Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of finite symmetric groups

Vitaly I. Sushchansky, Nataliya V. Netreba

Dedicated to Yu.A. Drozd on the occasion of his 60th birthday

Abstract

We define a wreath product of a Lie algebra L with the one-dimensional Lie algebra L_{1} over \mathbb{F}_{p} and determine some properties of this wreath product. We prove that the Lie algebra associated with the Sylow p-subgroup of finite symmetric group $S_{p^{m}}$ is isomorphic to the wreath product of m copies of L_{1}. As a corollary we describe the Lie algebra associated with Sylow p-subgroup of any symmetric group in terms of wreath product of one-dimensional Lie algebras.

1. Introduction

Lie rings associated to a group are already the classical objects of modern algebra. One can find their usefulness in a variety of applications, including the restricted Burnside problem, the study of some group identities, the theory of fixed point of automorphism, the coclass theory for p-groups and pro-p groups, the investigation of just-infinite pro-p groups, and the recent study of Hausdorff dimension and the spectrum of pro-p groups. Lie ring methods provide a recipe for translating some group-theoretic questions to Lie-theoretic ones.

A classical operation in group theory is the wreath product of groups. The wreath product of Lie algebras was defined by A. L. Shmelkin [6]

[^0]already in 1973．In spite of this the notion is almost non－investigated by now．

We define another notion of a wreath product of a Lie algebra with the one－dimensional Lie algebra over the finite field \mathbb{F}_{p} ．Our idea of the construction comes from the study of some class of Lie algebras associated with p－groups，namely the Sylow p－subgroups of finite symmetric groups． The Sylow p－subgroup P_{m} of the symmetric group $S_{p^{m}}$ is isomorphic to a wreath product of cyclic groups of order p［7］．The structure of the Lie algebra associated with P_{m} was investigated in［9］．Our definition of wreath product allows us to prove the main result of the article：Lie algebra associated with the Sylow p－subgroup of finite symmetric group $S_{p^{m}}$ is isomorphic to the wreath product of one－dimensional Lie algebra， i．e．

$$
L\left(C_{p} \text { 々...て } C_{p}\right)=L\left(C_{p}\right) \text { 乙 } \ldots \text { 々 } L\left(C_{p}\right)
$$

Using this theorem we describe the Lie algebra associated with the Sylow p－subgroup of any finite symmetric group S_{n} in terms of wreath product of one－dimensional Lie algebra．Also we investigate some basic properties of our definition of wreath product．

2．The wreath product of Lie algebras and its properties

Recall the definition of the semidirect product of Lie algebras（see［1］）．
Let M and N be Lie algebras over K and $a \mapsto \varphi_{a}$ be a homomorphism from M to the Lie algebra of differentiations of the algebra N ．Define a Lie bracket on the direct sum L of K－modules M and N by the equality：

$$
\left([a, b],\left[a^{\prime}, b^{\prime}\right]\right)=\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)+\varphi_{a}\left(b^{\prime}\right)-\varphi_{a^{\prime}}(b)\right]
$$

where $a, a^{\prime} \in M$ and $b, b^{\prime} \in N$ ．
Definition 1．Lie algebra L is called the semidirect product of algebra M and algebra N which corresponds to the homomorphism $\varphi: M \rightarrow \mathcal{D}(N)$ ， and we denote it as $L=M \curlywedge_{\varphi} N$ ．

Let L be a Lie Algebra over the field \mathbb{F}_{p} and L_{1} be the one－dimensional Lie algebra over \mathbb{F}_{p} ．

Let $L[x] /\left\langle x^{p}\right\rangle$ be the Lie algebra of polynomials over L of degree at most $p-1$ ．The Lie bracket of the monomials in this algebra is defined in the following way：

$$
\left(l x^{n}, l^{\prime} x^{m}\right)= \begin{cases}\left(l, l^{\prime}\right) x^{n+m}, & \text { if } n+m<p \tag{1}\\ 0, & \text { if } n+m \geq p\end{cases}
$$

By linearity the Lie bracket is determined for all polynomials．

The following proposition determines the one-to-one correspondence between the set $L[x] /\left\langle x^{p}\right\rangle$ and the set of all maps from L_{1} to L.

Proposition 1. Every map $f: L_{1} \rightarrow L$ corresponds to the unique polynomial $q(x)$ over L of degree at most $p-1$ such that $f(\alpha)=q(\varepsilon(\alpha))$, where $\varepsilon: L_{1} \rightarrow \mathbb{F}_{p}$ is the some isomorphism of vector spaces.

Proof. Let $f\left(\alpha_{0}\right), \ldots, f\left(\alpha_{p-1}\right)$ be the images of the elements of Lie algebra L_{1} under the map $f: L_{1} \rightarrow L$. Consider the linear system of equalities with respect to $l_{0}, \ldots, l_{p-1} \in L$:

$$
\begin{array}{cl}
l_{p-1} \varepsilon\left(\alpha_{0}\right)^{p-1}+\ldots+l_{1} \varepsilon\left(\alpha_{0}\right)+l_{0}= & f\left(\alpha_{0}\right) \\
l_{p-1} \varepsilon\left(\alpha_{1}\right)^{p-1}+\ldots+l_{1} \varepsilon\left(\alpha_{1}\right)+l_{0}= & f\left(\alpha_{1}\right) \\
\vdots & \vdots \\
l_{p-1} \varepsilon\left(\alpha_{p-1}\right)^{p-1}+\ldots+l_{1} \varepsilon\left(\alpha_{p-1}\right)+l_{0}= & f\left(\alpha_{p-1}\right),
\end{array}
$$

where $\left\{\varepsilon\left(\alpha_{i}\right)\right\}$ are all elements of the field \mathbb{F}_{p}.
Or we may write down it as:

$$
\left(\begin{array}{cccc}
\varepsilon\left(\alpha_{0}\right)^{p-1} & \ldots & \varepsilon\left(\alpha_{0}\right) & 1 \\
\varepsilon\left(\alpha_{1}\right)^{p-1} & \ldots & \varepsilon\left(\alpha_{1}\right) & 1 \\
\vdots & \vdots & \vdots & \vdots \\
\varepsilon\left(\alpha_{p-1}\right)^{p-1} & \ldots & \varepsilon\left(\alpha_{p-1}\right) & 1
\end{array}\right)\left(\begin{array}{c}
l_{p-1} \\
\vdots \\
l_{0}
\end{array}\right)=\left(\begin{array}{c}
f\left(\alpha_{0}\right) \\
\vdots \\
f\left(\alpha_{p-1}\right)
\end{array}\right)
$$

Determinant of the matrix $\operatorname{det}(A)$ is the Vandermond determinant and thus is nonzero. Hence, there is only one set of elements l_{p-1}, \ldots, l_{0} for arbitrary $f\left(\alpha_{0}\right), \ldots f\left(\alpha_{p-1}\right)$. That is

$$
\left(l_{p-1}, \ldots, l_{0}\right)^{T}=A^{-1}\left(f\left(\alpha_{0}\right), \ldots f\left(\alpha_{p-1}\right)\right)^{T}
$$

Thus, to every map $f: L_{1} \rightarrow L$ corresponds the unique polynomial $q(x)=l_{p-1} x^{p-1}+\ldots+l_{1} x+l_{0}$ over L and by construction $f(\alpha)=$ $q(\varepsilon(\alpha))$.

Therefore exists the bijection between the set of all maps $f: L_{1} \rightarrow L$ and the set of all polynomials over L of degree at most $p-1$. The structure of Lie algebra $L[x] /\left\langle x^{p}\right\rangle$ defines the structure of Lie algebra on the set of all maps $f: L_{1} \rightarrow L$. We will denote this Lie algebra as $\operatorname{Fun}\left(L_{1}, L\right) \simeq L[x] /\left\langle x^{p}\right\rangle$.

The identification ε between L_{1} and \mathbb{F}_{p} gives us the structure of $L_{1^{-}}$ module on the algebra $\operatorname{Fun}\left(L_{1}, L\right)$. Thus, we also consider the Lie algebra $\operatorname{Fun}\left(L_{1}, L\right)$ as L_{1}-module.

Further we will not distinguish the notations of the elements of one－ dimension Lie algebra L_{1} and the field \mathbb{F}_{p} ．From the context it is clear from which structures the elements are considered．

Let $f \in \operatorname{Fun}\left(L_{1}, L\right)$ ．Denote by $f^{\prime} \in F u n\left(L_{1}, L\right)$ the derivative of the polynomial f ．

Proposition 2．For every $\alpha \in L_{1}$ the map $D_{\alpha}: \operatorname{Fun}\left(L_{1}, L\right) \rightarrow \operatorname{Fun}\left(L_{1}, L\right)$ which is defined by the rule $D_{\alpha}(f)=\alpha f^{\prime}$ is the differentiation．

Proof．The linearity of the map D_{α} follows from the linearity of derivative of the polynomials．So the fact that D_{α} is differentiation is enough to verify for monomials．

$$
\begin{gathered}
D_{\alpha}\left(l x^{n}, l^{\prime} x^{m}\right)= \begin{cases}\alpha(n+m)\left(l, l^{\prime}\right) x^{n+m-1}, & \text { if } n+m<p \\
0, & \text { if } n+m \geq p\end{cases} \\
\left(D_{\alpha}\left(l x^{n}\right), l^{\prime} x^{m}\right)+\left(l x^{n}, D\left(l^{\prime} x^{m}\right)\right)=\alpha n\left(l x^{n-1}, l^{\prime} x^{m}\right)+ \\
+\quad m \alpha\left(l x^{n}, l^{\prime} x^{m-1}\right)= \begin{cases}\alpha(n+m)\left(l, l^{\prime}\right) x^{n+m-1}, & \text { if } n+m-1<p \\
0, & \text { if } n+m-1 \geq p\end{cases}
\end{gathered}
$$

Notice that if the degree $n+m=p$ ，then by definition（1）of the Lie bracket in Lie algebra $\operatorname{Fun}\left(L_{1}, L\right)$ holds $n+m=0$ ．Thus the upper equality coincides with the lower one and D_{α} is a differentiation．

Therefore we can define a map φ from Lie algebra L_{1} to the alge－ bra of differentiations $\mathcal{D}\left(F u n\left(L_{1}, L\right)\right)$ given by the rule $\alpha \mapsto D_{\alpha}$ ，where $D_{\alpha}(f)=\alpha f^{\prime}$ ．The map φ is a homomorphism．Really，$\varphi((\alpha, \beta))=0$ and $D_{\alpha} D_{\beta}(f)-D_{\beta} D_{\alpha}(f)=\alpha \beta f^{\prime \prime}-\beta \alpha f^{\prime \prime}=0$.

Definition 2．The semidirect product of Lie algebra L_{1} with Lie alge－ bra $\operatorname{Fun}\left(L_{1}, L\right)$ ，which corresponds to the homomorphism φ ，we call the wreath product of Lie algebra L with L_{1} and denote by L 亿 L_{1} ．

Thus，L て $L_{1}:=L_{1} \wedge_{\varphi} \operatorname{Fun}\left(L_{1}, L\right)=\left\{[a, f] \mid a \in L_{1}, f \in \operatorname{Fun}\left(L_{1}, L\right)\right\}$ with Lie bracket

$$
\begin{equation*}
\left(\left[a_{1}, f_{1}\right],\left[a_{2}, f_{2}\right]\right)=\left[0, a_{1} \frac{\partial f_{2}}{\partial x}-a_{2} \frac{\partial f_{1}}{\partial x}+\left(f_{1}, f_{2}\right)\right] \tag{2}
\end{equation*}
$$

Remark 1．Definition 2 allows us to consider the wreath product $L \imath L_{1}$ 〕 \ldots 乙 L_{1} for an arbitrary Lie algebra L ．

The subset of elements $[a, e]$ of $L \imath L_{1}$ forms the subalgebra P ，which is isomorphic to L_{1} ．The subset H of elements $[0, f]$ is a subalgebra of $L \imath L_{1}$ which is isomorphic to $\operatorname{Fun}\left(L_{1}, L\right)$ ．

Proposition 3. Let L be a solvable Lie algebra of the derived length n. Then $L \imath L_{1}$ is solvable of the derived length $n+1$.

Proof. By the definition of the Lie bracket in Lie algebra Fun $\left(L_{1}, L\right)$ the coefficients of a polynomial $(f, g), f, g \in \operatorname{Fun}\left(L_{1}, L\right)$, belong to the algebra $L^{(1)}=(L, L)$. Thus the inclusion $\left(\operatorname{Fun}\left(L_{1}, L\right), \operatorname{Fun}\left(L_{1}, L\right)\right) \subseteq$ $\operatorname{Fun}\left(L_{1}, L^{(1)}\right)$ holds.

The following inclusion $\left(L \backslash L_{1}\right)^{(1)} \subset\left[0, \operatorname{Fun}\left(L_{1}, L\right)\right]$ is also correct. Thus we have

$$
\begin{aligned}
\left(\left[0, \operatorname{Fun}\left(L_{1}, L\right)\right],\left[0, \operatorname{Fun}\left(L_{1}, L\right)\right]\right) & =\left[0,\left(\operatorname{Fun}\left(L_{1}, L\right), \operatorname{Fun}\left(L_{1}, L\right)\right)\right] \subseteq \\
& \subseteq\left[0, \operatorname{Fun}\left(L_{1}, L^{(1)}\right)\right]
\end{aligned}
$$

Thus, $\left(L \text { 乙 } L_{1}\right)^{(2)} \subseteq\left[0, \operatorname{Fun}\left(L_{1}, L^{(1)}\right)\right]$. If we continue this process we obtain that

$$
\left(L \imath L_{1}\right)^{(n+1)} \subseteq\left[0, F u n\left(L_{1}, L^{(n)}\right)\right]
$$

Thus, if L is solvable of derived length n then $L \imath L_{1}$ is solvable of derived length at most $n+1$.

Notice that $[0, L]$ is contained in $\left(L / L_{1}\right)^{(1)}$, where we consider elements of L as constant polynomials. Thus

$$
\left[0, L^{(n-1)}\right] \subseteq\left(L \imath L_{1}\right)^{(n)}
$$

From this follows that L 乙 L_{1} is solvable of derived length at least $n+1$. Thus $L \imath L_{1}$ is solvable of derived length n.

Proposition 4. Let L be a nilpotent Lie algebra of nilpotent class n. Then $L \imath L_{1}$ is nilpotent of nilpotent class $n p$.

Proof. Consider the lower central series of the Lie algebra $L<L_{1}$. Let $\gamma_{0}=L \imath L_{1}, \gamma_{k}=\left(\gamma_{k-1}, L \imath L_{1}\right)$ be the k-th term of the lower central series.

Denote $F_{k}=\left\{f \mid[0, f] \in \gamma_{k}\right\} \subset F u n\left(L_{1}, L\right)$. Then $\gamma_{k}=\left[0, F_{k}\right]$. From formula (2) follows that every polynomial $f \in F_{k}$ has monomials of degree $\leq p-1-k$ with coefficients from L and f has also monomials of degree $\leq p-1$ with coefficients from $\gamma_{1}(L)$.

Hence, $F_{p} \subset F u n\left(L_{1}, \gamma_{1}(L)\right)$. Notice, that polynomials of F_{p} have monomials of degree $\leq p-1$ with coefficients from $\gamma_{1}(L), \gamma_{2}(L), \ldots$, $\gamma_{p}(L)$.

In a similar we obtain $F_{p+p} \subset F u n\left(L_{1}, \gamma_{2}(L)\right)$ and so on. Thus,

$$
\gamma_{p \cdot n}=\left[0, F_{p \cdot n}\right] \subset\left[0, \operatorname{Fun}\left(L_{1}, \gamma_{n}(L)\right)\right]=[0,0]
$$

Thus，if L is nilpotent of nilpotent class n then L 乙 L_{1} is nilpotent of nilpotent class at most $n p$ ．

Notice that $[0, L] \subseteq \gamma_{k}\left(L \imath L_{1}\right), 1 \leq k \leq p-1$ ．In a similar way we obtain $\left[0, \gamma_{1}(L)\right] \subseteq \gamma_{l}\left(L \imath L_{1}\right), p \leq l \leq 2 p-1$ ．

Thus，$\left[0, \gamma_{(n-1)}(L)\right] \subseteq \gamma_{s}\left(L<L_{1}\right),(n-1) p \leq s \leq n p-1$ ．Consequently， Lie algebra $L \imath L_{1}$ is nilpotent of nilpotent class at least $n p$ ．

Thus L て L_{1} is nilpotent of nilpotent class $n p$ ．

3．Lie algebras associated with the Sylow p－subgroups of symmetric groups

We will consider the notion of＂tableau＂introduced by L．Kaloujnine in ［4］．On the set of all tableaux of the length m over \mathbb{F}_{p} we introduce the structure of Lie algebra in the following way．Define the addition，Lie bracket（，）and the multiplication on the elements of \mathbb{F}_{p} for tableaux

$$
u=\left[u_{1}, u_{2}\left(x_{1}\right), u_{3}\left(x_{1}, x_{2}\right), \ldots\right], v=\left[v_{1}, v_{2}\left(x_{1}\right), v_{3}\left(x_{1}, x_{2}\right), \ldots\right]
$$

by the following equalities $(1 \leq k \leq m)$ ：
（i）$\{u+v\}_{k}=u_{k}+v_{k} ;$
（ii）$\{(u, v)\}_{k}=\sum_{i=1}^{k-1}\left(\frac{\partial v_{k}}{\partial x_{i}} \cdot u_{i}-v_{i} \cdot \frac{\partial u_{k}}{\partial x_{i}}\right)$ ；
（iii）$\{\alpha \cdot u\}_{k}=\alpha \cdot u_{k}, \alpha \in \mathbb{F}_{p}$ ．
where $u_{1}=a_{1} \in \mathbb{F}_{p}$,

$$
u_{k}=a_{k}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=a_{k}\left(\bar{x}_{k-1}\right) \in \mathbb{F}_{p}\left[x_{1} \ldots, x_{k-1}\right] / I_{k-1}
$$

where I_{k-1} is an ideal，generated by polynomials $x_{1}^{p}, x_{2}^{p}, \ldots, x_{k-1}^{p}$ ．
According to［9］the set of all tableaux over \mathbb{F}_{p} with operations (i)－ （iii）forms the Lie algebra denoted by L_{m} ．

Denote by $L\left(P_{m}\right)$ the Lie algebra associated with the lower central series of the Sylow p－subgroup P_{m} of the symmetric group $S_{p^{m}}$ ．The structure of Lie algebra $L\left(P_{m}\right)$ was investigated in［9］．In particular，the following theorem was proved：

Theorem 5．Lie algebra $L\left(P_{m}\right)$ is isomorphic to the algebra L_{m} ．
The following theorem holds：
Theorem 6．$L_{m} \simeq L_{1}$ 々 L_{1} て \ldots ไ L_{1} ．

Proof．Note that since $P_{m} \simeq C_{p} \prec C_{p} \prec \ldots \prec C_{p}$ ，and Lie algebra $L_{m} \simeq L\left(P_{m}\right)$, then we can replace the assertion of the theorem by $L\left(C_{p}\right.$ 亿 C_{p}＿．久 $\left.C_{p}\right) \simeq$ L_{1} て L_{1} 乙 ．．．乙 L_{1} ．

We will prove the theorem by induction on the number of the com－ ponents of the wreath product．Define

If $n=1$ then $L\left(C_{p}\right) \simeq L_{1}$ and the assertion is correct．Assume that the assertion is true for n ，that is $L\left(P_{n}\right) \simeq \mathcal{L}_{n}$ ．We will show that \mathcal{L}_{n} 亿 $L_{1} \simeq L\left(P_{n}\right.$ 亿 $\left.C_{p}\right)$.

Every function $f: L_{1} \rightarrow \mathcal{L}_{n}$ can be uniquely represented by the tableau

$$
\begin{equation*}
\left[a_{1}\left(x_{1}\right), a_{2}\left(x_{1}, x_{2}\right), \ldots, a_{n}\left(x_{1}, \ldots, x_{n}\right)\right] \tag{3}
\end{equation*}
$$

where $a_{k}\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right] / I_{k}$ ．Really，$f\left(x_{1}\right)=l_{p-1} x_{1}^{p-1}+$ $\ldots+l_{0}$ ，where $l_{i} \in \mathcal{L}_{n}$ and according to the assumption of induction and theorem $5 l_{i}=\left[b_{0}^{i}, b_{1}^{i}\left(x_{2}\right), \ldots, b_{n-1}^{i}\left(x_{2}, \ldots, x_{n}\right)\right]$ ．Then $f(x)$ is uniquely represented in the form $\left[a_{1}\left(x_{1}\right), a_{2}\left(x_{1}, x_{2}\right), \ldots, a_{n}\left(x_{1}, \ldots, x_{n}\right)\right]$ ，where

$$
\begin{aligned}
& a_{i+1}\left(x_{1}, \ldots, x_{i+1}\right)=b_{i}^{p-1}\left(x_{2}, \ldots, x_{i+1}\right) x_{1}^{p-1}+\ldots+b_{i}^{0}\left(x_{2}, \ldots, x_{i+1}\right) \\
& i=0, \ldots, n-1
\end{aligned}
$$

Then f^{\prime} is represented in the form

$$
\begin{align*}
f^{\prime}= & (p-1) l_{p-1} x_{1}^{p-2}+\ldots+l_{1}= \\
= & (p-1)\left[b_{0}^{p-1}, \ldots, b_{n-1}^{p-1}\left(x_{2}, \ldots, x_{n}\right)\right] x_{1}^{p-2}+\ldots \\
& \ldots+\left[b_{0}^{1}, \ldots, b_{n-1}^{1}\left(x_{2}, \ldots, x_{n}\right)\right]= \\
= & {\left[(p-1) b_{0}^{p-1} x_{1}^{p-2}+\ldots+b_{0}^{1}, \ldots,(p-1) b_{n-1}^{p-1} x_{1}^{p-2}+\ldots+b_{n-1}^{1}\right]=} \\
= & {\left[\frac{\partial}{\partial x_{1}} a_{1}\left(x_{1}\right), \frac{\partial}{\partial x_{1}} a_{2}\left(x_{1}, x_{2}\right), \ldots, \frac{\partial}{\partial x_{1}} a_{n}\left(x_{1} \ldots, x_{n}\right)\right] } \tag{4}
\end{align*}
$$

Moreover，for every functions $f=\left[a_{1}\left(x_{1}\right), a_{2}\left(x_{1}, x_{2}\right), \ldots, a_{n}\left(\bar{x}_{n}\right)\right]$ ， $g=\left[b_{1}\left(x_{1}\right), b_{2}\left(x_{1}, x_{2}\right), \ldots, b_{n}\left(\bar{x}_{n}\right)\right]$ the function (f, g) is of the form $\left[0, c_{2}\left(x_{1}, x_{2}\right), \ldots, c_{n}\left(x_{1}, \ldots, x_{n}\right)\right]$ ，where

$$
\begin{equation*}
c_{k}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k-1}\left(a_{i} \frac{\partial}{\partial x_{i+1}} b_{k}-b_{i} \frac{\partial}{\partial x_{i+1}} a_{k}\right) \tag{5}
\end{equation*}
$$

Indeed，from the linearity of representation（3）follows that it is enough to verify（5）only for monomials．Let $f=l x_{1}^{m}$ and $g=h x_{1}^{k}$ ，where $l=$
$\left[l_{1}, l_{2}\left(x_{2}\right), \ldots, l_{n}\left(x_{2}, \ldots, x_{n}\right)\right], h=\left[h_{1}, h_{2}\left(x_{2}\right), \ldots, h_{n}\left(x_{2}, \ldots, x_{n}\right)\right] \in \mathcal{L}_{n}$. Then

$$
\begin{aligned}
f & =\left[l_{0} x_{1}^{m}, l_{1}\left(x_{2}\right) x_{1}^{m}, \ldots, l_{n}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{m}\right] \\
g & =\left[h_{0} x_{1}^{k}, h_{1}\left(x_{2}\right) x_{1}^{k}, \ldots, h_{n}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{k}\right]
\end{aligned}
$$

Then the coefficients from (5) look like:

$$
\begin{aligned}
c_{j}\left(x_{1}, \ldots, x_{j}\right) & =\sum_{i=1}^{j-1}\left(l_{i} x_{1}^{m} \frac{\partial}{\partial x_{i+1}} h_{j} x_{1}^{k}-h_{i} x_{1}^{k} \frac{\partial}{\partial x_{i+1}} l_{j} x_{1}^{m}\right)= \\
& = \begin{cases}\sum_{i=1}^{j-1}\left(l_{i} \frac{\partial}{\partial x_{i+1}} h_{j}-h_{i} \frac{\partial}{\partial x_{i+1}} l_{j}\right) x_{1}^{m+k}, & \text { if } m+k<p \\
0, & \text { if } m+k \geq p\end{cases}
\end{aligned}
$$

Let us write down how (f, g) is represented by the tableau (3) :

$$
\begin{aligned}
(f, g)= & \left\{\begin{array}{ll}
(l, h) x_{1}^{m+k}, & \text { if } m+k<p ; \\
0, & \text { if } m+k \geq p
\end{array}=\right. \\
= & \left\{\begin{array}{ll}
{\left[0, d_{2}\left(x_{2}\right), \ldots, d_{n}\left(x_{2}, \ldots, x_{n}\right)\right] x_{1}^{m+k},} & \text { if } m+k<p \\
0, & \text { if } m+k \geq p
\end{array}=\right. \\
= & \begin{cases}{\left[0, d_{2}\left(x_{2}\right) x_{1}^{m+k}, \ldots, d_{n}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{m+k}\right],} & \text { if } m+k<p \\
0, & \text { if } m+k \geq p\end{cases} \\
& \text { where } d_{j}\left(x_{2}, \ldots, x_{j}\right)=\sum_{i=1}^{j-1}\left(l_{i} \frac{\partial}{\partial x_{i+1}} h_{j}-h_{i} \frac{\partial}{\partial x_{i+1}} l_{j}\right)
\end{aligned}
$$

Thus the function (f, g) is of the form $\left[0, c_{2}\left(x_{1}, x_{2}\right), \ldots, c_{n}\left(x_{1}, \ldots, x_{n}\right)\right]$.
Let us construct the map $\psi: \mathcal{L}_{n}$ 乙 $L_{1} \rightarrow L\left(P_{n}\right.$ 乙 $\left.C_{p}\right)$ by the rule $\psi\left(\left[a_{0}, f\right]\right)=\left[a_{0}, a_{1}\left(x_{1}\right), \ldots, a_{n}\left(x_{1}, \ldots, x_{n}\right)\right]$. According to proposition 1 and theorem 5 the map ψ is a bijection. Let us show that ψ is linear. Really:

$$
\begin{aligned}
& \psi\left(\alpha\left[a_{0}, f\right]+\beta\left[b_{0}, g\right]\right)=\psi\left(\left[\alpha a_{0}+\beta b_{0}, \alpha f+\beta g\right]\right)= \\
= & {\left[\alpha a_{0}+\beta b_{0}, \alpha a_{1}\left(x_{1}\right)+\beta b_{1}\left(x_{1}\right), \ldots, \alpha a_{n}\left(\bar{x}_{n}\right)+\beta b_{n}\left(\bar{x}_{n}\right)\right]=} \\
= & \alpha\left[a_{0}, \ldots, a_{n}\left(\bar{x}_{n}\right)\right]+\beta\left[b_{0}, \ldots, b_{n}\left(\bar{x}_{n}\right)\right]=\alpha \psi\left(\left[a_{0}, f\right]\right)+\beta \psi\left(\left[b_{0}, g\right]\right) .
\end{aligned}
$$

It remains to prove that $\psi\left(\left(\left[a_{0}, f\right],\left[b_{0}, g\right]\right)\right)=\left(\psi\left(\left[a_{0}, f\right]\right), \psi\left(\left[b_{0}, g\right]\right)\right)$.
From (4) and (5) follows:

$$
\begin{aligned}
\psi\left(\left(\left[a_{0}, f\right],\left[b_{0}, g\right]\right)\right) & =\psi\left(\left[0, a_{0} g^{\prime}-b_{0} f^{\prime}+(f, g)\right]\right)= \\
& =\left[0, d_{1}\left(x_{1}\right), \ldots, d_{n}\left(x_{1}, \ldots, x_{n}\right)\right], \text { where }
\end{aligned}
$$

$$
\begin{aligned}
d_{k} & =a_{0} \frac{\partial}{\partial x_{1}} b_{k}-b_{0} \frac{\partial}{\partial x_{1}} a_{k}+\sum_{i=1}^{k-1}\left(a_{i} \frac{\partial}{\partial x_{i+1}} b_{k}-b_{i} \frac{\partial}{\partial x_{i+1}} a_{k}\right)= \\
& =\sum_{i=0}^{k-1}\left(a_{i} \frac{\partial}{\partial x_{i+1}} b_{k}-b_{i} \frac{\partial}{\partial x_{i+1}} a_{k}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\psi\left(\left(\left[a_{0}, f\right],\left[b_{0}, g\right]\right)\right) & =\left(\left[a_{0}, a_{1}\left(x_{1}\right), \ldots, a_{n}\left(\bar{x}_{n}\right)\right],\left[b_{0}, b_{1}\left(x_{1}\right), \ldots, b_{n}\left(\bar{x}_{n}\right)\right]\right)= \\
& =\left(\psi\left(\left[a_{0}, f\right]\right), \psi\left(\left[b_{0}, g\right]\right)\right) .
\end{aligned}
$$

Let S_{n} be the group of all permutations of the set of n elements, where

$$
n=a_{0}+a_{1} p+a_{2} p^{2}+\ldots+a_{k} p^{k}
$$

We describe the Lie algebra $L\left(S y l_{p}\left(S_{n}\right)\right)$ associated with the Sylow psubgroup of any symmetric group S_{n} in terms of wreath product of onedimensional Lie algebras. It is well known (see [7]), that the Sylow p subgroup of the symmetric group S_{n} is isomorphic to

$$
\begin{equation*}
S y l_{p}\left(S_{n}\right) \simeq \bigoplus_{l=0}^{k} \underbrace{S y l_{p}\left(S_{p^{l}}\right) \times \ldots \times S y l_{p}\left(S_{p^{l}}\right)}_{a_{l}} \tag{6}
\end{equation*}
$$

Proposition 7. Let $G=H \times K$ and $\gamma_{i}(H), \gamma_{i}(K)$ be the i-th terms of the lower central series of the groups H and K correspondingly. Then $\gamma_{i}(G)=\gamma_{i}(H) \times \gamma_{i}(K)$.

Proof. We will prove this assertion by induction. If $n=0$ we have $\gamma_{0}(H)=H, \gamma_{0}(K)=K$ and $\gamma_{0}(G)=G=H \times K=\gamma_{0}(H) \times \gamma_{0}(K)$. Assume that the assertion is true for i, that is $\gamma_{i}(G)=\gamma_{i}(H) \times \gamma_{i}(K)$. Then

$$
\begin{aligned}
\gamma_{i+1}(G) & =\left[\gamma_{i}(G), G\right]=\left[\gamma_{i}(H) \times \gamma_{i}(K), H \times K\right]= \\
& =\left[\gamma_{i}(H), H\right] \times\left[\gamma_{i}(K), K\right]=\gamma_{i+1}(H) \times \gamma_{i+1}(K)
\end{aligned}
$$

Hence, we obtain $\gamma_{i}(G)=\gamma_{i}(H) \times \gamma_{i}(K)$ by induction on i, as required.

Corollary 8. $L(G)=L(H) \oplus L(K)$.

Proof. Recall, that Lie algebra associated with the lower central series of the group $G($ see $[10]))$ is $L(G)=\bigoplus_{i=1}^{\infty} \gamma_{i}(G) / \gamma_{i+1}(G)$, where $\gamma_{i}(G)$ is i-th term of the lower central series of group G. Thus, we have

$$
\begin{aligned}
L(G) & =L(H \times K)=\oplus_{i \geq 0} \gamma_{i}(G) / \gamma_{i+1}(G)= \\
& =\oplus_{i \geq 0}\left(\gamma_{i}(H) \times \gamma_{i}(K)\right) /\left(\gamma_{i+1}(H) \times \gamma_{i+1}(K)\right)= \\
& =\oplus_{i \geq 0} \gamma_{i}(H) / \gamma_{i+1}(H) \oplus_{i \geq 0} \gamma_{i}(K) / \gamma_{i+1}(K)=L(H) \oplus L(K)
\end{aligned}
$$

Theorem 9. Lie algebra associated with the Sylow p-subgroup of the group S_{n} is isomorphic to

$$
L\left(S y l_{p}\left(S_{n}\right)\right) \simeq \oplus_{r=0}^{k} \underbrace{L\left(S y l_{p}\left(S_{p^{r}}\right)\right) \oplus \ldots \oplus L\left(S y l_{p}\left(S_{p^{r}}\right)\right)}_{a_{r}}
$$

Proof. The assertion of the theorem directly follows from (6) and corollary (8).

Remark 2. According to the theorem 5 we can write down the assertion of the theorem in the form

$$
L\left(S y l_{p}\left(S_{n}\right)\right) \simeq \oplus_{r=0}^{k}\left(\oplus_{i=1}^{a_{r}} 2_{j=1}^{r} L_{1}\right)
$$

References

[1] Y.A. Bahturin, Identical Relations in Lie Algebras, Nauka, Moskow, 1985; VNU Scientific Press, Utrecht, 1987.
[2] L. Bartoldi, R. I. Grigorchuk, Lie Methods in Growth of Groups and Groups of Finite Width, // Computational and Geometric Aspects of Modern Algebra. Cambridge: Camb. Univ. Press, 2000, 1-28.
[3] C.R. Leedham-Green, S. Mc Kay, The structure of groups of Prime Power order, London Math. by Monographs, New Series, 27 Oxford Science Publication, 2002, 334 p.
[4] L. Kaloujnine La structure des p-groupes de Sylow des groupes symmetriques finis, Ann. Sci l'Ecole Normal Superior, 1967, Vol 65, P 239-276.
[5] L.A. Kaloujnine, V.I. Sushchansky, Wreath products of Abelian groups, Trudy Moskovs. Matem. O-va., V. 29, p. 147-163, 1973.
[6] A.L. Shmelkin, Wreath product of Lie algebras and their application to Group Theory, Trudy Moskovs. Matem. O-va., V. 29,p. 247-260, 1973.
[7] V.I. Sushchansky, V.S. Sikora, Operations on the permutation groups, Chernivci, "Ruta", 2003. (in Ukraine)
[8] V.I. Sushchansky, Lie ring of Sylow p-subgroup of isometry group the space of integer p-adic numbers, // XVIII All-Union algebraic conference., Abstract, Part 2. Kishinev, 1985., p.192. (in Moldova)
[9] V.I. Sushchansky, The lower central series of Lie ring of Sylow p-subgroup of $I_{s} Z_{p}$, // IV All-Union school of Lie algebra and their applications in mathematics and physics, Abstract, Kazan, 1990., p.44. (in Russia)
[10] M. Vaughan, Lie Methods in group Theory, // In: Group St. And rews 2001 in Oxford, v. II, Cambridge: Camb. Univ. press,2003, 547-585.
[11] E. Zelmanov, Nil Rings and Periodic Groups, The Korean Mathmatical Society, 1992.

Contact information

V. Sushchansky Silesian University of Technology, Gliwice, Poland and Kyiv Taras Shevchenko University, Kyiv, Ukraine
E-Mail: Wital.Sushchanski@polsl.pl, wsusz@univ.kiev.ua
N. Netreba Kyiv Taras Shevchenko University, Ukraine E-Mail: netr@univ.kiev.ua

Received by the editors: 27.03.2005
and in final form 05.04.2005.

[^0]: 2000 Mathematics Subject Classification: 17B30, 17B60, 20F18, $20 F 40$.
 Key words and phrases: Lie algebra, wreath product, semidirect product, Lie algebra associated with the lower central series of the group, Sylow p-subgroup, symmetric group.

