
model, a site-independent parameter u is introduced to take the constraint, equation into care. Here,
condensation of singlet boson is imposed, which means (s;) = S. Parts of the Hamiltonian, H; and H,,
those containing quartic t operators are treated by using mean-field decoupling scheme. Four mean-field
parameters (real) are

P, = <tjztj+lz>s Py = <tjati+1a>s Q; = <tjztj+lz> and Qo = <tjatj+1a>' (3.4)

Summation convention over a while defining P, and Q,, is not applied. By performing Fourier transform

of the operators t; = / % Sk tr €79, where ais the lattice constant, the approximated Hamiltonian can
be written as

Hy=Eo+ )| [Akztgztkz # Akat] tea + Az (tiataz +0e) + Ak (Gkat o + h.c.)] . (35
k

where
o= - [3 (3 +3) < u|o v 2| -rps (iR
Ao =y (-% - %) - % (A8 - 2P, ) cos(kay
Ao = JI% . % (32 _p, —AP(,) cos(ka),
A, = —% (A§2 + 2Q(,) cos(ka),  Axg = —% (32 +Q, + AQ(,) cos(ka).

The Hamiltonian, Hy; can be easily diagonalized by introducing the four-component vector ¥, =

(tZZ tlza t_x . t_k o) Thus, Hy can be expressed as

1 .
Hwi = Bo =5 ) (Akz + 2 Aka) + ) W] Hic Wi,
k k

A B 1 A, 0
H — = — B = .
k (Bk ) Ay 3 , % ( 0 Aka)

Ak, 0
0 Aka
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In terms of bosonic operators, Bogoliubov transformation means diagonalization of the matrix |5 Hy,

where
| 1
IB = 0 s and | = 0 .
0o -l 0 1

The positive eigenvalues of the matrix, |pHy are %wkz and %wka, where wy, = , /Aiz - 4AiZ and

Wka = A /Aia - 4Aia. In terms of a new four-component vector (D;; = ()/lZ yZa Y—kz Y-k a)> Hy looks

1 1

Hy = Eo - 5 k (Akz+2Aka)+§zkld>£H,§’ch,

Qr 0 0
HE=[0F O = T =T,

0 Q 0 Wk o

Uk Uk 1 1+2’;z 0 1 —1+2§2 0
Tk = U, = — < s Vg = — n

e VIV 0 e g 2\ o -1+ B
Hy can further be expressed as

1
Hy = Eo - 5 ;(Akz + 2o — Wk z — 2wka) + ; (0 Vi vk * Oka Y yka) - GO

Therefore, it turns out that wy , and wy o are like the non-degenerate longitudinal and doubly-degenerate
transverse branches of triplet dispersion relations, respectively. When A = 1, the two branches merge to
each other leading to a triply-degenerate single triplet branch. The parameters y, S, P,, P,, Q, and Q,,
are determined by solving the six saddle-point equations:
oH
. {220

oHm\ o [9Hm\ _, [d9Hm)\_ . [dHu| ., [9Hwm
o [~ \Nas /™" \epr, /=" \oP, /™" \oQ, 9Q,

which lead to the following six self-consistent equations at T = 0 K.

o= ;_lil (A 2AkZ)k_ZAkZ 2 2Akz)k_aAka +A+ 2) cos(ka) - J; (% N %)
-3 N Z (Se 2 2be).
P, = % Zk: ( - 1) cos(ka),
Po = % ; (A— 1) cos(ka),
%Zk: . < cos(kay,
% Zk: < cos(ka). 3.7)

For fixed values of J;, J, and A, the six self-consistent solutions are obtained from equations (3.7) and
are employed to determine the dispersion relations, ground state energy, spin gap and dimer order. For
J, = 0, values of the parameters, P,, P,, Q, and Q, must be zero, and they are non-zero when J, # 0.
The solutions for y are always negative while those for & are always positive. These six self-consistent
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equations are found to converge in most of the anisotropic parameter regions except the regime where
spin gap is vanishingly small which occurs when J; ~ J, and A ~ 0. So, the values of ground state
energy, spin gap and dimer order in this regime are not plotted in the respective figures in subsequent
sections. The ground state energy per site (Eg) is given by the following expression,
Eo 1
EG = W — m;(l\kz +2Aka, — Wk 7 —2(1)](0).
For J; = J and A = 1, Eg = —-0.45130123J;, which is only 0.18% lower than the exact Bethe-Ansatz
result, i.e., (0.25-1n2)J; = —0.44314718J;. The values of Eg are very close to the exact diagonalization
results in the entire parameter regime except the point A = 0 and those are shown in figure 21
The expression of ground state dimer order looks like

1 A CAAY. Ao Xeg —4AraY,
<OD>=DO__Z Xeo 42Xy + kz Xk z kzYe o AeaXe K ’
2 T wkz Wk
3 1/, )
DO—_ZSZ+PzPa_QzQa+§(Pa_Qa)s

iz = 4_1; [1+2(5 - 2P,) cos(ka)], Xea = 4_1; [1+2(5 = P, — Py)cos(ka)],
1/ 1.
o= (F42Q), Yo= 7 (f4Q Q).

The values of this Op along with plaquette and exact diagonalization results are shown in figure[Il Bond
operator results are discontinued at those points where convergence fails to be attained.
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Figure 2. (Color online) Plots of ground state energy per site as a function of J,/J; for A = 0.0, 0.3,
0.7, 1.0. Blue (solid line, circle) corresponds to the exact diagonalization data. Red (dashed line, square)
corresponds to the bond operator result. Different Jordan-Wigner based mean-field results: UAFM (dark-
cyan, dashed-dot line, pentagon), homogeneous (black, dashed-dot line, diamond), SAFM (green, dashed
line, triangle) and dimer (purple, dotted line, inverted triangle). Bond operator lines terminate at those
points where the convergence of self-consistent equations is not attained.
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The dispersion relations, wy , and wy o arising from the excitations of spin-triplet states are shown
in figure[3l J, = 0 is a dispersionless point, where both wy , and wg, are flat since energy propagation
is impossible in the absence of inter-bond interaction J,. This particular point is not shown in figure 3
For A = 0, wy ., is almost flat with small curvature, concave down for AFM J, while concave up for
FM J,, whereas, wg o has the maximum curvature. wy , will be perfect dispersionless if the part of the
Hamiltonian [equation (3.3)] containing four-t operators is neglected. It is interesting to note that even
though A = 0, wg, is non-zero. So, it establishes the fact that the existence of longitudinal mode is
quantum mechanically possible in the absence of the longitudinal part of the Hamiltonian. These modes
hardly participate in energy propagation. However, in general, both wy , and wy, are concave up for
AFM J, and concave down for FM J,. Bandwidth for wy , (wk o) increases (decreases) with increasing
A for fixed value of J,. On the other hand, bandwidths for wy , as well as wy o increase with increasing
value of both AFM and FM J, for fixed value of A. However, for a fixed value of AFM J,, bandwidths

0.5 = _05 | B 05 T =205 JAz f(;(;SS
A =0.00 A=0.25 A=0.50 -

T : J=0.5 A=0.50 Jy=0.5 A=0.75

=
[SIE]
~
= <r
(SE]
a
|
B
~ O
(STE]

Figure 3. (Color online) Dispersion relations (in unit of J;) with respect to K. wy , and wy, o are in red
(solid) and blue (dashed) lines, respectively.

0.5 T T
2 04 i B
s s
LI? VL :
03 b & A=00 4
/‘ Diagonalization —e—
'/ ; Bond Operator -——-®---
0.2 [ B
4 I I I I I
-0.4 -0.2 0.0 0.2 0.4
h/h
T T T T T
0.8 |- = — :
= \ = 09| | —
~ 2 ~ LR
o ALY [=9) ‘m :
5 ‘. s “a
Wgoor A ‘ SN I { . ‘ ‘ .
o ¥ | | | LN 0.8 AT
" ' ' i\ | ' ' '
'l CA=07 | | A=1.0
0.6 fe" i K] i i i i ;
i i 0.7 o R
i i i i i i i i i i
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
h/d h/d

Figure 4. (Color online) Plots of Egy,p,/J; with respect to Jp/Jy. Blue (solid line, circle) and red (dashed
line, square) correspond to the exact diagonalization and bond operator results, respectively.
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for wy ; and wy o are separately the same to them for that value of FM J, for a definite value of A. The
minima of triplet dispersion relations, wy , and wy, are found at K = 0 when J, > O and at k = =
when J, < 0 as far as |J| < Jj. So, the value of spin gap can be estimated by using the relations,
EGap = min[wy (K = 0), wgo(k=0)] when B, > 0 and Eg,p = min[wi (K = ), wg o (K = 7)] when
J < 0. Since wio < wg; for any value of the wave vector, K, in the anisotropic parameter regime
0 <A <1, Egap = wro(k =0) for AFM J, and Eg,p = wi o (k = m) for FM J,. Figure[3]shows that the
value of Egyp increases with the increase of A in every case. Variation of Egyp with J/J; is shown in
figureElalong with the exact diagonalization results. Egyp is found to decrease in the absence of the part
of equation (3.3) containing four-t operators terms.

4. Jordan-Wigner representation

This model is exactly solvable in terms of Fermi gas of spinless fermions for A = 0 by using the
Jordan-Wigner transformation [[29]

S = e Zim Ay
i 9
S = e im 2;-_:11 Aj G,
1
S,z =N; - E )

where C; and Cj are the spinless fermion annihilation and creation operators, respectively. N; = Cj C; is the
usual fermion number operator. This bond alternating system has a translational symmetry of two lattice
units and so it becomes useful to introduce two types of spinless fermions defined on odd and even lattice
sites by relabeling them as: ¢; = &; for odd sites and ¢; = b; for even sites. As a result, the Hamiltonian
becomes

Ji (o § ta L) [ 1
> (al. b + bl.+1a,~) + JA (al.ai -3 b, b1 — 3

b . . 10 (. 1
+ [5 (b;_lai_'_z + al.‘+2bi+2) + bhA (b;_]bi#—l - E) (al.‘+2ai+2 - E)} . 4.1
i=1,3,5,...

For A # 0, four-operator terms can be treated by the mean-field analysis. By allowing contractions of
types, say, C, = (a;." b;;1) and C, = <b-l!-a,'+1>, the mean-field Hamiltonian in momentum space reads as

L) [Ceajbe + bl + h(ala ~ by )| + 20 + By + 52 (3G + HIC, P @2)

where G = (& — 3 AC,)e @ + (£ — 3, AC,) e and h = 5(J; — J). In this fermionic description,
h acts as a chemical potential whose value is the same for every particle but opposite in sign for two
different kinds of particles, say, positive for a and negative for b. In other words, h acts as a staggered
field giving rise to a periodic potential experienced by the particles with the periodicity of two lattice
units. As a result, Brillouin zone shrinks to its half yielding a spin gap in its boundary. On the other hand,
h vanishes for the uniform bond strength, i.e., when J; = J, and so the spin gap.

By using the fermionic Bogoliubov transformation

ar = Ug ax + vr Bk, bk=—UZak+UZﬁk,

where u; = r el% v, = r’el% and e?% = C; /|Cy|, the diagonalized mean-field Hamiltonian looks like

NA NA
Hye = Y E(K) (afar = BlB) + == Qi+ 3+ — (UICL + 2IGE).  @43)
k

where E(K) = y/h? + |Cy|2.

23701-9



S. Paul, A.K. Ghosh

By allowing contractions of other possible ways, say, D, = (ajal- - %) and Dy, = (b'l!'+1b,~+1 - %), the
mean-field Hamiltonian in momentum space becomes

Hyvr = Z [Dk a}‘;bk + Dy b}zak + A+ D) (Db a}‘;ak + D, b']‘;bk)]
k
_ %A(\]l +3)(Dy + Dy +2D,Dp), 4.4)

where Dy = % (J1 e ka4 3, eik“). By performing the same Bogoliubov transformation, diagonalized
Hamiltonian reads as

Hur = Y w(K) (a/la'k - ﬁlﬁk) - g Dh, 4.5)
k

where w(k) = y/h? + |D|? and h = —A(J; + )D, when D, = -D;, = D.

The mean-field parameters, C,, Cp,, and D will be determined by solving self-consistent equations
defined in the four different phases [30Q].

i) Paramagnetic (homogeneous) phase: when C, = C,, [8],

1 cos?(ka)
Ca=-Yy Zk: E(k)

(31+Jz

3 )(1 —2ACa)} [ns(K) — na(K)] - (4.6)

ii) Staggered AFM (SAFM) phase: when C, = —-C,,

1 sin?(ka)
Ca=y ; E(K)

(Jl - Jz) (1- ZACa)] [ns(K) = Na(K)] - @.7)

iii) Alternating NN hopping (dimer) phase: when C;, =+ and C, =n — 6,

1 cos?(ka)
N —E(K)

(J] +J2

. ) (1 = 24) - 6A(J; - h)] [np(k) = na(K)

1 sin(ka) [(J -3
= — 1 —2An) - 6A(J k) —ny(K)| . 4.
6 NZk] 0 (2)( m) =AM + 3| [n(K) ~ na (k)] 48)
iv) Uniform AFM (UAFM) phase: when D, = —D,,

1 ¢ AL+ D)
l==>) ——= k) —n. (k)| . 4.9
NZk] i 10~ ne(€)] (4.9)
D, vanishes when J; = —J,. Another choice D, = Dy, which corresponds to the uniform FM phase gives

rise to D, = 0. So, this choice does not produce a non-trivial result, and thus deserves no further attention.
Ny (K) = (ai ) and ng(K) = (,BZ By are the fermionic occupation probabilities at temperature T. At zero
temperature, only the negative energy states are filled up, so, N, (k) = 0 and ng(k) = 1. In this situation,
the expressions of Eg can be written down easily for each mean-field case. For example, in the dimer
phase (iii), it is given by

/2
1 A A
EG:_E j Ekdk+§[J1(n+6)2+J2(n—6)2]+§ J+d).

0

For A = 0, ground state energy can be exactly evaluated for any values of both % and temperatures. For
example,at T =0, Eg = —%Jl = —0.31830989J,, when j—f =land A =0.
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This mean-field ground state energy has been improved by considering the second order contribution
attributed to the fluctuations around the mean field. This correction may be evaluated by using the
standard expression at T = 0 [31]],

o Kgl(H = Hyp)l £
AE = ; EE , (4.10)

where |g) = [1x ,B}ZIO) and |f) = a/iﬁqa/;_qIO) are the ground state and the excited states of Hyr,
respectively. The state |f) has two excited particles at wave vectors K; + g and k, — q at the positive
energy branch. Non-zero contributions come from the four-operator terms in equation (4.1)). Numerical
evaluation of equation (£.10) leads to AE = —0.0171J; per site for % =1 and A = 1. The final value of
the ground state energy is Eg(A = 1,J; = J) = —0.4367J,, after the second order correction which is
very close to the exact Bethe-Ansatz result, i.e., —0.4431J;.

The mean-field ground state energies have been plotted along with the exact diagonalization and
bond operator results in the figure 2l Different Jordan-Wigner based mean-field results are UAFM (dark-
cyan, dashed-dot line, pentagon), homogeneous (black, dashed-dot line, diamond), SAFM (green, dashed
line, triangle) and dimer (purple, dotted line, inverted triangle). For A = 0, Jordan-Wigner representation
provides the exact ground state energy and thus it coincides with the exact diagonalization result (figure2)).
However, when A > 0, SAFM and UAFM phases do not at all agree with the exact diagonalization results.
Eg evaluated in the UAFM phase is always higher, while that evaluated in SAFM phase is higher (lower)
when J, is AFM (FM). Dimer and homogeneous phases do agree with the exact diagonalization result
only in the AFM J, region. On the other hand, Eg evaluated in the bond operator formalism mostly
coincides with the exact diagonalization result apart from the point A = 0. For A = 0, Eg derived in this
formalism coincides with the exact diagonalization result around |J,/J;| = 0.

5. Exact diagonalization results

The ground state energy, spin gap and several ground state correlation functions have been obtained
numerically at zero temperature. Ground state energy has been compared with the theoretical results.
The spin gap is defined as the difference between the energies of ground state and the lowest excited state
for a chain of finite number of spins. The Lanczos exact diagonalization technique is the most suitable
algorithm when a few extreme eigenvalues are required. To find the ground state energy, the Hamiltonian
is diagonalized in a subspace where S = 0. The Hilbert space is further reduced by exploiting two
different symmetries of this Hamiltonian. The first one is the translational invariance of two lattice units
while the second one is the spin inversion in every site. Due to the spin inversion symmetry, the energy
eigenvalues satisfy the relation, E(S}) = E(~=S}). The periodic boundary condition is taken into account
in every case. As a result, two different momentum wave vectors, T2 and R are defined to associate the
symmetries of Hamiltonian with the translation of two lattice units and the spin inversion, respectively.
Eventually, including those symmetries in the modified Lanczos algorithm [32], this computational
procedure could find the eigenenergies of the spin chain up to the length (N) of 32 sites. The ground
state is unique and corresponds to the wave vectors T2 = 0 and qR = & modul o (N, 4) for both AFM
and FM J,. The doubly degenerate lowest excited state corresponds to the Sf = +1 and qT2 = 0 but
gR = 0 for AFM J, while qR = % quotient (N, 4) for FM J,. The Hamiltonian, H, [equation (L.1)]
exhibits another useful symmetry in which the unitary operator, U = []; exp(ix] SJZ.) transforms H as

UH(J;, b, AUT = H(=J;, =&, —A). This symmetry transformation leads to the following result: when
A=0,UH(J, 1A= O)UT = —H(J;, %, A = 0). So, energy spectrum of H has the reflection symmetry
around the zero energy. This symmetry is observed in the energy spectrum for A = 0 and is shown in
figure[3l The spectrum for A = 0 is also symmetric around the point J, = 0, although no transformation
is found to justify this symmetry. Obviously those symmetries are lost when A # 0.

The full energy spectra of this model for four different values of A are plotted with respect to J,/J,
and are shown in figure [3] in which the uniqueness of the ground state and finite spin gap has been
observed clearly. For A = 0, the spectrum is symmetric around zero energy, but the spectra move toward
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Figure 5. (Color online) Plot of all energies (in unit of J;) with respect to J,/J; for A = 0.0, A = 0.3,
A =0.7, A =1.0and N = 16. With the increasing A, the width of the energy band increases and moves
toward the low energy side.

low energy side and at the same time symmetry is lost when A # 0. The spectra are found to split into
several bands around J, = 0. The number of bands increases with a decreasing A. The nature of those
energy spectra remains unaltered in the open boundary condition.

To examine the effect of non-uniformity of the alternating bond strength on the spin gap, the modified
Lanczos algorithm is employed designed for finite-size spin chain having integral multiple of 4, N =
16,20, . .., 32. Ground state energy per site as well as spin gap depend on both the chain length (N) and
the relative difference between alternating bond strengths, i.e., § = (J; — J)/J;. The spin gap is defined
as

Ecap(N, A, 6) = Er (N,A, 8, Si = 1) — Egr (N, A6, S5 = 0), (5.1)

where Eg; and Ep are the ground state and the first excited state energies, respectively. For 6 = 0, the
spectrum is gapless for the entire range of 0 < A < 1, for AFM J, whereas, spin gap is found to develop
as soon as ¢ # O for the same range of A and AFM J,. Thus, 6 = 0 serves as the critical point for this
transition. On the other hand, for FM J,, this spin gap is observed for any value of § and A. The spin gap
has been estimated by using several values of ¢ and A within the range 0 < 6 < 0.10and 0 < A < 1.0
for the chain lengths those are integral multiple of 4, i.e., N = 16,20, ..., 32.

To obtain the values of Eg and Eg,p, in large N limit, finite size extrapolatlons have been performed
by using the Vanden-Broeck-Schwartz (VBS) algorithm [.] with aygs = —1 in addition to the Bulirsch-
Stoer (BST) algorithm [@] Comparisons of those estimates with theoretical results reveal that the
VBS algorithm yields more accurate values for both Eg and Eg,p than the BST algorithm. For the
extrapolations, the values of Eg and Eg,,, for chains of five different lengths like N = 16,20, ...,32 are
considered. The extrapolated value of Eg agrees with the exact result up to the sixth decimal positions. For
example, when A = 1 and ¢ = 0, the extrapolated value of ground state energy per site is —0.44314728J,
which is extremely close to the exact Bethe-Ansatz value, —0.44314718J; or thus only 0.0000225% lower
than the exact value. On the other extreme point, i.e., when A = 0 and § = 0, the extrapolated value of Eg
is —0.31830988J; which completely agrees with the exact value —J; /m = —0.31830988J;. Therefore,
it is expected that the accuracy of those numerical estimations is very high. The extrapolated values of
EGap are found by using the VBS algorithm and are plotted in figure (6] (a). This three-dimensional plot

23701-12



Ground state properties of the bond alternating spin-5 anisotropic Heisenberg chain

EGap / J1

J2/ Y

Figure 6. (Color online) Three dimensional plots of Eg,,/J; (a), Op (b), O§ (c) and Og‘ (d) with respect
to both J,/J; and A.

reveals that Eg,, vanishes over the line J,/J; = 1 and on the point, J,/J; = —1, A = 0. Eg,, is found to
increase with the increase of both ¢ and A up to the line J,/J; = 0. However, it again decreases toward
FM region. The magnitude of spin gap is symmetric around J, = 0 for A = 0, due to the symmetry of
energy spectrum.

6. Ground state properties

The results obtained using various methods in the previous sections are summarized here. A compari-
son of values of Eg obtained in exact diagonalization, bond operator formalism and various Jordan-Wigner
based mean-field methods has been displayed in figure 2l It shows that the values of Eg obtained in exact
diagonalization and bond operator based mean-field formalism agree remarkably when A > 0 while
Jordan-Wigner based mean-field methods totally disagree. On the other hand, for A = 0, Jordan-Wigner
based exact result coincides with the exact diagonalization value but the results obtained by bond operator
formalism show a qualitative agreement. Thus, it reveals that these two different analytic formalisms,
bond operator and Jordan-Wigner, predict the true values of Eg in two different regions for these bond
alternating models.

Ground state expectation value of the dimer order, Op, has been evaluated numerically. In this
expression, the stronger AFM bonds (J;) are assumed between the sites i and i + 1 while the FM or
weaker AFM bonds (J,) are acting between the sites i + 1 and i + 2. The variation of Op with respect to
both A and J,/J; has been shown in figure[6l(b). The values of Op obtained by using exact diagonalization,
bond operator formalism and four-spin plaquette have been shown in figure [Tl All the methods show a
good qualitative agreement. However, the bond operator based results do not vanish over the line J; = J,.
The exact diagonalization results quite agree with the DMRG results reported earlier by Watanabe and
Yokoyama for A = 1 [Iﬂ]. Op should vanish over the line J; = J, for an obvious reason but otherwise
non-zero. Op is found to increase steadily in AFM J, region and finally gets saturated in the FM region at
the isotropic point, A = 1. On the other hand, it decreases continuously in the anisotropic region towards
the lower values of A. Variations of Eg,, with J,/J; obtained by exact diagonalization and bond operator
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formalism are shown in figure Ml Exact diagonalization results show that Egap vanishes over the line
Ji = J. Once again, bond operator formalism fails to estimate the value of Eg,,, close to the line J; = J,.
It always predicts a non-zero value of Eg,, over this line for any value of A. In addition, this formalism
underestimates (overestimates) the value of Eg,p in FM (AFM) J, region.

In order to characterize the Haldane phase in S = 1 Heisenberg chain, string correlation functions
O¢(i — |) and string order parameter Og have been introduced by den Nijs and Rommelse [3] and
Tasaki [4] and those are defined as

. . im(S¢  +S¢ ,+...+S¢
05 (i~ ) = ~(g7 ™SS40 g,

0§ = I'Iilm Og (i —j) where a=X%Xy,Z
i=j| oo

Here, S is the a-component of the spin operator § with the unity magnitude at the i-th site. The S= %
bond alternating Heisenberg chain can be mapped onto the isotropic AFM S = 1 Heisenberg chain when
J, — —oo and A = 1 [15]. Hida also pointed out that bond alternating Hamiltonian with anisotropic
(A # 1) J; bond and isotropic (A = 1) J, bond can be mapped onto the anisotropic AFM S = 1 Heisenberg
chain when J, — —oo [35]. In the same way, string correlation functions can be expressed in terms of
S= % operators as [36]

08(i - j) = ~4(S, TS5 #8555 ) S a=Xyz 6.1)

In our model, OF(i - |) = Osy (i — j) due to the U(1) symmetry of the Hamiltonian, equation (LI).
Values of Og (m) for m = 1,2,3,...,8 have been estimated numerically on a chain length of N = 32.
O¢ has been obtained by using the VBS algorithm for extrapolation out of these Og(m) values. For
A = 0, O¢ are symmetric about J, = 0, although this symmetry is lost for A # 0. The value of Og
agrees with the previous estimation for A = 1 [15]. Og = O when A = 1. Variations of Og and Og
have been shown in figure[6l(c) and (d), respectively. A qualitative similarity is found in their behaviours
even in the anisotropic region. Both Og and Of are found to decrease rapidly when J,/J; approaches
1.0, and ultimately vanish exactly over the line J,/J; = 1. Coexistence of dimer order and string orders
are found throughout the anisotropic region in this bond alternating Heisenberg chain barring the point
J/Jdi = -1, A = 0. The spin gap along with the string orders are found to vanish at the point, J,/J; = -1,
A = 0, although the dimer order does not. So, it establishes the fact that the Haldane phase not only
exists in bond alternating Heisenberg chain at the isotropic point, J,/J; # 1, A = 1 as predicted by Hida
[15] but also in most of the anisotropic regions, J,/J; # 1,0 < A < 1. In addition, the only point in
the anisotropic region where the Haldane phase does not survive is J,/J; = —1, A = 0. Therefore, apart
from the FM point J,/J; = —1, A = 0 and AFM line J,/J; = 1, 0 < A < 1, the Haldane phase exists
in the whole parameter regime. It would be worth mentioning that for FM J, and 0 < A < 1, all the
parameters, such as spin gap, dimer and string orders decrease with an increase of |J,/J;| beyond the
value J,/J; = —1. The nature of decay of those parameters (figure [6)) indicates that they all will vanish
at larger values of |J,/J;| in FM J; region. Therefore, this result hints at the collapse of Haldane phase
for larger values of |J,/J;| in the full anisotropic region. Thus, it is expected that either Néel or chiral
ordered phase may appear in the region |J,/J;| > 1, and 0 < A < 1, by replacing the Haldane phase.
However, this case is not considered in this study.

7. Conclusions

In this work, ground state properties, dispersion relations and spin gap of a bond alternating anisotropic
S= % Heisenberg chain have been evaluated for both the AFM-FM and AFM-AFM cases and in the
full anisotropic regime 0 < A < 1. Both analytic (bond operator and Jordan-Wigner formulations)
and numerical methods are employed to study those properties. Bond operator and Jordan-Wigner
formulations provide more accurate results in two different parameter regimes. Ground state energy,
dispersion relations, dimer order and spin gap have been derived by bond operator formalism. Longitudinal
and transverse modes of dispersion relations are found. Longitudinal mode is found to survive even in
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the absence of longitudinal part in the Hamiltonian. For A = 0, the exact value of ground state energy
has been derived by using the Jordan-Wigner representation. Meanwhile, for A # 0, the ground state
energy has been derived by using the Jordan-Wigner based mean-field theory. Those theoretical values
have further been supplemented by the exact diagonalization results and compared to the exact data at
extreme points. Numerical analysis shows that the ground state is non-degenerate (S} = 0), while the first
excited state is doubly degenerate (S} = +1) for both the cases and throughout the regime 0 < A < 1.
Although the ground state remains unique, spin gap is found to develop in the excitation spectrum as
soon as the non-uniformity is introduced in AFM-AFM chain. The spin gap remains non-zero in most
of the AFM-FM region. The non-uniformity of bond strengths in a bond alternating system breaks
the full translational symmetry of the model. The gap attributes to the breaking of this translational
symmetry which ultimately gives rise to the Haldane phase. Spin gap, string orders and dimer order
have been obtained numerically. Spin gap and string orders are found to coexist and non-zero throughout
the parameter regime apart from the point J,/J; = -1, A = 0 and line J,/J; = 1,0 < A < 1. This
phenomenon attributes to the existence of Haldane phase. Thus, the Haldane phase is present in the
whole parameter regime apart from the point J,/J; = —=1, A =0and line J,/J; = 1,0 < A < 1, like the
existence of the same at the isotropic point, J,/J; # 1, A = 1. In other words, the Haldane phase is not
only present at the isotropic point but in most of the anisotropic regime of the bond alternating spin-1/2
Heisenberg chain. However, the nature of decay of the parameters Egap, Op, Og and Oé‘ indicates that
they all will vanish at larger values of |J,/J;| beyond J/J; = —1 in FM J; region for 0 < A < 1, which
hints at the collapse of Haldane phase. For this case, it is expected that either Néel or chiral ordered phase
may appear in that region by replacing the Haldane phase.

7.1. Acknowledgements

AKG acknowledges the BRNS-sanctioned research project, 37(3)/14/16/2015, India.

References

. Griffiths R.B., Phys. Rev., 1964, 133, A768, doi:10.1103/PhysRev.133.A768|

. Haldane F.D.M., Phys. Rev. Lett., 1983, 50, 1153, doi{10.1103/PhysRevLett.50.1153!

. Den Nijs M., Rommelse K., Phys. Rev. B, 1989, 40, 4709, doi:10.1103/PhysRevB.40.4709.

. Tasaki H., Phys. Rev. Lett., 1991, 66, 798, doi:10.1103/PhysRevLett.66.798.

Lieb E., Schultz T., Mattis D., Ann. Phys., 1961, 16, 407, doi:10.1016/0003-4916(61)90115-4/

Affleck I., Lieb E.H., Lett. Math. Phys., 1986, 12, 57, doi:10.1007/BF00400304.

. Hastings M.B., Phys. Rev. B, 2004, 69, 104431, doi{10.1103/PhysRevB.69.104431.

. Bulaevskii L.N., Sov. Phys. JETP, 1963, 17, 684.

. Brooks Harris A., Phys. Rev. B, 1973, 7, 3166, doii10.1103/PhysRevB.7.3166.

. Southern B.W., Martinez Cuéllar J.L., Lavis D.A., Phys. Rev. B, 1998, 58, 9156, doii10.1103/PhysRevB.58.9156.

. Kohmoto M., Tasaki H., Phys. Rev. B, 1992, 46, 3486, doi:10.1103/PhysRevB.46.3486.

. Totsuka K., Phys. Lett. A, 1997, 228, 103, doii10.1016/S0375-9601(97)00087-X.

. Affleck I., Kennedy T., Lieb E.H., Tasaki H., Phys. Rev. Lett., 1987, 59, 799, doi:10.1103/PhysRevLett.59.799.

. Affleck I., Kennedy T., Lieb E.H., Tasaki H., Commun. Math. Phys., 1988, 115, 477, doi{10.1007/BF01218021.

. Hida K., Phys. Rev. B, 1992, 45, 2207, doi;10.1103/PhysRevB.45.2207.

. Sakai T., J. Phys. Soc. Jpn., 1995, 64, 251, doi:10.1143/JPSJ.64.251.

. Hase M., Terasaki I., Uchinokura K., Phys. Rev. Lett., 1993, 70, 3651, doi{10.1103/PhysRevLett.70.3651!

. Jacobs L1.S., Bray J.W., Hart H.R. (Jr.), Interrante L.V., Kasper J.S., Watkins G.D., Prober D.E., Bonner J.C.,

Phys. Rev. B, 1976, 14, 3036, doi:10.1103/PhysRevB.14.3036.

19. Cross M.C., Fisher D.S., Phys. Rev. B, 1979, 19, 402, doi:10.1103/PhysRevB.19.402.

20. Huizinga S., Kommandeur J., Sawatzky G.A., Thole B.T., Kopinga K., de Jonge W.J.M., Roos J., Phys. Rev. B,
1979, 19, 4723, doi{10.1103/PhysRevB.19.4723|

21. Yamaguchi H., Shinpuku Y., Shimokawa T., Iwase K., Ono T., Kono Y., Kittaka S., Sakakibara T., Hosokoshi Y.,
Preprint arXiv:1502.06804v 1, 2015.

22. Watanabe S., Yokoyama H., J. Phys. Soc. Jpn., 1999, 68, 2073, doii10.1143/JPSJ.68.2073.

23. Kodama K., Harashina H., Sasaki H., Kato M., Sato M., Kakurai K., Nishi M., J. Phys. Soc. Jpn., 1999, 68, 237,

doii10.1143/JPSJ.68.237.

0NN AW~

el e e
0NN W= OO

23701-15


https://doi.org/10.1103/PhysRev.133.A768
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevB.40.4709
https://doi.org/10.1103/PhysRevLett.66.798
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/BF00400304
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1103/PhysRevB.7.3166
https://doi.org/10.1103/PhysRevB.58.9156
https://doi.org/10.1103/PhysRevB.46.3486
https://doi.org/10.1016/S0375-9601(97)00087-X
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/BF01218021
https://doi.org/10.1103/PhysRevB.45.2207
https://doi.org/10.1143/JPSJ.64.251
https://doi.org/10.1103/PhysRevLett.70.3651
https://doi.org/10.1103/PhysRevB.14.3036
https://doi.org/10.1103/PhysRevB.19.402
https://doi.org/10.1103/PhysRevB.19.4723
http://arxiv.org/abs/1502.06804v1
https://doi.org/10.1143/JPSJ.68.2073
https://doi.org/10.1143/JPSJ.68.237

S. Paul, A.K. Ghosh

24.
25.

26.

217.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Miura Y., Hirai R., Kobayashi Y., Sato M., J. Phys. Soc. Jpn., 2006, 75, 084707, doi:10.1143/JPSJ.75.084707.
Manaka H., Yamada 1., Honda Z., Katori H.A., Katsumata K., J. Phys. Soc. Jpn., 1998, 67, 3913,
doi:10.1143/JPSJ.67.3913.

Stone M.B., Tian W., Lumsden M.D., Granroth G.E., Mandrus D., Chung J.-H., Harrison N., Nagler S.E., Phys.
Rev. Lett., 2007, 99, 087204, doi:10.1103/PhysRevLett.99.087204.

White S.R., Affleck 1., Phys. Rev. B, 1996, 54, 9862, doi:10.1103/PhysRevB.54.9862,

Sachdev S., Bhatt R.N., Phys. Rev. B, 1990, 41, 9323, doi:10.1103/PhysRevB.41.9323.

Jordan P., Wigner E., Z. Phys., 1928, 47, 631, doii10.1007/BF01331938.

Verkholyak T., Honecker A., Brenig W., Eur. Phys. J. B, 2006, 49, 283, doi:10.1140/epjb/e2006-00077-1.
Wang Y.R., Phys. Rev. B, 1992, 46, 151, doi:10.1103/PhysRevB.46.151.

Grosso G., Martinelli L., Parravicini G.P., Phys. Rev. B, 1995, 51, 13033, doi:10.1103/PhysRevB.51.13033.
Broeck J.-M.V., Schwartz L.W., SIAM J. Math. Anal., 1979, 10, 658, doi:10.1137/0510061.

Bulirsch R., Stoer J., Numer. Math., 1964, 6, 413, doi:10.1007/BF01386092.

Hida K., J. Phys. Soc. Jpn., 1993, 62, 1463, doii10.1143/JPSJ.62.1463.

Hida K., Phys. Rev. B, 1992, 46, 8268, doii10.1103/PhysRevB.46.8268.

BnacTmBoCTi OCHOBHOrO CTaHy cniH-% aHi3oTponHoro
raiseH6epriBCbKOro slaHLoXKa 3 nepeMiHHUMM 3B'A3KaMu

C. No/® AK. Fouf

1 diznunnii dakynbTet, LoTnaHACbKMI LLepKOBHMIA Koneax, Konkata 700006, IHais

2 QisnuHuii dakynbTeT, IxasaBnypcekuii yHiBepcuTeT, Konkata 700032, IHais

JocnigxeHo BNacTMBOCTi OCHOBHOTO CTaHy, AMCMNepCiiiHi CNiBBiAHOLIEHHS i CKeiNiHroBY MoBeAiHKy CMiHOBOI
LLiINHA CI'IiH-% aHi30TPOMNHOrO rarizeH6epriBCcbKOro aHLoXKa 3 NepeMiHH1UMM 3B'a3KamMu, Koav 06MiHHa B3a-
€MOJiA Ha HaBMepeMiHHMX 3B'A3kax € pepomarHiTHoto (FM) i aHTUdepomarHiTHow (AFM) B 4BOX OKpeMux Bu-
nagkax. PesynbTytodi Mmogeni NopisHo NpeacTaBaAoTb NaHLUroXKK 3 cycigHimu (NN) AFM-AFM i AFM-FM HaBsne-
pemMiHHUMM 3B'a3KaMu. EHeprito 0CHOBHOIO CTaHy OLIHEHO aHalliTUYHO 3a JOMOMOroK NpeAcTaB/IeHHs orepa-
Topa 3B'A3Ky Tak i npeAcTaBneHHs [xopjaHa-BirHepa, a Takox YncenbHo, BUKOPUCTOBYHOUMN TOYHY AiaroHani-
3auito. OTpMMaHo AncnepciliHi CNiBBIAHOLLIEHHS, CMIHOBY LUiNVHY i AeKinbka TMNiB BNOPSAKYBaHHS OCHOBHOIO
CTaHy. 3HaliileHo, L0 AMMepHe BMNOPAAKYBaHHA i CTPiYKOBi BMNOPSAKYBaHHS CMiBICHYOTb B OCHOBHOMY CTaHi.
3HaipeHo, WO CNiHOBA LLiNVHA NOSBNSETLCA AK Ti/IbKWM BBOANTLCA HEOAHOPIAHICTb CUAN HaBNepeMiHHMX 3B'A3-
KiB B AFM-AFM faHLIIOXKY, fKa AaNi 3aN1LLIAETLCA HEeHYNbOoBOK Anst AFM-FM naHutoxka. L cniHoBa WwinvHa
B3/J0BX CTPiYKOBUX BMNOPSiAKYBaHb € XxapakTepHO 03Hakow ¢asm langeiiHa. 3HalgeHo, wo ¢asa MangeliHa
iCHY€E B 6inbLLOCTi aHi30TPOMHOI 06/1aCTi NOAIGHO A0 I30TPOMHOT TOUKN.

KntouoBi cnoBa: HaBnepemiHHI 38’A3ku, CIHOBA LYi/IMHE, 0N1epaTop 3B'A3Ky, CTPIYKOBI BOPAAKYBaHHS,
AvMepHe BrOpsAKYBaHHS, CKeViIIHroBui 3akoH
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