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We studied the properties of a single impurity atom immersed in a dilute Bose condensate at low temperatures.
In particular, we perturbatively obtained the momentum dependence of the impurity spectrum and damping.
By means of the Brillouin-Wigner perturbation theory we also calculated the self-energy both for attractive and
repulsive polaron in the long-wavelength limit. The stability problem of the impurity atom in a weakly-interacting
Bose gas is also examined.
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1. Introduction

When an impurity atom is immersed in a dilute Bose gas, impurity-boson interactions are expected
to dress the impurity into a quasiparticle, namely a Bose polaron. Methods for obtaining the dynamical
properties of such a quasiparticle are the subject of research in many papers.
Investigation ofmoving impurities in Bose systemswasmotivated by the progress in the experimental

research, where charged or localized impurities in a Bose-Einstein condensate [1] and impurities inter-
acting with uncondensed bosonic medium [2] were obtained. In recent work [3], the lifetime of a Bose
polaron in the ultracold 87Rb Bose gas in a strongly interacting regime was experimentally estimated. In
[4], the dependence of the energy of impurity atom which is moving in a Bose-Einstein condensate on the
variation of the interaction between the impurity atom and the bosonic system is measured.
A lot of theoretical works, where the properties of a Bose polaron are investigated by variousmethods,

have been published in recent years. Namely, attractive and repulsive interaction between the impurity
atom and the environment is considered. In particular, the self-localised impurity states are studied in a
one-dimensional [5] and in a dilute three-dimensional Bose-Einstein condensate [6] in a strong coupling
regime. The strongly interacting Bose polaron is also investigated in [7]. By means of the self-consistent T-
matrix approach, the authors calculated the impurity spectral function, the effective mass, the quasipar-
ticle energy of the attractive and repulsive Bose polarons. Qualitatively, the same results were obtained
in [8] with the help of variational methods. Particularly, the parameters of the spectrum of the impurity
atom immersed in the non-interacting BEC and in a Bose gas with weak repulsive interaction between
particles were found. The systematic diagrammatic techniques applied in [9] to the polaron problem re-
vealed a similarity between the structure of polaron energy and the energy of weakly-interacting Bose
gas. In the paper [10], the dynamics of ultracold Bose polaron was analyzed and smooth transition from
the attractive polaron to a molecular state near the Feshbach resonance was explained. The quantum
Monte Carlo method was used in [11, 12] to study the dependence of the Bose polaron energy on the gas
parameter at different mass ratios of the impurity atom and Bose particle. In the work [13], the impurity
self-energy and the spectral function for 6Li–133Cs systemwas determined by the diagrammatic approach
considering that the impurity can form a sequence of the Efimov bound states with two bosons. In [14],
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using the Lee-Low-Pines transformation, the absorption spectra of impurity with two or more internal
hyperfine states is calculated.
In this paper, we consider the behavior of the impurity atom in a weakly-interacting Bose gas. We

focus our attention on finding the impurity spectrum in the Bogoliubov approach. We have found the
correction to the impurity spectrumwithin the standard perturbation theory, assuming that the Bose par-
ticles are hard spheres (see section 3). The most interesting results for the self-energy and the effective
mass of the attractive and repulsive polarons were obtained within the Brillouin-Wigner perturbation
theory. We have also showed that the spectrum of an impurity is damped in the case of a positive value
of the Bose polaron energy and calculated the dependence of the damping in the limit of the Rayleigh-
Schrödinger perturbation theory on the velocity of the impurity atom (see section 3.1). Considering vari-
ous values for the interaction between bosons and the impurity, as well as the gas parameter values, we
were able to find the region of applicability for our approach.

2. Problem statement

The system N of interacting Bose particles which also interacts with the impurity atom can be de-
scribed by the Hamiltonian:

Ĥ = ĤI+ ĤL+ Ĥint. (2.1)
Here, ĤI is the kinetic energy of the impurity:

ĤI = P̂ 2

2M
. (2.2)

The operator ĤL is the Hamiltonian of the interacting Bose particles. In Bogoliubov approximation, thisHamiltonian has a diagonal form in the second quantization representation b̂+
k b̂k:

ĤL = EB+
∑
k,0

ħωk b̂+
k b̂k , (2.3)

where EB is the ground-state energy of the Bose particles in the Bogoliubov’s approximation, ħωk is theBogoliubov’s spectrum. The operator Ĥint describes the interaction between bosons and impurity withtwo-body scattering processes of the impurity atom on the Bose particles taken into account:
Ĥint = ρν̄0 + 1p

V

∑
k,0

p
ρν̄k

ħk2

2mωk

(
b̂+
−keikr + b̂ke−ikr

)
, (2.4)

where ρ = N /V and m is the density and mass of Bose particles, respectively. The coordinate of the
impurity atom r is introduced. The coefficients ν̄0 and ν̄k are the Fourier transforms of the interactionpotential between the impurity and Bose particles when k = 0 and k , 0, respectively.
To describe the interaction between the bosons and the impurity atomwe can use themodel potential

of hard spheres instead of the real potential. This potential gives an adequate description of the contact
repulsion between particles. The Fourier image of this pseudopotential is constant for all the values of
the wave vectors:

ν̄k = 2πħ2ā
M +m

mM
, (2.5)

and is determined by the s-scattering length ā of the impurity atom on a Bose particle. The moving impu-
rity in the environment of weakly interacting Bose particles is usually called the Bose polaron. Moreover,
the sign of the coupling constant ν̄k in the relation (2.5) indicates whether the polaron is attractive (ν̄k < 0)
or repulsive (ν̄k > 0).
Our task is to find the full energy of the system “impurity atom plus Bose particles” by using the

Brillouin-Wigner perturbation theory. We will also consider the limit of the Rayleigh-Schrödinger pertur-
bation theory.
Let the impurity atom with momentum ħq move in the environment of the bosons, which are in

the ground state |0〉 with the energy EB. The full energy of that system can be written in the form oftranscendental equation:
Eq = E (0)

q +ρν̄0 − I (Eq ), (2.6)
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where E (0)
q is the zeroth approximation of the ground state energy of the system “the impurity atom plus

interacting bosons”:
E (0)

q = ħ2q2

2M
+EB , (2.7)

the second term in (2.6) is the diagonal matrix element of the perturbation operator (2.4). It is calculated
on the ground state wave functions of the system “the impurity atom plus Bose particles”. The next term
in (2.6) is second order correction to the full energy:

I (Eq ) = ∑
q′,0, k′,0,

q′+k′,0

|〈k′,q′|Ĥint|0,q〉|2
E (0)

q ′,k ′ −Eq

. (2.8)

Since we treat the Bose gas as a weakly-interacting gas, the most probable transitions in this system are
those which are accompanied by the appearance of a single phonon. An intermediate state |k′,q′〉 can
be determined by the momentum of quasiparticles ħq′ and the energy of the first excited state of the
environment:

E (0)
q ′,k ′ =

ħ2q ′2

2M
+ħωk ′ +EB . (2.9)

In order to find the energy Eq , it is convenient to perform an analytic continuation in the complex energyplane Eq → Eq + iη (here η→+0). In what follows we will continue to work with its real and imaginary
parts:

Eq −EB ≡∆εq − iΓq , (2.10)
where ∆εq , Γq are determined by the second-order correction (2.8) of the perturbation theory. The realand imaginary parts of this correction can be found throughout the Sokhotski formula. So,

∆εq = ħ2q2

2M
+ρν̄0 −Re I (∆εq ), (2.11)

Γq = Im I (∆εq ). (2.12)
The impurity atom with momentum ħq always loses its energy ∆εq when it moves in the environmentformed by Bose particles. Even when the impurity atom is decelerated by weakly-interacting bosons,
its energy is not equal to zero. This immersion energy which appears due to the interaction with Bose
particles is usually called the self-energy of the impurity atom. If the sign of this interaction is negative,
then the energy ∆εq can attain different values. If the impurity atom is repulsed by the environment ofthe Bose particles, then ∆εq > 0 and this energy is converted into the emission of phonons. Moreover,
in the case of a strong attractive impurity-boson interaction, various phenomena can occur, namely, self-
localization of the impurity or even the formation of the polaron-boson bound states “impurity plus Bose
particle”. The imaginary part of the spectrum Γq determines the rate of the energy loss of the impurityand indicates the lifetime of the polaron quasiparticle. Therefore, the immersion energy of the impurity
atom should be much greater than the magnitude of the spectrum attenuation Γq . The impurity atomalmost immediately loses its energy and slows down when ∆εq < Γq . It should be also noted that forthe case ∆εq w Γq , equations (2.11) and (2.12) are a system of transcendental equations in which I (∆εq →
∆εq −iΓq ). The solution of this problem is quite cumbersome. Therefore, we will consider the case∆εq À
Γq and then discuss the applicability of our approach.

3. The impurity spectrum

Let us write the impurity spectrum (2.11) as follows:

∆εq = ħ2q2

2M
+ρν̄0 −

ρν̄2
0

V

∑
k′,0

ħ2k ′2

2m

1/ħωk ′

ħ2k ′2
2M + ħ2k′q

M +ħωk ′ −∆εq

, (3.1)
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here, Bogoliubov’s spectrum can be expressed through the Fourier transform of the interaction potential
between Bose particles ν0:

ħωk ′ = ħ2k ′2

2m

√
1+2ρνk

(ħ2k ′2

2m

)−1

. (3.2)
The last term in (3.1) is divergent because we describe the interaction between the impurity and bosons
by the model potential. The convergence of this contribution is provided by renormalization of the cou-
pling constant ν̄0 [15, 16]:

ν̄0 → ν̄0 +
ν̄2

0

V

∑
k′,0

2Mm

(m +M)ħ2k2 . (3.3)
In the case of more realistic interaction potential between the impurity atom and the Bose system, this
convergence is provided by the Fourier transform ν̄k , const which tends to zero for large values of k′
while it is constant in the long-wavelength limit.
We write down the damping of spectrum of the impurity atom (2.12) in an explicit form:

Γq =πρν̄
2
0

V

∑
k′,0

ħk ′2

2mωk ′
δ

(ħ2k ′2

2M
+ħωk ′ + ħ2k′q

M
−∆εq

)
. (3.4)

The integral in expression (3.4) for the damping in the case of arbitrary interaction (when the Fourier
transform of the interaction potential is constant and when ν̄k , const) is always convergent. Moreover,due to the presence of δ-function, it is also clear that Γq is not equal to zero only when the self-energy ofthe impurity is positive, i.e., ∆εq > 0.
In next sections we will investigate the full momentum dependence of the impurity spectrum and

damping within Rayleigh-Schrödinger second-order perturbation theory and will study only the long-
wavelength behavior of these parameters by means of Brillouin-Wigner perturbative approach.

3.1. The case of the Rayleigh-Schrödinger perturbation theory

The calculation of the spectrum of the impurity atom in the limit of the standard perturbation theory,
when ∆εq = 0 in the last term equation (3.1), is rather simple. In the thermodynamic limit (V →∞, N →
∞, ρ = const), where ∑

k′ → V
(2π)3

∫
dk′, introducing a dimensionless momentum of the impurity p = ħq

mc(here c = √
ρν0/m is the velocity of sound in the environment of the Bose particles) and calculating

the integral over the variable k′ in the sense of principal value, we obtain the final expression for the
spectrum of a Bose polaron:

∆ε̃p = p2

2γ
+ ā

a

1+γ
2γ

1+ ā

a

√
ρa3

π
εp (γ)

 , (3.5)

here, γ = M/m, ∆ε̃p = ∆εp /mc2 are the impurity dimensionless mass and energy, respectively. For the
explicit form of the function εp (γ) see appendix A. The parameter ρa3 is the gas parameter which deter-
mines the strength of the short-range repulsion between Bose particles. In figure 1, we present the results
of numerical calculations of the function εp (γ). The correction to the spectrum εp (γ) essentially depends
on the mass ratio γ.
In the limit of p → ∞, the leading term in (3.5) is quadratic in momentum. The correction to the

spectrum tends to a constant when p → 0 (see appendix A). So, we conclude that even the immobile
impurity due to interaction with Bose system will have a nonzero energy.
The sum over k′ in equation (3.4) was calculated in the thermodynamic limit when ∆εq = 0. Taking

into account the argument of the δ-function which is nothing but the energy conservation in the single
phonon creation process, it is easily seen that the impurity atom with momentum ħq will transfer its
energy to the bosons when the velocity of the impurity atom is greater than the velocity sound of the
environment. This fact should be taken into account when calculating the integrals in equation (3.4).
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Figure 1. The correction of the impurity spectrum in the limit of the Rayleigh-Schrödinger perturbation
theory. Left-hand: the dependence of the corrections on momentum of the impurity atom. Right-hand:
the dependence of the corrections on mass of the impurity in the region of small momenta.

Omitting the details of computations, we write down the final expression for the damping of spectrum in
dimensionless variables:

Γ̃p =
√
πρa3

(
ā

a

)2 (1+γ)2

γ

1

p

(
kp

√
1+k2

p − ln
∣∣∣kp +

√
1+k2

p

∣∣∣) , (3.6)
where notations

kp = 1

1−γ2

(
p −γ

√
p2 +1−γ2

)
, Γp = Γp /mc2 (3.7)

are used. When γ= 1, the damping can be written in a simple analytical form:
Γ̃p =

√
πρa3

(
ā

a

)2 (
p4 −1

p3 −4
ln p

p

)
, (3.8)

and here, p > 1.
Thus, in the limit ∆ε̃q = 0, the spectrum damping Γ̃p essentially depends on dimensionless momen-tum of the impurity p when p > γ. In the case of immobile impurity, the damping is equal to zero. This

can be easily seen calculating the limit Γ̃p→0 in the relation (3.6). In the case Γ̃p→∞ ∼ p , the damping
increases linearly with increasing the velocity of the impurity, but the condition Γp /∆εp ¿ 1 is satisfied.
Finally, taking into account the above calculations, we conclude that the impurity states in a dilute Bose
condensate are always well-defined (i.e., Γp /∆εp ¿ 1) in the weak-coupling limit √

ρa3(ā/a)2 ¿ 1.
3.2. The case of the Brillouin-Wigner perturbation theory

Let us find the impurity spectrum when ∆εq , 0. To do this, we will expand expression (3.1) into a
series in powers of q :

∆εq =∆ε0 + ħ2q2

2M∗ +O(q4), (3.9)
where

∆ε0 = ρν̄0 −
ρν̄2

0

V

∑
k′,0

(
ħ2k ′2

2m

1/ħωk ′
ħ2k ′2
2M +ħωk ′ −∆ε0

− 1
ħ2k ′2
2M + ħ2k ′2

2m

)
(3.10)

is the self-energy of the impurity. In particular, the energy ∆ε0 can be both positive and negative. Its signwill be determined by the type of interaction (attractive or repulsive) between the impurity atom and
the Bose system. The second term in (3.9) is the kinetic energy of the impurity atom with the effective
massM∗:

M

M∗ = 1− 1

3

ρν̄2
0

V

1

f (∆ε0)

∑
k′,0

ħ4k ′4

mM

1/ħωk ′(
ħ2k ′2
2M +ħωk ′ −∆ε0

)3 ; (3.11)
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here, the function
f (∆ε0) = 1+ ρν̄2

0

V

∑
k′,0

ħ2k ′2

2m

1/ħωk ′(
ħ2k ′2
2M +ħωk ′ −∆ε0

)2 . (3.12)

It is seen that the effective mass is determined by the self-energy of the impurity. Therefore, first we have
to calculate the impurity energy ∆ε0 and then computeM∗.
The integrals in equations (3.10), (3.11) and (3.12) can be calculated analytically. Performing these

simple but nevertheless cumbersome integrations for the dimensionless energy of impurity, we obtain
the following equation:

∆ε̃0 = ā

a

1+γ
2γ

1+ ā

a

√
ρa3

π
ε0(γ,∆ε̃0)

 , (3.13)
where the explicit form of the contributions ε0(γ,∆ε̃0) is shown in appendix A.
Despite the standard perturbation theory result where the spectrum damping is always zero in the

limit p → 0, the solution of equation (2.12) could exist even for Γ0 in the Brillouin-Wigner prescription.This defect of the approximate consideration of the polaron problem when Γ0 '∆ε0, is usually treated asa polaron instability [7, 8]. Of course, such a treatment is physically wrong and the magnitude of Γ0/∆ε0only defines the limits of applicability of the arbitrary approximation scheme. Let us estimate the value
of the spectrum damping (3.1) in the limit of the immobile impurity atom with the self-energy ∆ε0. Aftersimple calculations, in the dimensionless variables for any values of γ we obtain:

Γ̃0 = π

2

√
ρa3

π

(
ā

a

)2 (1+γ)2

γ

k3/2
0

γ(1+2k0)+2
√

k0(1+k0)
, Γ̃0 = Γ0/mc2, (3.14)
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Figure 2. The attractive polaron: left-hand panel is the self-energy of the impurity atom, right-hand panel
is the ratio of the spectrum damping to the self-energy impurity atom. (Top row ρa3 = 5×10−4, bottom
row ρa3 = 3×10−2).
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where
k0 = γ

2(1−γ2)

[
γ+∆ε̃0 −

√
(γ+∆ε̃0)2 +∆ε̃2

0(γ2 −1)

]
.

It is quite natural that the Bose polaron remains stable in the weak-coupling limit but surely the
most interesting is the region of strong boson-impurity interaction where the use of the Brillouin-Wigner
perturbation theory can give some non-trivial results. In this limit, the spectrum damping has a square
root behavior on the polaron energy

Γ̃0 = π

4
p

2

√
ρa3

π

(
ā

a

)2
√

1+γ
γ

√
∆ε̃0 , ∆ε̃0 À 1. (3.15)

The results of numerical computations of the polaron energy and damping rate Γ0/∆ε0 are depicted infigures 2, 3. As it is seen, the attractive polaron can have both positive and negative values of the self-
energy (see left-hand panel in figure 2). The energy of the repulsive polaron is always positive [see left-
hand panel in figure (3)]. In the case of the attractive interaction between the impurity atom and Bose
particles (when ā < 0), the heavier impurities rather leave the potential well formed by Bose environment
(see left-hand panel in figure 2, dot line). If we described the interaction between Bose particles by amore
realistic potential, then the heavy impurities conversely would be deeper in the potential well. In the case
of weak and strong repulsive interaction between the impurity atom and Bose particles (when ā > 0), the
self-energy increases linearly with increasing the parameter ā/a (see left-hand panel in figure 3). The
spectrum of the impurity atom is damped in the case of strong attraction (see figure 2, right-hand panel),
when the energy of impurity is positive (see figure 2, right-hand). In the case of repulsive interaction
between the impurity atom and the Bose system, the spectrum is always damped (see figure 3, right-
hand). Thus, the spectrum damping grows with an increase of the interaction strength and in the case
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Figure 3. The repulsive polaron: left-hand panel is the self-energy of the impurity atom, right-hand panel
is the ratio of the spectrum damping to the self-energy impurity atom. (Top row ρa3 = 5×10−4, bottom
row ρa3 = 3×10−2).
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ρa3 = 5× 10−4, our calculations indicate that the attractive polaron is well-defined for ā/a < 15÷ 16,
whereas the damping rate of a repulsive polaron becomes the same order of magnitude as the self-energy
for ā/a ' 20 (see right-hand upper panel in figure 2 and right-hand upper panel in figure 3). When ρa3 =
3×10−2, the condition of the applicability of the presented approach is restricted to ā/a < 5÷6 for the
attractive and to ā/a < 8÷10 for the repulsive polarons, respectively.
Therefore, the calculations of the effective mass were performed in the region where ∆εq > Γq . Thecomputation of these integrals can be reduced to the previously found one. In particular, contribution

(3.12) to the effective mass can be obtained by differentiation of the expression for the self-energy (3.10)
with respect to the parameter ∆ε0. In the thermodynamic limit, it is not difficult to calculate the sumwitha cubic term in (3.11) by differentiation with respect to the parameter γ−1. Thus, the effective mass in
dimensionless units can be written as follows:

M

M∗ = 1− 4

3

√
ρa3

π

(
ā

a

)2 (1+γ)2

γ3

∂2I 2(γ,∆ε̃0)

∂(γ−1)2

1+4

√
ρa3

π

(
ā

a

)2 (1+γ)2

γ

∂I1(γ,∆ε̃0)

∂∆ε̃0

−1

, (3.16)

where I1,2(γ,∆ε̃0) is presented in appendix A. An increase of the attractive interaction (see figure 4 left-
hand panel) and repulsive interaction (see figure 4 right-hand panel) between the impurity and Bose
particles leads to an increase of the effective mass of the polaron to a certain critical value of the interac-
tion. In the case of very strong interaction, the effective mass gradually decreases. Note that in the paper
[17], the effective mass of the impurity atom 3He in the liquid 4He with the real interaction potential be-
tween Bose particles was found for the first time by means of the Brillouin-Wigner theory. In the paper
[18], the energy of the moving impurity in the liquid 4He was found. The author showed that the inter-
action potential between the Bose particles and the impurity atom can be expressed as a function of the
structure factor of the liquid 4He. In the work [19], using a deformed Heisenberg algebra, the effective
mass and the separation energy of the impurity atom 3He for different values of the density of 4He is
calculated.
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Figure 4. The effective mass of the impurity atom: left-hand panel is the attractive polaron, right-hand
panel is the repulsive polaron. Top row ρa3 = 5×10−4, bottom row ρa3 = 3×10−2.
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4. Conclusion

In conclusion, we have analyzed the spectral properties of attractive and repulsive Bose polarons in
a dilute Bose condensate. Particulary, using the Rayleigh-Schrödinger perturbation theory, we obtained
a full momentum dependence of the energy and damping of the impurity atom which is moving in the
Bose gas with a weak short-range repulsion. It is also shown that the Bose polaron behavior obtained
in the second-order Brillouin-Wigner perturbation theory qualitatively reproduces the results of a more
complicated T-matrix approach [7] and variational calculations [8].

A. Appendix

The corrections to the spectrum of the impurity εp (γ) (3.5) in the limit of the standard perturbation
theory depend on the mass and momentum of the impurity.
a) The case γ< 1 (the light impurity):

εp (γ) = 8

1−γ

1− 1

1−γ2

1

p

p∫
0

dp θ

(
p −

√
1−γ2

)[
γ2 −γ4 +p2

(
1+γ2

)
2

√
1+p2 −γ2

ln

∣∣∣∣1+
√

1+p2 −γ2

1−
√

1+p2 −γ2

∣∣∣∣
+γp ln

∣∣∣γ−p

γ+p

∣∣∣]
 , (A.1)

and the condition, p >
√

1−γ2.
In the limit p → 0 equation (A.1):

ε0(γ) = 8

1−γ

(
1− γ2

2
√

1−γ2
ln

∣∣∣∣1+
√

1−γ2

1−
√

1−γ2

∣∣∣∣
)

.

b) For the case γ> 1 (the heavy impurities):

εp (γ) = 8

1−γ

1+ 1

γ2 −1

1

p

p∫
0

dp θ

(√
γ2 −1−p

)[
γ2 −γ4 +p2

(
1+γ2

)√
γ2 −1−p2

arctan
√
γ2 −1−p2

+γp ln
∣∣∣γ−p

γ+p

∣∣∣]+ 1

γ2 −1

1

p

p∫
0

dp θ

(
p −

√
γ2 −1

)[
γ2 −γ4 +p2

(
1+γ2

)
2

√
1+p2 −γ2

ln

∣∣∣∣1+
√

1+p2 −γ2

1−
√

1+p2 −γ2

∣∣∣∣
+γp ln

∣∣∣γ−p

γ+p

∣∣∣]+ γ2√
γ2 −1

arctan
√
γ2 −1

 , (A.2)

the correction (A.2) in the limit of the motionless impurity we obtain:
ε0 = 8

1−γ

(
1− γ2√

γ2 −1
arctan

√
γ2 −1

)
.

c) For the case γ= 1

εp = 4

p

p∫
0

[
1+p2

p2 −
(
1−p2

)2

2p3 ln
∣∣∣1+p

1−p

∣∣∣]dp, (A.3)

when q → 0 in (A.3), we obtain the results of the corrections: ε0 = 32
3 .The explicit form of the correction ε0(γ,∆ε̃0) to the self-energy of the Bose polaron (3.13):

ε0(γ,∆ε̃0) = 8

1−γ
[

1+
(
γ2

1−γ + γ∆ε̃0

2

1+γ
1−γ

)
I1(γ,∆ε̃0)−

(
γ2

1−γ + γ∆ε̃0

2

)
I2(γ,∆ε̃0)

]
; (A.4)
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and here, the quantities I1,2(γ,∆ε̃0) are the integrals:

I1(γ,∆ε̃0) =
1∫

−1

dx

(x2 −x2−)(x2 −x2+)
, I2(γ,∆ε̃0) =

1∫
−1

x2dx

(x2 −x2−)(x2 −x2+)
;

here,
x± = 1

1−γ
(
1+γ∆ε̃0 ±

√(
1+γ∆ε̃0

)2 +γ2 −1

)
.

The result of the integration depends on the ratio between the parameters γ and ∆ε̃0.
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Поведiнка домiшкового атома в слабковзаємодiючому

бозе-газi

Г. Паночко1, В. Пастухов2, I. Вакарчук2
1 Природничий коледж, Львiвський нацiональний унiверситет iменi Iвана Франка,
вул. Тарнавського, 107, 79010 Львiв, Україна

2 Кафедра теоретичної фiзики, Львiвський нацiональний унiверситет iменi Iвана Франка,
вул. Драгоманова, 12, 79005 Львiв, Україна
В роботi вивчено поведiнку домiшкового атома у розрiдженому бозе-конденсатi в границi низьких темпе-
ратур. Отримано пертурбативним методом спектр домiшки та його загасання в залежностi вiд iмпульсу. В
рамках теорiї збурень Брiлюена–Вiгнера знайдено власну енергiю притягального та вiдштовхувального
полярона в довгохвильовiй границi. Також вивчено питання стабiльностi полярона в слабковзаємодiю-
чому бозе-газi.
Ключовi слова: бозе-полярон, загасання спектра, власна енергiя
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