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SEPARATION OF VARITABLES IN THE TWO-DIMENSIONAL
WAVE EQUATION WITH POTENTIAL

PO3AIJIEHHA 3MIHHHUX ¥ [IBOBUMIPHOMY
XBHJIbOBOMY PIBHAHHI 3 IIOTEHIIAJIOM

The paper is devoted to solution of a problem of separation of variables in the wave equation u, —u_ +
+ V(x)u= 0. We give a complete classification of potentials V(x) for which this equation admits a
nontrivial separation of variables. Furthermore, we obtain all coordinate systems that provide
separability of the equation considered.

[ana cTaTTA NPHCBAYCHA PO3R’A3AHHIO NPOGJIEMH PO3/ILICHHA IMIHHHUX 1A XBHJILOBOIO PiBHAHHA
u, —u + V(x)u=0. Brasaui sci norenuiann V(x), 11a SKHX 1ane PIBHAHHA IONYCKA€ HOTPHBIAb-

He poaniieHHA aMinuux. Kpiv Toro, ogepxani Bei CHCTEMH KOOP/IMHAT, B AKHX PO3JINIOETHCA JI0C-
Nk ysane piBHAHHA.

I. Introduction. In this paper, we study the two-dimensional wave equation with
potential

(O+V(x)u = uy — uy + Vixyu = 0, (.

where u = u(t,x)e C3(R* R') and V(x)e C(R', R"), by using the method of
separation of variables (SV). Equations belonging to class (1) are widely used in the
modern quantum physics and can be related to other linear and nonlinear equations of
mathematical physics (these relations will be discussed below, at the end of the article).
In particular, class (1) contains the d’Alembert equation (with V(x) = 0) and the
Klein — Gordon — Fock equation (with V(x) = m = const).

The separation of variables in two- and three-dimensional Laplace, Helmholtz,
d’Alembert, and Klein — Gordon — Fock equations had been carried out in the classical
works by Bocher [1], Darboux [2], Eisenhart [3], Stepanov [4], Olevsky [5], and
Kalnins and Miller (see [6] and references therein). Nevertheless, a complete solution
of the problem of SV in equation (1) is not obtained yet.

When speaking about solution of equation (1) with separated variables ®,, ©,, we
mean the ansatz

u(t, x) = AL x) @ (©(1, x)) Qo (1, X)) (2)
reducing (1) to two ordinary differential equations for the functions @;(®;)
§; = Aj(©O,A)9; + Bi(w, M), i= 1.2 (3)

In formulas (2) and (3). A, ®;, w, < C*(R* R'), 4,,B, € C*R'x A, R') are

some unknown functions, A € A € R' is a real parameter (separation constant).

Definition 1. Equation (1) admits SV in the coordinates ®(t,x), ®,(t,x) if
the substitution of ansaiz (2) into (1) with subsequent exclusion of the second
derivatives ;. @, according to (3) yields an identity with respect to the variables
®;, ©;, A (considered as independent ones).

On the basis of the above definition, one can formulate the procedure of SV in
equation (1). At the first step, one has to substitute expression (2) into (1) and to
express the second derivatives §,, -, via the functions ¢;, @; according to
equations (3). At the second step, the obtained equality is splitted with respect to the
independent variables ¢;, ¢, As a result, one gets an overdetermined system of

© R.Z.ZHDANOV, L. V. REVENKO, W. . FUSHCHYCH, 1994
ISSN 0041-6053. Yxp. mam. xypu., 1994 m. 46, N° 10 1343



1344 R.Z.ZHDANOV, I. V.REVENKO, W. L. FUSHCHYCH

- partial differential equations for the functions A, ®;, ®, with undefined coefficients.
The general solution of this system gives rise to all systems of coordinates that provide
separability of equation (1).

Let us emphasize that the above approach to SV in equation (1) has much in
common with the non-Lie method of reduction of nonlinear differential equations
suggested in [7 — 9]. It is also important to note that the idea of representing solutions
of linear differential equations in the “separated” form (2) goes as iar as to classical
works of Euler and Fourier (for a modern exposition of the problem of SV, see Miller
[6] and Koornwinder [10]).

The present paper is organized as follows: In the first section, we adduce principal
assertions about SV in equation (1). In the second section, the detailed proof of these
assertions is given. In the last section, we briefly discuss the obtained results,

2. List of principal results. It is evident that equation (1) admits SV in the
Cartesian coordinates ®; = ¢, ®, = x foran arbitrary V = V(x).

Definition 2. Equation (1) cdmits a nontrivial SV if there exists at least one
coordinate system © (t,x), W,(t.x), different from the Cartesian system, that
provides its separability. '

Next, if, in equation (1), one makes the transformations

t—>Cyt, x>Cx, 11, x—>x+C, CeR
then the class of equations (1) transforms into itself and. moreover,

V(x)= Vi(x) = CIV(C,x),
4)
V(x) = V(x) = V(x+C,).

This is ﬁrhy the potentials V(x) and V’(x) connected by one of the above
relations are regarded as equivalent ones.

Theorem 1. Equation (1) admits a nontrivial SV iff the function V(x) is given
up to the equivalence relations (4) by one of the result formulas:

1) Vi=mx;

2) V=mx%
3) V= msin2x;
4) V = msh™2x;
5) V= mch2x
6) V= mexpx;

7V = cos2x(m; + m,sinx);
8) V= ch~2x(m, + myshx);
9) V= sh~2x(m, + m,chx);
10) V = m,expx + m, exp2x;
11) V=m +mx2

12) V=om.

Here, m, m,, m, are arbitrary real parameters, m, # 0.

Note 1. Equation (1) with the potential V(x) = mexpx is transformed by the
change of variables [11]

r

yris exp%chr. g cxp%shf
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into equation (1) with V(x) = m (i.e., into the Klein — Gordon — Fock equation).
Note 2. Equations (1) with potentials 3, 4, 5 from (5) are transformed into equa-
tion (1) with V(x) = mx~2 by the changes of variables [11]
x"=1g5 +1gn, t'=1gf-1gn,
x" = thg +thn, " = th§ - thn,
x" = cthE + thny, "= cth§ - thn.
Here, £ = (x+1)/2, n = (x—1)/2 are cone variables.
In virtue of the above remarks, Theorem 1 implies the following assertion:

Theorem 2. Provided that equation (1) admits a nontrivial SV, it is locally
equivalent to one of the following equations:

1) Ou+mxu=0

2) Ou+mx2u=0;

3) DOu + cos 2x(m, + mysinx)u = 0;
4) Ou + ch~2x(m; + myshx)u = 0;

6)
5) Ou + sh~2x(m, + mychx)u = 0;

6) Ou+ e (m +mye)u = 0;
7) Ou+ (my+mpx2)u = 0;

8) QOu+ mu=0.

Thus, there exist eight inequivalent types of equations of the form (1) that admit a
nontrivial SV.

It is well known that there are eleven coordinate systems that provide separability
of the Klein — Gordon — Fock equation (O+m)u = 0 (see, e.g., [12]). This is why
the case V(x) = const is not considered here.

As is shown in Section 2, the general form of the solution of equations (6) with
separated variables is as follows:

u(t, x) = @101, %) @2 (1, x)); (M
here, ¢,(®;), @,(®,) are arbitrary solutions of the separated ordinary differential
equations

$; = (A+g(0) g, i=12, (8)
and the explicit form of the systems ;(7, x), g;(®;) is given below.

Theorem 3. The equation Qu + mxu =0 is separated in two coordinate
systems

) o=t w=x g =0 g =moy;
9)
2) o = (x+t)”2 + (x—t)l’Q, w, = (.!c+t)1"2 - (x—r)m.
e ik &
g = 4(’31~ 82 éwz-

Theorem 4. The equation Ou + sin2x(m, + mycosx)u = 0 is Separated in
four coordinate systems.

D o=t =x g =0 g =sin20(m +mcosw,):
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2) {:} = arctg sh (®; + ®,) * arctgsh (m; —®,):

g1 = (my+my)sh 2@, gy = —(m;—my)ch2my;

3) {f} = arctgtn (0, + ) * arctgtn (©, - ®,),

(10)
gy = mydn®o,cn~2@;sn~2@, + my[sn~ 2w, —dn’ @, cn %0, ],
g = mik*sn’@,cn’wydn %o, + myk®[en’o,dn 2@, —snlw, |
” PNT £n\172
4) {!} = aICtg( [k!J Cn(ml+w2)) iafclg((k,) C“(ml“-‘h) )‘

my [dn’, cn 2@, + k2sn’®, ] + my[ (k) en~2 o, + ken’w, ],

s
I

my[dn? @, cn 2o, + k2sn?wy] + my [(K)? en2 0, + k*en’®,].
In formulas (9), %, k’ = /1 —k* are the moduli of the corresponding elliptic
Jacobi functions and & is an arbitrary constant satisfying the inequality 0 <<k < L.
Theorem 5. The equation Ou + t:h‘zx(ml + mzshx)u = 0 is separated in
four coordinate systems

]
(=]
I

) o=t O=x g =0 g =ch20,(m +m,sh,);

2) {:} = ——In( (;:]1!2 cn (o, +(u2)) - ln( (i’)”z cn (@, -w,) )

my (k) (dn 20, )2 + mycn20,(dn20,)"2

i

81
g2 = my (k) (dn2w;)"% + mycn2;(dn 2e;) %

3) {x} =—lnsh%(mﬁwl)ilnch%(ml—mg): (1)
g1 = ch 2@,(m; —mysh®,), g, = ch~2wy(m, —m,sh,):

4) {:} = lnm%(mﬁmz) - lndn%(m;—mz).

: 2

g = —mk*sn’m; + kZmysnw, cno,,
2

g2 = —m k*sn? @, + kZmysn®ycnom,.

Here, k, k"= +/1— k> are the moduli of the corresponding elliptic functions, 0 <
< k<l

Theorem 6. The equation Ou + sh™>x(m + mychx)u = 0 is separated in
eleven coordinate systems

D o=t oy=x g =0 g =sh2o(m+mychw,):
x 1 1 '
2) {f} = —1“5((01*'032) + 1“5((01—(02).
&= (ml—m:,_)ml_?', g = (ml+m2)m£2:
3) {:} = -lnsin%(ml+(o2) * lnsin%(m,—ml),
g1 = (my—my)sin0,, gy = (my +my)sinwy;
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X : 1 1
4) {r} N —lnsh—i(ml-rmz) 3 lnshg(ml—mg).
g1 = sh 20, (m; + mych®,), g, = sh~2w,(m; —m,chw,):

5) {f} = —lnch%(ml+'u)2) 5 lnch-;-((ol~n)2).

g1 = sh™ 20, (m; —mych®), g, = sh™2,(m; —m,chw,);
- 6) {':} = lnm%(m,+u)2) + lnth%(ml—m;).
g = ch 20, (my—m,), g, = —ch 2@,(my+m,); (12)
7) {f} = Inlg%((t);-i»&)z) + Intgé(ml—mz).
g = cos™2@(my+my), g, = cos~2y(my —my);

8) {’:} = arthen (@) + 0,) + arthen (@) - 0,),

g1 = (my+my)dn@,cn2w, + (my; —my)k*sn’,,

g = (my—my)dn?m,cen 2w, + (my +my)k*sn’ o,;

9) {f} = arthdn (@, + ®,) * arthdn (®, - ®,),

g = (my+my) kPen’o,dn~2@, + (my —my)k*sn’ o,

g = (my—my) k*en’@,dn~2w, + (my + my)k?sn’ @y

10) {f} = arthsn(®, + ®,) *+ arthsn (®, - ©,;),

gl — (ml +m2)Sl‘l'2(Dl + (m] —mz)kzsnztﬂl.
2 = (my+my) ke’ @, dn 2@, + (my —m,) dn’ @, cn20,;
X "
11) {r} = —Incn(w; + ©,) + Incn (W, —w,),
gl = —m Sﬂ-zml - mzcnﬂJ|Sﬂ’2(ﬂl.
g = —mysn~2@, — myeno,snl,.

Here, k is the modulus of the corresponding elliptic functions, 0 <k < 1.
Theorem 7. The equation Ou + &(m; +m,e*)u =0 is separated in six
coordinate systems

) o=t wm=x g =0, g = e2(m +m,e™)
2) {:} = ~Incos(®, + ®,) 7 Incos(®, —m,),
i) 5 Yo — = T coeitin
g1 = —2mycos2m; —° > cos4m, g = —-2mjcos2m, — = cos4my;

3) {:} = Insh (o, + ©,) + Insh(®, - ®,).
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g = —2m; ch2m, - i",f chdo,, g, = —2m;ch2m, - %2- ch 4wy;
4) {:} = Inch(w; + ®;) *+ Inch(w, - ;). (13)

g, = —2m, ch20, - %ch«#m], gy = —2m; ch2w; — mTzchdmz:

5) {f} = Inch(®, + ®,) + Insh(®; - ®,),

g = —2mysh2wm; — f_;;ch%)l‘ g = —2m;sh2m, - %z-chélmz;

6) {:} = In(o; + ) £ In(®; —w,),

o] 2
g1 = 2my + 2m®y, g9 = 2my + 2mym3.
Theorem 8. The equation O u + (m; + myx~2)u = 0 is separated in six
coordinate systems

) o =t w=x g =0 g2=ml+m3w§2:

2) {:} = exp (o, + ;) £ exp(®; —0,),

g1 = 4myexp20;, gy = mych 2oy

3) {)“} = sin(m; + 0,) *+ sin(®; -w,),

g1 = 2mycos2m, + mysin2®;, gy = —2m; cos2M, + mycosT2my;

4) {:} = sh(®, + ;) + sh(® -0,). (14)

8 = 2??[] Shzm] + my Sh_zml‘ 82 = -2mlsh 2(02 - My Sh_zﬂ)z:

5) {:} = ch(w, + 0,) + ch(®, - ®,),

g1 = 2mych2m; — mych~20;, g, = 2m;ch2®, — mych~ 2wy
X
6) {:} = (0 + ) £ (0, -w)),

g = —lémlmlz + mzml’z, g = wlﬁmlm% + mzmgz.
It was established in [13] that the Euler — Poisson — Darboux equation
Vy=-Vu—x1V. 4+ m2x2v =0

is separated in nine coordinate systems. Since the above equation is reduced to the
equation u, — u,, + (m®—1/4)x2u=0 by the change of dependent variable w(t, x)=
= x 12y(1, x). equation (1) with V(x) = Ax? is also separated in nine coordinate
systems.

It has been understood not long ago [6, 14] that SV is intimately connected with the
symmetry properties of the equation under the study. Therefore, it is important to

investigate the symmetry of equation (1).
Clearly, equation (1) with an arbitrary V(x) is invariant under the two-dimensional
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SEPARATION OF VARIABLES IN THE TWO-DIMENSIONAL WAVE EQUATION ... 1349

Lie algebra that has the basis elements @, = d,, @, = ud,. Below, we adduce

without a proof the assertion which gives a complete description of ihe potentials V (x)
that provide an extension of the symmetry algebra admitted by equation (1).

Theorem 9. Equation (1) admits additional symmetry operators (i.e., operators
not belonging to the algebra (9, ud,)) iff the potential V(x) is given by one of
the following formulas:

1) V(x) = mexpux;

2) V(x) = mx%

3) V(x) = msin~2x;

4) V(x) = msh2x;

5) V(x) = mch2x;

6) V(x)

with the additional symmetry operators having the form

m, me R,

I

- [1 1
D05 = exp{30-0}(@-3). Q4= exp{-3(r+n}(@+d)
2) Q3 = xd +13,. Q4 = (x2+12)d, + 2txd,;
3) Q3 = sintcosxd, + sinxcostd,, Q4 = —CoS1cOSXxd, + sinxsinzd,;
4) Q5 = shtchxd, + shxchrd, Q4 = chtchxd, + shxshrd,;
5) Qs = shxchrd, + shtchxd, Q4 = shishxd, + chrchixd,;

6) 03 =09, Q4 =19+ xd,

This theorem is proved by the standard Lie method (see, e.g., [15, 16]).

Corollary. If equation (1) admits additional symmetry operators, then it is
locally equivalent to one of the equations Qu+mu = 0 or Qu+mx2u = 0.

Thus, separability of equations 1, 3 — 7 from (6) is not connected with their Lie
symmetry. To explain this fact one has to take into account the second-order (non-Lie)
symmeltry operators of equation (1). This problem will be briefly discussed in the last
section,

3. Proof of Theorems 1 - 8. To prove the assertions listed in the previous section
one has to apply the above described procedure of SV to equation (1).

By substituting ansatz (2) into equation (1), expressing the functions @; in terms
of the functions @;, ¢, with the help of equalities (3), and splitting the obtained

equation with respect to independent variables ¢;, ¢,. we get the following system of
nonlinear partial differential equations:

) AOo, + 2(A,0,-A0,,) + AA (0, L) (0f - of,) = 0, (15)
2) ADW, + 2(A,0,-A,0,) + AA 0, A) (03, - ©3,) = 0, (16)
3) DA+A[B (0. )(0f - of,) +B,(0,, 1) (03, - 03,) +AV(x) = 0, (17)
4) 0,0, - 0,0, =0 (18)

Here, O = 97 - 9°.

Thus, to separate variables in the linear differential equation (1) one has to con-
struct a general solution of system of nonlinear partial differential equations (15) —
(18). The same assertion holds true for a general linear differential equation, i.e., the
problem of SV is essentially nonlinear. This is the reason why, even for the classical
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d’Alembert equation O,u = u,—Asu = 0, there is no complete description of all

coordinate systems that provide its separability [6].
It is not difficult to become convinced of that from (18). Since the functions ©,,

®, are real, we have
(w:[!.'_wlzx)(m%r'm%x) # 0. (]9}
Differentiating equations (15), (16) with respect to A and using (19), we get
Ap = Ay =0.
Consequently, the relation B, B,, # 0 holds. Differentiating with respect to A,
we have
B]JL((D%: - m;l.t) + B'_r)._( (D%, - (D%x) =0

or B, /By = —(®3, - ®3,)/ (0}, - of,). Differentiation of the above equality
with respect to A yields By, /By, = By;/By,. But the functions B, = Bi(w,),
B, = By(®,) are independent, whence it follows that there exists a function such that
Bsa = W(MBig i = L2

Integrating the above differential equation with respect to A, we get

B.(w;) = AQ) (o) + g(w;), i=1.2,

where f, g, are arbitrary smooth functions.

On redefining the parameter A — A(A). we have

B/(w,) = Afi(w,) + g(w,), i=12 (20)

Substitution of (20) into (17) with a subsequent splitting with respect to A yields
the following equations:

OA + Alg(0)(0f - 0f,) + g,(0,) (03, - ®3,) + V(x4 = 0,  (21)

fi(0) (0} - 0f) + f(0,) (0} - 03,) = 0. (22)

Thus, system (15) — (18) is equivalent to the system of equations (15), (16), (20) —
(22). Before integrating it, we make a remark. It is evident that the structure of ansatz
(2) is not changed by the transformation

A—A’

L}

Ah(®,)hy(,),
(23)
;-0 =R(w) i=12
where h;, R, are some smooth functions.

This is why solutions of the system under the study, connected by relations (23),
are considered as equivalent ones.
By a proper choice of the functions h, wecanput R, fi=f, =1 and A =

= A, = 0 inequations (15), (16), (22).
Consequently, the functions ©,, ®, satisfy equations of the form

), 0,, - 0,0, =0,
0} - 0}, + 0, - 0, =0,
whence (®; £ (03)? - (o, £ mz)i = 0. Integrating the above equations, we get
o, = f(€) + g(M), ®, = f(§) — g(n). (24)

where f, g C C(R', R") are arbitrary functions, & = (x+1)/2, n = (x—1)/2.
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Substitution of (24) into equations (15), (16) with A, = A, = 0 yields the
following equations for a function 4 = A(f,x)x (InA), =0, (InA), = 0, whence
A= 1.

At last, substituting the obtained results into equation (21), we have

V(x) = [61(F+8) - ga(f—2)] j—é j—f} 25)

Thus, the problem of integration of the overdetermined system of nonlinear dif-
ferential equations (15) —(18) is reduced to the integration of the functional-differential
equation (25).

Let us sum up the obtained results. The general form of the solution of equation (1)
with separated variables is as follows:

uy = @1(f(€)+gMm) e2(f(€)-g(M)); (26)
here, ¢; are arbitrary solutions of equations (8) and the functions f(E), g(m).
21(f+g), g(f-g). V(x) are determined by (25).
To integrate equation (25) we make the hodograph transformation
& = P(f), M =R(), C@7

where P#0, R#0.
After making transformation (27), we get
&1(f+8) — 8f-8) = P(/IR(V(P +R). (28)
Evidently, equation (28) is equivalent to the equation

(07 — 33)[P(HR(@V(P+R)] = 0

or
(BP' —RR™")W + 3(P-RWV + (P> - R*)V = 0. (29)

Thus, to integrate equation (25) it suffices to construct all functions P(f), R (g).

V(P + R) satisfying (29) and substitute them into equation (28).

Let us prove the following assertion.

Lemma. The general solution of equation (29), determined up to transforma-
tions (4), is given by the one of the following formulas:

1) V = V(x) -is an arbitrary function,

P=0a R =aq

2) V= mx,
P2P=aP+B R*=0R+7Y: (30)
3) V=mx2? P=F({f), R=G(@),
F* = aF* + BF3 + yF2 + 8F + p. 3N
G? = aG* - BG3 + YG2 - &G + p;

4) V=msin2x, P=arctgF(f), R =arctgG(g), and F, G are determined
by (31);

5) V=msh 2x, P =arthF(f), R = arthG(g) and F, G gre determined
by 31);

6) V= mch-2x, P = arcth F(f), R = arcthG(g) and F, G are determined
by (31);
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7) V =mexpux,
P? = aexp2P + PexpP + ¥, R® = cexp2R + dexpR + p:

8) V = cos2x(m, + m,sinx),

(32)
P? = asin2P + Pcos2P + Y, R® = asin2R + Bcos2R + ¥;
9) V= ch~2x(m; + m,shx),
(33)
P? = ash2P + Bch2P +4, R? = ash2R — Bch2R + ¥;
10) V = sh~2x(m, + m,chx), '
(34)
P? = ash2P + Bch2P +79, R? = —ash2R + Bch2R +v;
11) V = (m, + myexpx)expux,
(35)
P =—P2+[3, ﬁ:—f’2+ﬁ.
12) V=m + myx2,
(36)
P2 = aP2+BP +v, R* = aR?2-PBR + 1:
13) V=m,
P2 = aP2+BP +vy, R* = aR?+ 3R + p;

Here, o, B, v. 8, p, m, my, m are arbitrary real parameters, x = &+
+Nn =P+R. :

Proof. Since the functions P, R in (29) are arbitrary, equation (29) is equivalent
to the following system of equations:

(HgH7' = Hogo H7 ' W(H) + 3(Hyy — HoW(H) + (H — HAWV(H) = 0, (37)
Hy = 0; (38)

here, H = P(f)+ R(g).
Taking differential consequences of equation (37), we have

_ -1 =1 ~14;2
Hypp = HpHgHy + VYV (Hgo Hy Hp — 4H grH () +

+ W (3H HF — SHzH}) + VW (HIHG — HY),

(39)
_ =i -1 ~1;2
Hggoe = HggoHo Hy' + VV™(H e H;'HY — 4H,o H,) +
Fir 2 2 =10 57252 4
+ VW (3HgHg — SHy Hy) + VV ™ (HfH; — Hy).
For system (39) to be compatible, it is necessary that relations Hyyppe = Hypoor = 0

hold. Differentiating the first equation in (39) with respect to g and taking into ac-
count relations (39), we get

(HgH7' = Hogo ;') (SVAV™2 =4V + (Hy — H, )8V ™2 - SVV 1) +
+ (Hf - HD) (VW2 - (W) = 0. (40)

Since equation (40) is a necessary compatibility condition for a system (39), one
has to supplement the system under study (equations (37), (38)) by equation (40). To
investigate the system of equations (37), (38), (40) it is necessary to consider several
inequivalent cases.
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Casel. Let V. =0, V # 0. Then equalities Hy = Hg, = 20, & = const hold.
Hence, we have

V=m(H+C)=mx+C),
P(f) = af?+B. R(g)=ag?+v BYCR
i.e., we obtain the potential listedin the lemma under number 2.

Case?2. Let V # 0 and let equation (40) be a consequence of equation (37). In
this case, the coefficients of V, V, V must be proportional

(VA2 — 4t = sVTv2 - s an) T =

= 2vvv 2 -y

From the above equalities, we get a system of two ordinary differential equations
for a function V = V(H)
V = avyyt - aydy2?, @1)

V = 2vvy ! - aVPy! & vV, (42)
But equation (42) is the differential consequence of equation (41). The general

solution of equation (41), determined up to equivalence relations (4), is given by one of
the following formulas [17]:

vV, = mll_z, Vo = msin~2H,

(43)
. Vi = msh™2H, V, = mch™2H, Vs = mexpH;
i.e., we obtain potentials listed in the lemma under numbers 3 — 7.
By substituting V = V, = mH "~ into (37) and replacing H by P(f)+R(g), we
get

(P+RYP(PPF-RR™') —6(P+R)(P-R) + 6(P* -R*) = 0. (44
By differentiating (44) with respect to f and g, we obtain
’ (P+R)(WP' —R™") = 2(h, - hy),
where h; = PP™' and h, = RR7.

Differentiation of the above equation with respect to f and g yields the following
relation:

(P P' = (R R (45)

Since the functions P(f), R(g) are independent, it follows from (45) that the
equalities

(hP™Y) = 120P, (hR7') = 122R (46)

hold, where « is an arbitrary real parameter.
Integration of equations (46) yields

P? = aP%+ C,P?+ C,P2 + C,P + C,,
R* = aR+ D\R® + D,R? + DR + D,

where C,,...,Cy, Dy, ...,D, are arbitrary real constants. Substituting the above
result into the initial equation (44), we get restrictions on the choice of arbitrary
constants
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C,=-D, =8B, C,=D, =4,
Cy=~Dy% 8, C=Dysp,

Thus, we have obtained the potential listed in the lemma under number 3.

It is straightforward to verify that the equations obtained by the substitution of
functions V = msin"2H, V = msh™2H, V = mch™2H with H = P(f)+ R(g) into
(37), are reduced to equation (44) by the following changes of variables:

P —arctgP, R —arctgR,
P —arthP?, R-—arthR,
P —arcthP, R —arcthR;

i.e., the potentials listed in the lemma under numbers 4 — 6 are obtained.

Equation (1) with the potential V = mexpH is reduced to the Klein — Gordon —
Fock equation (see case 4 and Note 2 below).

Case 3. Let V # 0 and assume, in addition, that equation (41) does not hold. In
this case, we can exclude from equations (37), (40) the third derivatives of the function
H

1}

Hy — Hyy + A(H)(H} - H}) = 0, (47a)
where
A(H) = (V = 20vv™! —aP?y 4 sWWa-2)(V —avvv! + 3032yl
It follows from (47a)
i 2 2
Hyy = AH(H} - H7) - 2HH A,
Heee = AH (HF — HY) — 2H  H A

(we have used equation {38))
By taking the first differential consequence of the above equations with account of
equation (38), we get

2A(Hy—Hy,) + A(H} - HZ) = 0. (48)

Clearly, equations (47a) and (48) are consistent iff the function A(H) satisfies the
following ordinary differential equation:

A = 2AA,
the general solution of which is given by one of the formulas (up to scaling H — CH )
. A=C, A=1g(H+C), A=—th(H+C)
A=-cth(H+C), A=-(H+C)', CeR.

Next, we consider the above cases separately. .
Case 3.1. A(H) = C, C # 0. In this case, equation (47a) takes the form

Pp— Ry +C(PF —RZ) = 0 (47b)
or
Py +CP} = Ry, +CR =B, PeR"
Finally, we get
Pyy=-CP} + B, Ry =—-CRZ +B. (49)
Differentiating the first equation with respect to f, the second equation with
respect to g, and subtracting, we gel

ISSN 0041-6053. Yxp. mam. xypn., 1994, m. 46, N* 10



SEPARATION OF VARIABLES IN THE TWO-DIMENSIONAL WAVE EQUATION ... 1355

(50)

-1
Pfffpf - ss)‘

-1 _
sssle = _ZC(Pff“R

Substituting (49), (50) into equation (37), we come to the equation for V = V(H),

V -3CV +2C%V =0
the general solution of which reads-
V = myexpCH + m,exp2CH, my,my, C R (51)
It is not difficult to check that function (51) satisfies equation (47b) provided that

A(H) = C. Consequently, if the potential is given by formula (51) (after rescaling
H — CH, we can choose C = 1), then the functions P(f), R(g) are determined by
equations (35). :

Case 3.2. A = tg(H+ C). Multiplying equation (47) by ctg(H+C) and
differentiating the obtained expression with respect to f and g, we arrive at the
equation

(PyyyP;" = Rygo Ry') — 2ctg (H + C) (Py—Rye ) = 0. (52)

After excluding the function ctg (H + C) from (47) and (52), we get an equation
with separated variables

(PﬂfP;‘-RgggR;’) +2(P}-R?) =0,

whence

PyPi' + 2P7 = 0, Ry R;' + 2R} = 6. (53)

In (53), 6 is an arbitrary real constant.
Substitution of formulas (52), (53) into equation (37) gives the equation for

V= V(If),
_ V -3tg(H+C)V -2V =10
the general solution of which has the form [17]
V = cos 2 (H+ C)[my + mysin(H + C)]. (54)

As a direct check shows, the function V(#H) (54) satisfies equation (47b) with
A=tg(H+C).
Integrating equations (53), we get

Pf C,sin2P + C,cos2P + ¥,

(55)
)‘i’g2 = Dsin2R + D, cos2R + 7,

where C;, D;, and 7y are arbitrary real constants.

Substitution of (55) into (47) with A = tg(H/ + C) yields the following restric-
tions on the choice of the constants C,,D;: C;, = D, = a, C, = D, = .

Thus, provided that the function V(H) is given by (44), the functions P(f), R(g)
are determined by equations (32).

Case 3.3. A = —th(H + C). In this case, one can obtain the following differen-
tial consequence of equation (47):"

PiyP7' — RegoRe' = 2cth (P +R+C)(Py—R

£E8° 8 88 ) (56)

Excluding the function ctg (H + C) from equations (47), (56), we get the equation
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< -1 _ 2 _p2
PigpPy™ — RogeRe™ = 2(Pf - Ry).
whence
-1 2 _ -1 2 _
PayFr™ —2Pf = 0, RegRy” — 2Ry = 0. eh
In (57), © is an arbitrary real constant.
Integration of equations (57) gives

P} = C sh2P + C,ch2P +¥,

(58)

1

RZ = Dysh2R + D,ch2R +¥,
where C;, D;, and 7y are arbitrary real constants.
Substituting expressions (56), (57) into (37), we obtain an equation for V(H ),
V +3th(H+C)V +2V =0,
the general solution of which has the form [17]
V = ch2(H+C)(m; +mysh(H+C)), me R (59)

It is not difficult to become convinced of the fact that function (59) satisfies equa-
tion (47b) with A = —th(H +C).

At last, substituting (57) and (58) into (47), we get C, =D, = o, C, = =D, = p.
Consequently, if the potential V(H) is given by formula (59), then functions P(f)
and R(g) are determined by equations (33).

Case3.4. A = —cth (H + ’). In this case, one can obtain the following differen-
tial consequence of equation (47):

-1 =
PyiP;' = RogeRe' = 2th (P+R+C) (PR

T (60)

55 )
Using equations (37), (47), and (60), we get an equation for V(H),
V +3cth(H+C)V +2V = 0,
the general solution of which has the form [17]

V = sh2(H+C)(my + mych (H+C)), me R ©1)

By direct computation, one can check that function (61) satisfies equation (47b)
with A = —cth(H + C).

Next, by eliminating the function th (H/ + C) from equations (47) and (60), we get
an equation with separated variables

=1 -1 2 2
PfffPf —Rgstg _2Pf + ZRg = 0,

whence

-1 - -1 2 e
PyePr” —2P; = 0, Ry R — 2R, = 6.

Here, 0 is an arbitrary real constant.

Integration of the above ordinary differential equations shows that the functions
P(f) and R(g) are determined by equations (58), where C,, D,, and y are arbitrary
real constants. Substituting (58) into equaticn (47), we have the following restrictions
on the choice of C;, D;:

C,=-D,=0a, C,=D,=8.

Thus, if the function V(H) is given by (61), then functions P(f) and R(g) are
determined by equations (34).
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Case3.5. A = —(H+ C)"'. In this case, it follows from (47a) that the equality
Pchf I= Rgg Ry ! holds. Hence, we get equations for P(f), R(g).

Pryp = 0Py, Rgee =OR, (62)

with arbitrary 0 e R!. Moregver, the equation for V(H) has the form V+
+3(H+C)V =0, whence '

V=m + mz(H+C)_2, m;e R'. (63)

It is not difficult to check that function (63) satisfies (47b) with A = —(H+ C)~ ,
Integration of equations (62) yields the following result:

P} = aP?+ C,P + C,,
; (64)
2 2 .

here; o, C;, and D, are arbitrary real constants.

Next, substituting (64) into (47), we get C, = =D, =B, C, =D, = Y.

Thus, if the potential V' is given by (63), then the functions P(f), R(g) are
determined by equations (36).

Case 4. V (H) = m = const. In this case, equation (37) reads PmrPfl =

i ~1
_RgggRg , whence

Pyp = 0P, Rgee =OR (65)

£88 g

where 6 € R! is an arbitrary constant.
Integrating (65), we get equations listed in the lemma under number 13.
Case 5. V(H) is an arbitrary function. In this case, the coefficientsof V, V, V
in (37) must vanish. Consequently, the relations
" o A gp 2 gyl
HyfHy" = Hgegtly ', Hgg = Hy Hp = Hg
hold. Hence, wehave H;=a, H, = o, 0 e R!. The lemma is proved.
Theorems 1, 2 are direct consequences of the above lemma. To prove Theorems 3
— 8, one has to integrate ordinary differential equations (30), (32) — (36) and substitute
the obtained expressions into (27),

%(x-r) = R(g) = R[22,

and (28).

Integration of equations (30). (32) — (36) is carried out in a standard way [17, 18],
the obtained result depends essentially on relations between parameters o, f, v, 8, p.
This procedure demands very cumbersome computations; this is why we omit details.

With the above remarks, the proof of Theorems 1 — 8 is completed.

4. Discussion. Let us say a few words about intrinsic characterization of SV in
equation (1). It is well known that the solution of a second-order partial differential
equation with separated variables is a joint eigenfunction of mutually commuting
second-order symmetry operators of the equation under study (for more details, see [6,
10, 14]). Below we construct, in an explicit form, a second-order symmeiry operator
of equation (1) such that the solution with separated variables is its eigenfunction and
the parameter A is an eigenvalue.

Making the change of variables (24) in equation (1), we get
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oy, = o = VE+M)(FERM)u. 66)

Provided that equation (1) admits SV, by virtue of equation (25), there exist func-
tions g,(f+g) and g,(f—g) such that

VE+M) (FEEM) ™ = ,(f+8) - 8x(f-8)
Since f+g = ®; and f-g = ©,, equation (66) takes the form

ey "“mzmz N (81((01)_32((02))“

171
or

Xu=0 X-= a?‘;’l = aiz = 8)(®)) + g;(w,).

It is evident that the operators Q; = Bﬁ‘_ —-g{w,), i = 1,2, commute with the

operator X, i.e., they are symmetry operators of equation (1) and, moreover, the
relations

Qiu = Q;9(0)P)(0;) = AQy(®))Px(®,) = Au, i =12

hold.

Thus, each solution of equation (1) with separated variables is an eigenfunction of
some second-order symmetry operator admitted by equation (1).

Now, let us turn to partial differential gquations related to equation (1). First, we
consider the wave equation

Ou+ UGG - yt)u = 0. (67)
It occurs [11] that equation (67) is reduced to the form (1) by the change of
variables
1 1
1 = exp (5 y:]chyu- t = exp (5 n |shyp
and, moreover, the potentials V(1), U(1) are connected by the relation

U = Il:' V(D). (68)

Consequently, to obtain all potentials U ( )‘g - },2) such that equation (67) admits a
nontrivial SV, one has to substitute potentials V(x) listed in Theorem 2 into formula
(68). The solution with separated variables has the form (7), where

y1 + Yo = exp{P((0, + ®,)/2)},
y1 = Yo = exp{R((0, -w,)/2)}.

The explicit form of the functions P and R is given in Theorems 3 - 8.
Another related equation is the following equation of hyperbolic type

- Vi, Xx;) = 0, (69)

Vxgxg

which is widely used in various areas of mathematical physics (see, e.g. [19] and refer-
ences therein),
Equation (69) is reduced to the form (1) by he change of variables
=1{2
u(t,x) = [e(x))] £ WXg» X;)
ey £= J Ic(xl)]'ldr!.

and, moreover,
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V(x) = =20 (@) | g e - (70)
C‘(I])

Thus, to describe all functions c(x,;) that provide separability of equation (69), it
suffices to integrate the ordinary differential equation (70). Let us show how to reduce
the nonlinear equation (70) to a linear one.

On making in (70) the change of the variable

c(x) = ()7L,
we get

¥ = 2500 + 0O

The above equation with the change of the variable y = z%(y) is reduced to the
form

z,, - V(y)z = 0. (71)
So, the general solution of the nonlinear equa}ion (70) is given by the formula
ox) = 27 H(y(x)), (72)

where z(y) is a general solution of the linear differential equation (71) and the
function y(x,) is determined by the quadrature

yx)

| 7¥wdi=x+C CeR. (73)

Consequently, the problem of description of all functions ¢(x) such that equation
(69) admits a nontrivial SV is reduced to the integration of the linear ordinary differen-

tial equation (71), where V' is given by (6). Solutions with separated variables have
the form

= Je(xy) @, (0,(xg, x,)) 9o 04(xy, X)),
where the functions ®; are determined by the equalities

dx W) + ©
[!‘04‘.[;(::-)'] (‘———'—Iz 2],

1 dx, [0)1 s 0)2)
—| X — = R| ——=|,
2 [ o -[ c(.r,)) 2
and the explicit form of P and R is given in Theorems 3 - 8.
Let us also note that, by using the corollary of Theorem 9 and formulas (71) — (73),

it is not difficult to obtain the results of Bluman and Kumei [19]. In that paper, they
have pointed out all the functions c(x;) that provide the extension of the symmetry

group admitted by equation (69).
The third related equation is the nonlinear wave equation

U, - [c*Hu], = 0. (74)
By substitution U = V , equation (74) is reduced to the form

v.'r - C_z( Vx) Vx‘r =
Applying the Legendre transformation

¢

=V, =V, v, =t, v, =x, v+V =1V, +xV,

X x1
we get equation (69). Consequently, the method of SV in the linear equation (1) makes
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it possible to construct exact solutions of the nonlinear wave equation (74).
In conclusion, we suggest a possible generalization of the definition of SV in order
to take into consideration nonlinear partial differential equations,

U(.r,u, —— u) i, (75)
1.2 N

where x = (xg.xp, ... .x,_;) and the symbol u denotes the collection of -th order
k

derivatives of the function u(x).
When speaking about a solution of equation (75) with separated variables ©; =

{x,u), i = 1, n, we mean the ansatz

F(x, u, 9 (®)), ..., 9,(w,) = 0, (76)
which reduces equation (75) to n ordinary differential equations
oY = £ 9§y 9NV R). &)

In the above formulas, ®; € CN(R"”, R' ), f; are some sufficiently smooth
functions, and A = (A,.....A,_;) are real parameters.

We say that equation (75) admits SV in the coordinates ®;(x, u), i = 1, n, if the
substitution of ansatz (76) into (75) with subsequent elimination of the N-th order

derivatives ¢, i = T, n, yields an identity with respect to the variables @,

@i @Y i = 1, n, A (considered as independent ones).

An application of the above approach to SV in nonlinear equations will be the topic
of our future publications.

Here, we present without derivation some results on separation of variables in a
two-dimensional nonlinear wave equauon obtained with the use of the above described
approach.

We have succeeded in separating variables in the following PDE:

1) Oyu = Ay(chu+(sh2u)arctge") + Aysh2u;
2) Oou = A + Ae 2
3) Oou = A(shu~—(sh2u)arthe*) + Aysh2u;

4) Oyu = 11(2sinu + (sinzu)lmgf,—‘J + hysin 2u;

5) Oyu = Au + Aulnu,

where A; and A, are arbitrary constants.
Below, we adduce ansaizes for u(x), which provide a separation of equations 1 -5
and corresponding reduced ordinary differential equations.

D u(x) = Intg (¢,(xp) + 9y(x,)),
tbf = Ccosd4g, + A@, + B,, ¢"z" = Ccos4¢p, — Ap, + B,,
where C, A, B|, and B, are arbitrary constants satisfying the relations A = A, /2,
B, -B, = A, /2;
2)  u(x) = In(@(x5) + Paxy)),
¢ = 249 + Bg; + Co, + D,, ¢3 = —24¢; + B3 - Co, + D,,
where A, B, C, D, and D, are arbitrary constants satisfying relations A = A
D, - = A,/ 2
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3) u(x) = Inth(9,(xy) + y(x)),
¢? = Cchdg, + A, + B,, ¢} = Cchdg, - Ag, + B,,

where C, A, B,, and B, are arbitrary constants satisfying the relations A = 4,/2,

4) u(x) = 2arctgexp (¢;(xy) + 9(x})),
¢? = Csh2¢, + 249, + 2B, §3 = Csh2g, — 24¢, + 2B,,
where C, A, B,, and B, are arbitrary constants satisfying the relations A = A, B, -
=By = Ay
4)  u(x) = exp (@;(xp) + Py(x;)),
¢ = C e+ Ag, + B, ¢3 = C,¢ % - Ag, + B,

where Cy, C,, A, B,, and B, are arbitrary constants satisfying the relations A = A,
Bl --Bz = lz_kl'

1. Bocher M. Die Reihentwickelunger der Potentialtheorie. — Leipzig: Teubner, 1894. — 105 p.
. Darboux G. Lecons sur les systémes orthogonaux et les coordonnées curvilignes. — Paris, 1910. -
270 p.

3, Eiseﬁkan L. P. Separable systems of Stikel // Ann. Math. — 1934, — 35, N® 2. — P. 284 - 305.

4. Cmenanos B. B. O6 ypasHennn Jlansaca W HEKOTOPWX TPHXKAHW OPTOrOHALHHX CHCTeMmax //
Mar. ¢6. — 1942. - 11. - C. 204 - 238,

5. Oaescxuii M. H. TproproroHankHee CHCTEeMb B IIPOCTPAHCTBAX NOCTOAHHON KPHBU3HKL, B KOTO-
pHX ypabhenne A,u + Au = 0 pomyckaet nosinoe pasaesieune nepemennux // Tam xe. — 1950. -
27.-C. 379 - 426.

6. Miller W. Symmetry and Separation of Variables. — Massachusetts: Addison-Wesley, 1977. — 340

(]

7. }"" ushchich W. I., Serov N. I.- The symmetry and some exact solutions of many-dimensional non-
linear d’Alembert, Liouville and eikonal equations // J. Phys. A: Math. and Gen. — 1983, - 16,
N2 15. — P. 3645 - 3656.

8. Fushchich W. I, Zhdanov R. Z. On some new exact solutions of the nonlinear d’Alembert —
Hamiltonian system // Phys. Lett. A. — 1989. — 141, N® 3, 4. - P. 113 - 115.

9. Fushthich W. I..Zhdanov R. Z., Yegorchenko I. A. On the reduction of the nonlinear multi-
dimensional wave equations and compatibility of the d’Alembert — Hamiltonian system // J. Math.
Anal. and Appl. — 1991. - 161, N° 2. - P. 352 - 360.

10. Koornwinder T. H. A precise definition of separation of variables // Lect. Notes Math. — 1980. —
810. — P. 240 - 263.

11. Zhdanov R. Z., Revenko 1. V., Fushchich W. {. On the new approach to the variable separation in
the wave equation with potential // Dokl. AN Ukrainy. Ser. A. - 1993. - N* 1. —P.9-11.

12. Kalnins E., Miller W. Lie theory and separation of variables, II: The EPD equation // J. Math.
Phys. - 1976. —17, N* 3. - P. 369 - 377.

13. Kalnins E., Miller W. Lie theory and separation of variables, 3: The equation f,, —f, = v2f// Ibid.
—1974. — 15, N® 9. — P, 1025 — 1032.

14. lllanceaacs B. H. Pa3spenenue nepeMenHnX B junHefinom nudpdepeniivanbHoM ypaBHEHHH BTO-
poro nopsanka // dndppepenin. ypasnenna. — 1980. — 16, N* 10. — C. 1864 — 1874,

15. Oscannuxos JI. B. [pynnosoit ananus audppepeHunansuux ypastennit. — M.: Hayka, 1978, —
400 c.

16. Olver P. Applications of Lie Groups to Differential Equations. — New York: Springer, 1986. —

497 p.

17 Ka.uli:‘e 9. CnpaBoyHHK no obuKHoBeHHHM AHddepenunanbiEM ypasiennam. — M.: Hayka,
1976. - 576 c.

18. Erdelyi A. et al. Higher transcendental functions. — New York: McGraw and Hill, 1953. - Vol. 1. -
253 p.; —Vol. 2. =320 p.

19. Bluman G., Kumei S. On invariance properties of the wave equation //J. Math. Phys. — 1987. — 28,
N2 2. —P. 307 - 318.

Received 30.12.92

ISSN 0041-6053. Yxp. mam. xypu., 1994, m. 46, N° 10



	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073

