$\mathcal{H}-, \mathcal{R}-$ and \mathcal{L}-cross-sections of the infinite symmetric inverse semigroup $I S_{X}$ Vasyl Pyekhtyeryev

Communicated by V. V. Kirichenko

Dedicated to Yu.A. Drozd on the occasion of his 60th birthday

Abstract. All $\mathcal{H}-, \mathcal{R}-$ and \mathcal{L}-cross-sections of the infinite symmetric inverse semigroup $I S_{X}$ are described.

Introduction

Let ρ be an equivalence relation on a semigroup S. The subsemigroup $T \subset S$ is called a cross-section with respect to ρ if T contains exactly 1 element from every equivalence class. Clearly, the most interesting are the cross-sections with respect to the equivalence relations connected with the semigroup structure on S. The first candidates for such relations are congruences and the Green relations.

The Green relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} on semigroup S are defined as binary relations in the following way: $a \mathcal{L} b$ if and only if $S^{1} a=S^{1} b$; $a \mathcal{R} b$ if and only if $a S^{1}=b S^{1} ; a \mathcal{J} b$ if and only if $S^{1} a S^{1}=S^{1} b S^{1}$ for any $a, b \in S$ and $\mathcal{H}=\mathcal{L} \wedge \mathcal{R}, \mathcal{D}=\mathcal{L} \vee \mathcal{R}$.

Cross-sections with respect to the $\mathcal{H}-(\mathcal{L}-, \mathcal{R}-, \mathcal{D}-, \mathcal{J}-)$ Green relations are called $\mathcal{H}-(\mathcal{L}-, \mathcal{R}-, \mathcal{D}-, \mathcal{J}-)$ cross-sections in the sequel.

The study of cross-sections with respect to Green relations for some classical semigroups was initiated a few years ago. For the semigroup $I S_{n}$ all \mathcal{H}-cross-sections were classified in $[\mathrm{CR}]$ and all \mathcal{L} - and \mathcal{R}-crosssections were classified in [GM1]. For the full transformation semigroup

[^0]\mathcal{T}_{X} all \mathcal{H} - and \mathcal{R}-cross-sections were described in [P1] and [P2], and for the Brauer semigroup all $\mathcal{H}-, \mathcal{L}-$ and \mathcal{R}-cross-sections were classified in [KMM].

In the present paper all $\mathcal{H}-, \mathcal{R}-$ and $\mathcal{L}-$ cross-sections of the infinite symmetric inverse semigroup $I S_{X}$ are described. The paper is organized as follows. We collect all necessary preliminaries in Section 1. Section 2 is dedicated to the construction and classification of all \mathcal{H}-cross-sections of $I S_{X}$. Also we prove that every two \mathcal{H}-cross-sections are isomorphic. In Section 3 we describe all $\mathcal{R}-$ and \mathcal{L}-cross-sections in $I S_{X}$. Since infinity of the set X is not used in the proof, we see that from this description one immediately gets the well-known(see [GM1]) description of the $\mathcal{R}-(\mathcal{L}-)$ cross-sections for the finite symmetric inverse semigroup $I S_{n}$. Finally, in Section 4 we determine, which $\mathcal{R}-(\mathcal{L}-)$ cross-sections are isomorphic.

1. Preliminaries

Let X be an arbitrary infinite set.
The symmetric inverse semigroup on X is the semigroup of all one-to-one partial transformations on X under composition. It is denoted by $I S_{X}$. For $a \in I S_{X}$ by $\operatorname{dom}(a)$ and $\operatorname{im}(a)$ we denote the domain and the image of the element a respectively. The cardinal number $\operatorname{rk}(a)=$ $|\operatorname{dom}(a)|=|i m(a)|$ is called the rank of a.

It is well-known (see for example [GM2]) that the Green relations on $I S_{X}$ can be described as follows:
$a \mathcal{R} b$ if and only if $\operatorname{dom}(a)=\operatorname{dom}(b)$;
$a \mathcal{L} b$ if and only if $i m(a)=i m(b)$;
$a \mathcal{H} b$ if and only if $\operatorname{dom}(a)=\operatorname{dom}(b)$ and $\operatorname{im}(a)=\operatorname{im}(b) ;$
$a \mathcal{D} b$ if and only if $\operatorname{rk}(a)=\operatorname{rk}(b)$.
In particular, Green's \mathcal{D}-classes are $D_{k}=\left\{a \in I S_{X} \mid \operatorname{rk}(a)=k\right\}, 1 \leq$ $k \leq|X|$.

Recall that a binary relation $<$ on X is a well order if it is reflexive, antisymmetric, transitive and satisfies the following properties: (i) for all $x, y \in X$, either $x<y$ or $y<x$; (ii) every non-empty subset $Y \subseteq X$ has the smallest element.

If the set X is equipped with a well order, then denote by $\xi(X)$ the order-type of this ordered set. Denote by $W(\alpha)$ the set of all ordinal numbers less than α. If $\xi(X)=\alpha$, then there exists a unique isomorphism $f: X \rightarrow W(\alpha)$. Denote by $x_{\beta}:=f^{-1}(\beta)$ for every $\beta \in W(\alpha)$. Then $X=\bigcup_{\beta<\alpha}\left\{x_{\beta}\right\}$, moreover, $x_{\beta}<x_{\gamma}$ iff $\beta<\gamma$. For every $\eta \leq \alpha$ denote by $X(\eta)$ the set $\left\{x_{\beta} \in X \mid \beta<\eta\right\}$.

Let ω be the order-type of the natural numbers in their usual order.

2. Description of \mathcal{H} - cross-sections

From the structure of Green relation \mathcal{H} on the semigroup $I S_{X}$ it follows that each \mathcal{H}-class of this semigroup is uniquely determined by two sets $A, B \subseteq X$ with $|A|=|B|$. Denote by $H(A, B)$ the \mathcal{H}-class determined by these sets.

Theorem 1. Let X be an countable set and $<$ be an arbitrary well order of type ω on the set X. Then
$I(X,<)=\left\{a \in I S_{X} \mid x<y\right.$ implies $a(x)<a(y)$ for all $\left.x, y \in \operatorname{dom}(a)\right\}$
is an \mathcal{H}-cross-section of $I S_{X}$.
Moreover, if $<_{1} \neq<_{2}$, then $I\left(X,<_{1}\right) \neq I\left(X,<_{2}\right)$.
Proof. It is obvious, that $I(X,<)$ is closed under multiplication. Also, since ω is the smallest transfinite number, we see that for every \mathcal{H}-class H the intersection $H \cap I(X,<)$ contains exactly one element. This completes the proof of the first part of our theorem.

Let $x_{1}^{\prime}<_{1} x_{2}^{\prime}<_{1} x_{3}^{\prime}<_{1} \ldots$ and $x_{1}^{\prime \prime}<_{2} x_{2}^{\prime \prime}<_{2} x_{3}^{\prime \prime}<_{2} \ldots$ be two different well orders of the type ω on the set X. By k denote the smallest number such that $x_{k}^{\prime} \neq x_{k}^{\prime \prime}$. We consider the following two cases:

1) $k=1$. Let $x_{m}^{\prime \prime}=x_{1}^{\prime}=x, x_{n}^{\prime}=x_{1}^{\prime \prime}=y$. Then the set $Y:=$ $\left\{x \in X \mid x>_{1} x_{n}^{\prime}, x>_{2} x_{m}^{\prime \prime}\right\}$ is not empty. By z denote an arbitrary element of Y. Then $x<_{1} y<_{1} z$ and $y<_{2} x<_{2} z$. Therefore in this case, we have $\left(\begin{array}{cc}x & y \\ y & z\end{array}\right) \in I\left(X,<_{1}\right)$ and also $\left(\begin{array}{cc}x & y \\ y & z\end{array}\right) \notin I\left(X,<_{2}\right)$. Hence, $I\left(X,<_{1}\right) \neq I\left(X,<_{2}\right)$.
2) $k>1$. Let $x_{1}^{\prime}=x, x_{k}^{\prime}=y, x_{k}^{\prime \prime}=z$. Then $x<_{1} y<_{1} z$ and $x<2 z<2 y$. Arguing as above, we see that $I\left(X,<_{1}\right) \neq I\left(X,<_{2}\right)$.

Theorem 2. Suppose X is an arbitrary infinite set.
a) The semigroup $I S_{X}$ contains \mathcal{H}-cross-sections if and only if the set X is countable.
b) If X is countable, then every \mathcal{H}-cross-section of IS S_{X} has the form $I(X,<)$ for some well order $<$ of the type ω on the set X. Moreover, every two \mathcal{H}-cross-sections are isomorphic.
Proof. a) Sufficiency follows from Theorem 1.
Necessity. Let T be an \mathcal{H}-cross-section of $I S_{X}$. Let K denote the complete graph on X. We orient the edges E of K as follows:

For any $x, y \in X$, let $a_{x, y}$ be a unique element of T such that $a_{x, y}(\{1,2\})=\{x, y\}$. Note that $a_{x, y}=a_{y, x}$. Define

$$
\begin{array}{ll}
(x, y) \in E & \text { if } a_{x, y}(1)=x, a_{x, y}(2)=y \\
(y, x) \in E & \text { if } a_{x, y}(1)=y, a_{x, y}(2)=x
\end{array}
$$

Clearly this provides an orientation of the edges.
We proceed by a sequence of lemmas.
Lemma 1. Let a be an arbitrary element of T and $x, y \in \operatorname{dom}(a)$. If $(x, y) \in E$, then $(a(x), a(y)) \in E$.

Proof. The proof is analogous to one of Lemma 3.3 in [CR].
Lemma 2. K has no cycles.
Proof. The proof is analogous to one of Lemma 3.4 in [CR].
Lemma 3. K does not contain two infinite paths such that one of them possesses an initial vertex and the other possesses a terminal vertex.

Proof. Assume the converse. Let $\left(x_{1}, x_{2}, \cdots\right)$ and $\left(\cdots, y_{-1}, y_{0}\right)$ be two such paths. Suppose a is a unique element of the set $T \cap H\left(\left\{x_{i} \mid i \in\right.\right.$ $\left.\mathbb{N}\},\left\{y_{i} \mid i \in \mathbb{Z} \backslash \mathbb{N}\right\}\right)$. Let $y_{k}=a\left(x_{1}\right)$ and $x_{l}=a^{-1}\left(y_{k-1}\right)$. Then by Lemma 1 , we obtain $\left(x_{l}, x_{0}\right) \in E$. This contradicts Lemma 2 and the lemma is proved.

From the previous Lemma it follows that K does not contain twosided infinite paths.

We define the graph $K^{\prime}=\left(X, E^{\prime}\right)$ as follows:
$K^{\prime}=K, \quad$ if every infinite path of K possesses an initial vertex, $K^{\prime}=K^{c}, \quad$ if every infinite path of K possesses a terminal vertex,
where K^{c} has the same vertex set as K and an arrow is in K^{c} if and only if its converse is in K. Then every infinite path of the graph K^{\prime} possesses an initial vertex and also Lemmas 1-3 hold true for this graph.

For arbitrary $x \in X$ denote by P_{x} the set $\left\{y \in X \mid(y, x) \in E^{\prime}\right\}$.
Lemma 4. If $\left|P_{x}\right|>0$, then there exists a unique element $x_{p} \in P_{x}$ such that $\left(y, x_{p}\right) \in E^{\prime}$ for all $y \in P_{x} \backslash\left\{x_{p}\right\}$.

Proof. Consider an element x_{1} of P_{x}. Let us move along the arrows of K^{\prime} the end of which also belongs to P_{x}. Assume this process is infinite. Then since K^{\prime} has no cycles, we obtain an infinite path $\left(x_{1}, x_{2}, x_{3}, \cdots\right)$. Moreover, $x_{i} \in P_{x}$ for all $i \in \mathbb{N}$. Suppose a is a unique element of the set $T \cap H\left(\left\{x_{i} \mid i \in \mathbb{N}\right\} \cup\{x\},\left\{x_{i} \mid i \in \mathbb{N}\right\}\right)$. Let $x_{k}=a(x)$ and $x_{l}=a^{-1}\left(x_{k+1}\right)$. Then by Lemma 1, we have $\left(x, x_{l}\right) \in E^{\prime}$. This contradicts $x_{l} \in P_{x}$. This implies that there exists a finite path $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which it is impossible to prolong. Thus there is no arrow with the beginning x_{n} and the end in P_{x}. Hence x_{n} satisfies lemma's conditions. Now assume there
exists an element y with the above property. Then $\left(x_{n}, y\right) \in E^{\prime},\left(y, x_{n}\right) \in$ E^{\prime} and by Lemma $2 y=x_{n}$. This completes the proof of the lemma.

Lemma 5. For any non-empty subset $Y \subseteq X$ there exists a unique element $z \in Y$ such that $(z, y) \in E^{\prime}$ for all $y \in Y \backslash\{z\}$.

Proof. Assume there is no such an element. Since K^{\prime} has no cycles, we see that starting at any element of the set Y we can move opposite the direction of the arrows infinitely long and thus construct an infinite path without an initial vertex. This contradicts the definition of the graph K^{\prime}. Now assume there exist two different elements x and z with the above property. Then $(x, z) \in E^{\prime}$ and $(z, x) \in E^{\prime}$. This contradicts Lemma 2 and the statement is proved.

Define $x<y \Longleftrightarrow$ (either $x=y$ or $\left.(x, y) \in E^{\prime}\right)$.
Lemma 6. The relation $<$ is a linear order.

Proof. From the definition of the graph K^{\prime} it follows that either $x<y$ or $y<x$ for all $x, y \in X$. Now let $x<y$ and $y<z$. Assume that $z<x$; then the graph K^{\prime} contains the cycle $x-y-z-x$. This contradicts Lemma 2 and so $x<z$. Thus $<$ is transitive. Since the proof of reflexivity and anti-symmetry of the relation are trivial, the lemma is proved.

Lemma 7. The relation $<$ is a well order of type ω.
Proof. From Lemma 5 and Lemma 6 it follows that the order $<$ is a well order. Also we have that for any $x \in X$ such that $\left|P_{x}\right|>0$ there exists a predecessor by Lemma 4. This completes the proof of the lemma.

By Lemma 7 the set X is countable.
b) Suppose X is an arbitrary countable set, T is an \mathcal{H}-cross-section of $I S_{X}$, and $<$ is the well order of the type ω on X defined in the proof of item a). Let $S=I(X,<)$. From Lemma 1, we see that $T \subseteq S$. Since T and S contain exactly one element from every \mathcal{H}-class of $I S_{X}$, we obtain $T=S$.

Now let $S_{1}=I\left(X,<_{1}\right)$ and $S_{2}=I\left(X,<_{2}\right)$ be two \mathcal{H}-cross-sections of $I S_{X}$ determined by the orders

$$
\begin{aligned}
& x_{1}^{\prime}<_{1} x_{2}^{\prime}<_{1} x_{3}^{\prime}<_{1} \ldots \\
& x_{1}^{\prime \prime}<_{2} x_{2}^{\prime \prime}<_{2} x_{3}^{\prime \prime}<_{2} \ldots
\end{aligned}
$$

Let θ denote the permutation of X such that $x_{i}^{\prime} \mapsto x_{i}^{\prime \prime}(i \in \mathbb{N})$. Then the mapping

$$
\Theta: \alpha \mapsto \theta^{-1} \alpha \theta\left(\alpha \in S_{1}\right)
$$

is an isomorphism of S_{1} onto S_{2}.

3. Description of $\mathcal{R}-$ and $\mathcal{L}-$ cross-sections

Since for $a, b \in I S_{X}$ the condition $a \mathcal{R} b$ is equivalent to the condition $\operatorname{dom}(a)=\operatorname{dom}(b)$, the equalities $a=b$ and $\operatorname{dom}(a)=\operatorname{dom}(b)$ are equivalent for elements a, b from arbitrary \mathcal{R}-cross-section T of $I S_{X}$. We will frequently use this fact in the paper.
$>$ From the structure of Green relation \mathcal{R} on the semigroup $I S_{X}$ it follows that each \mathcal{R}-class of this semigroup is uniquely determined by a set $A \subseteq X$. Denote by $R(A)$ the \mathcal{R}-class determined by this set.

Let a well order $<$ on the set X be fixed and $\xi(X)=\alpha$.
Now construct the set $R(X,<)$ in the following way: an element $a \in$ $R(A)$ with $\xi(A)=\eta \leq \alpha$ belongs to $R(X,<)$ if and only if the map a is an isomorphism of the well-ordered sets A and $X(\eta)$. Then it is obvious, that $R(X,<)$ contains exactly one element from every \mathcal{R}-class.

Lemma 8. For every well order $<$ on the set X the set $R(X,<)$ is closed under multiplication.
Proof. Let $a, b \in R(X,<)$ be arbitrary elements. Then there exist two \mathcal{R}-classes $R(A), R(B)$ such that $a \in R(A), b \in R(B)$. Let us give some notation.

$$
\eta_{A}:=\xi(A), \eta_{B}:=\xi(B), C:=X\left(\eta_{A}\right) \cap B, \eta_{C}:=\xi(C)=\xi\left(\left.b\right|_{C}\right)
$$

Then $\operatorname{dom}(a b)=a^{-1}(C)$ and $\xi(\operatorname{dom}(a b))=\eta_{C}$. To complete the proof it is now enough to show that $\left.b\right|_{C}=X\left(\eta_{C}\right)$. First suppose $\left.X\left(\eta_{C}\right) \nsubseteq b\right|_{C}$. Let x_{γ} be the smallest element of the set $\left.X\left(\eta_{C}\right) \backslash b\right|_{C}$. Since $\gamma<\eta_{C}$, there exists $\delta>\gamma$ such that $\left.x_{\delta} \in b\right|_{C}$, because otherwise $\left.b\right|_{C} \subset X(\gamma)$ and this implies $\eta_{C}=\xi\left(\left.b\right|_{C}\right) \leq \gamma$. Moreover, from $\gamma<\eta_{C}$ it follows that $\gamma<\eta_{B}$ and $x_{\gamma} \in \operatorname{im}(b)$. Let $x_{\epsilon}:=b^{-1}\left(x_{\gamma}\right)$. Since $x_{\epsilon} \notin C$, we have $x_{\epsilon} \geq$ $x_{\alpha}>b^{-1}\left(x_{\delta}\right)$. This contradicts to the fact that b is an isomorphism of well-ordered sets. Thus our assumption is wrong. Therefore $\left.X\left(\eta_{C}\right) \subseteq b\right|_{C}$. Now the equality $\left.b\right|_{C}=X\left(\eta_{C}\right)$ immediately follows from $\xi\left(\left.b\right|_{C}\right)=\eta_{C}$.

Lemma 9. For every well order $<$ on the set X the set $R(X,<)$ is an \mathcal{R}-cross-section in $I S_{X}$.

Proof. By Lemma 8 this set is closed under multiplication. Hence $R(X,<$) is a subsemigroup of $I S_{X}$. But from the construction of this set it also follows that $R(X,<)$ contains exactly one element from every \mathcal{R}-class and the statement is proved.

Let now $X=\bigcup_{i \in I} X_{i}$ be an arbitrary decomposition of X into a disjoint union of non-empty blocks, where the order of blocks is not important. Assume that a well order $<_{i}$ is fixed on the elements of the block X_{i} for all $i \in I$. The decomposition $X=\bigcup_{i \in I} X_{i}$ together with a fixed well order on every block will be denoted by $\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}$. The notation $\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\} \neq\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}$ then means that either the decompositions $X=\bigcup_{i \in I} X_{i}$ and $X=\bigcup_{j \in J} X_{j}$ are different or there exists a block on which the fixed well orders are different.

Let α_{i} be the order-type of the set X_{i}. Now construct the set $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ in the following way: an element $a \in R(A)$ belongs to $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ if and only if the map $\left.a\right|_{A \cap X_{i}}$ is an isomorphism of $A \cap X_{i}$ and $X_{i}\left(\eta_{i}\right)$, where $\eta_{i}=\xi\left(A \cap X_{i}\right) \leq \alpha_{i}$ for all $i \in I$.

Theorem 3. a) For an arbitrary decomposition $X=\bigcup_{i \in I} X_{i}$ and arbitrary well orders on the elements of every block of this decomposition the set $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ is an \mathcal{R}-cross-section of $I S_{X}$.
b) If $\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\} \neq\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}$ then one has that $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right) \neq R\left(\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}\right)$.
c) Moreover, every \mathcal{R}-cross-section of $I S_{X}$ has the form $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ for some decomposition $X=\bigcup_{i \in I} X_{i}$ and some well orders $<_{i}$ on the elements of every block.

Proof. a) We can regard elements of $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ as all possible collections $\left(a_{i} \in R\left(X_{i},<_{i}\right)\right)_{i \in I}$ with component-wise multiplication. Therefore, the item a) follows from Lemma 9.
b) Obvious.
c) Now let T be an \mathcal{R}-cross-section of $I S_{X}$. By I denote the set $\{x \in$ $\left.X \mid i d_{\{x\}} \in T\right\}$. By definition, put $X_{i}=\left\{a^{-1}(i) \mid a \in T\right.$ and $\left.\operatorname{im}(a)=\{i\}\right\}$. We consider the following two cases:

Case 1. $|I|=1$. Let $I=\left\{x_{0}\right\}$. Denote by P the set $\{\operatorname{im}(a) \mid a \in T\}$. To prove the theorem, we need several lemmas.

Lemma 10. For all $A, B \in P$ we have either $A \subseteq B$ or $B \subseteq A$.
Proof. Assume the converse. Then there exist $A, B \in P$ such that $B \backslash A \neq$ \emptyset and $A \backslash B \neq \emptyset$. Let $y \in B \backslash A, z \in A \backslash B$. Choose an element $a \in T$ such that $\operatorname{im}(a)=A$ and an element $b \in T$ such that $\operatorname{im}(b)=B$. Denote by c a unique element of the set $T \cap R(\{y, z\})$. Then $\operatorname{im}(a c)=\{c(z)\}$. Since $a c \in D_{1}$, we have $\operatorname{im}(a c)=\left\{x_{0}\right\}$. Thus $c(z)=x_{0}$. One can similarly prove that $c(y)=x_{0}$. This contradicts the injectivity of c and completes the proof.

Lemma 11. Let $k \in \mathbb{N}$ and $a, b \in D_{k} \cap T$. Then $\operatorname{im}(a)=\operatorname{im}(b)$.

Proof. Follows from the previous lemma.

For any natural number k by M_{k} denote the set $\operatorname{im}\left(D_{k} \cap T\right)$. It follows from Lemma 10 that $M_{k} \subset M_{k+1}$ for all $k \in \mathbb{N}$. Therefore, $\left|M_{k+1} \backslash M_{k}\right|=1$. Denote by x_{k} a unique element of the set $M_{k+1} \backslash M_{k}$. Then $M_{k}=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$.

We construct the relation $<$ as follows:
Define $x<x$ for all $x \in X$. For any $x, y \in X$ such that $x \neq y$, let $a_{x, y}$ be a unique element of the set $T \cap R(\{x, y\})$. Note that $a_{x, y}=a_{y, x}$ and $\operatorname{im}\left(a_{x, y}\right)=\left\{x_{0}, x_{1}\right\}$. Define

$$
\begin{array}{ll}
x<y & \text { if } a_{x, y}(x)=x_{0}, a_{x, y}(y)=x_{1} \\
y<x & \text { if } a_{x, y}(y)=x_{0}, a_{x, y}(x)=x_{1}
\end{array}
$$

Lemma 12. Let a be an arbitrary element of T and $x, y \in \operatorname{dom}(a)$. If $x<y$, then $a(x)<a(y)$.

Proof. Let $x^{\prime}=a(x), y^{\prime}=a(y)$ and $b=a_{x^{\prime}, y^{\prime}}$. Since $\operatorname{dom}(a b)=\{x, y\}=$ $\operatorname{dom}\left(a_{x, y}\right)$, we have $a b=a_{x, y}$. This implies $(a b)(x)=a_{x, y}(x)$. Also, since $x<y$, we obtain $b\left(x^{\prime}\right)=b(a(x))=(a b)(x)=a_{x, y}(x)=x_{0}$. Finally, from the definition of $<$ it follows that $x^{\prime}<y^{\prime}$, that is, $a(x)<a(y)$.

Lemma 13. The relation $<$ is a linear order.
Proof. From the definition of $<$ it follows that for all different $x, y \in X$ we have either $x<y$ or $y<x$. Reflexivity and anti-symmetry of the relation are obvious. Therefore, to complete the proof it is now enough to prove the transitivity. Considering the product $b a_{x_{k}, x_{l}}$, where $b \in T \cap D_{k+1}$, we obtain $x_{k}<x_{l}$ for all natural numbers $k<l$. Suppose x, y, z are three different elements of the set X such that $x<y$ and $y<z$. Let $T \cap R(\{x, y, z\})=\{c\}$. Then from Lemma 12 it follows that $c(x)<c(y)$ and $c(y)<c(z)$. Since $\{c(x), c(y), c(z)\}=\operatorname{im}(c)=M_{3}=\left\{x_{0}, x_{1}, x_{2}\right\}$, we have $c(x)=x_{0}, c(y)=x_{1}, c(z)=x_{2}$. Finally, using Lemma 12 and $x_{0}<x_{2}$, we get $x<z$.

Lemma 14. The element x_{0} is the smallest element of the set X, that is, the inequality $x_{0}<x$ for all $x \in X$ holds true.

Proof. It is enough to consider the product $i d_{\left\{x_{0}\right\}} a_{x_{0}, x}$.
Lemma 15. The relation < is a well order, that is, every non-empty subset $Y \subseteq X$ has the smallest element.

Proof. Let a be a unique element of the set $T \cap R(Y)$. From Lemma 10 it follows that $x_{0} \in \operatorname{im}(a)$. Let $y=a^{-1}\left(x_{0}\right)$. Then from Lemmas 12 and 14 it follows that y is the smallest element of the set Y.

By α denote the order-type of the set $(X,<)$.
Lemma 16. For all $A, B \in P$ such that $\xi(A)=\xi(B)$, we have $A=B$.
Proof. Let $A, B \in P$ be the sets from the formulation. Then by Lemma 10 we have either $A \subseteq B$ or $B \subseteq A$. Without loss of generality we can assume that $A \subseteq B$. Consider an element a of T such that $i m(a)=A$. Assume $A \neq B$, then there exists $z \in B \backslash A$. By g denote an isomorphism of the well-ordered sets B and A. Since g is bijective, we see that all elements of the sequence $\left\{g^{(n)}(z), n \geq 0\right\}$ are different and the set $C:=$ $\left\{g^{(n)}(z), n \geq 0\right\}$ is countable. Consider the pair $(z, g(z))$. If $z>g(z)$, then $g^{(n)}(z)>g^{(n+1)}(z)$ for all $n \geq 0$. This implies that the set C does not possess the smallest element. This contradicts Lemma 15. Thus $z<g(z)$ and z is the smallest element of C. Let b be a unique element of the set $T \cap R(C)$. Then $b(z)=x_{0}$. Since $a b \in T$, we see that there exists a unique number $k \geq 1$ such that $b\left(g^{(k)}(z)\right)=x_{0}$. This contradicts the injectivity of the map b and completes the proof of the lemma.

Lemma 17. For any ordinal number $\beta \leq \alpha$ the transformation $i d_{X(\beta)}$ belongs to the cross-section T.

Proof. The proof is by transfinitary induction on β. Since $0 \in T$, the basis of induction holds true. Assume the statement holds for all ordinal numbers less than β and denote by a a unique element of the set $T \cap$ $R(X(\beta))$. Let us consider two cases.

1) β is nonlimiting ordinal. Then the set $X(\beta)$ has the greatest element $x_{\beta^{\prime}}$ and $\beta=\beta^{\prime}+1$. By the inductive hypothesis, $i d_{X\left(\beta^{\prime}\right)} \in T$. Now let $b=i d_{X\left(\beta^{\prime}\right)}$ a, then $\operatorname{dom}(b)=X\left(\beta^{\prime}\right)$ and $b=i d_{X\left(\beta^{\prime}\right)}$. This implies that $\left.a\right|_{X\left(\beta^{\prime}\right)}=i d_{X\left(\beta^{\prime}\right)}$. To complete the proof it is now enough to show that $a\left(x_{\beta^{\prime}}\right)=x_{\beta^{\prime}}$. Assume the converse. Then $a\left(x_{\beta^{\prime}}\right)=x_{\delta}>x_{\beta^{\prime}}$. Further, suppose c is a unique element of the set $T \cap R\left(x_{\delta}, x_{\beta^{\prime}}\right)$. Then since $r k(a c)=1$, we obtain $c\left(x_{\delta}\right)=x_{0}$ and $c\left(x_{\beta^{\prime}}\right)=x_{1}$. This contradicts Lemma 12 and so $a\left(x_{\beta^{\prime}}\right)=x_{\beta^{\prime}}$.
2) β is limiting ordinal. In this case, for all ordinal numbers γ such that $\gamma<\beta$, we have $\gamma+1<\beta$. Then by the inductive hypothesis, $i d_{X(\gamma+1)} \in T$. In addition, let $b=i d_{X(\gamma+1)}$ a. Then $\operatorname{dom}(b)=X(\gamma+1)$ and $b=i d_{X(\gamma+1)}$. This implies $\left.a\right|_{X(\gamma+1)}=i d_{X(\gamma+1)}$. In particular, $a\left(x_{\gamma}\right)=x_{\gamma}$. Therefore $a=i d_{X(\beta)}$. This completes the proof of the lemma.

By Lemma 12, Lemma 16 and Lemma $17, T \subseteq R(X,<)$. But T and $R(X,<)$ contain a unique element from each \mathcal{R}-class of $I S_{X}$ and so we must have $T=R(X,<)$.

Case 2. $|I|>1$.
Lemma 18. If $a \in T$, then $a\left(X_{i}\right) \subseteq X_{i}$ for all $i \in I$.
Proof. Assume the converse. Then there exist elements $i \in I$ and $x \in X_{i}$ such that $a(x) \notin X_{i}$. Let b be a unique element of the set $T \cap R(\{a(x)\})$; then we obviously have $b(a(x))=j \neq i$. Since $\operatorname{dom}(a b)=\{x\}$ and $(a b)(x)=j$, we obtain $x \in X_{j}$ and so $x \notin X_{i}$. This contradiction completes the proof of the lemma.

For any $i \in I$ consider the set $T_{i}=\left\{a \in T \mid \operatorname{dom}(a) \subseteq X_{i}\right\}$ and denote $R_{i}:=\left\{\left.a\right|_{X_{i}}: a \in T_{i}\right\}$. Clearly, the set R_{i} is an \mathcal{R}-cross-section in $I S_{X_{i}}$ and also it satisfies the condition of case 1. Hence $R_{i}=R\left(X_{i},<_{i}\right)$ for some well order $<_{i}$ on the elements of X_{i}.

Lemma 19. Let a be an arbitrary element of T and $x, y \in \operatorname{dom}(a) \cap X_{i}$. If $x<_{i} y$, then $a(x)<_{i} a(y)$.

Proof. The proof is analogous to one of Lemma 12.
For any $i \in I$ by P_{i} denote the set $\left\{a\left(\operatorname{dom}(a) \cap X_{i}\right) \mid a \in T\right\}$.
Lemma 20. For any $i \in I$ and for all $A, B \in P_{i}$ we have either $A \subseteq B$ or $B \subseteq A$.

Proof. The proof is analogous to one of Lemma 10.
Lemma 21. For any $i \in I$ and for all $A, B \in P$ such that $\xi(A)=\xi(B)$, we have $A=B$.

Proof. The proof is analogous to one of Lemma 16.
Lemma 22. For all $a \in T$, we have $a\left(\operatorname{dom}(a) \cap X_{i}\right)=X_{i}(\xi(\operatorname{dom}(a) \cap$ $\left.X_{i}\right)$).

Proof. Consider an element b of T such that $\operatorname{dom}(b)=\operatorname{dom}(a) \cap X_{i}$. From Lemma 19 it follows that $\xi\left(a\left(\operatorname{dom}(a) \cap X_{i}\right)\right)=\xi(i m(b))$. Also, since $b \in T_{i}$, we obtain $a\left(\operatorname{dom}(a) \cap X_{i}\right)=i m(b)=X_{i}\left(\xi\left(\operatorname{dom}(a) \cap X_{i}\right)\right)$ by Lemma 21.

Now by Lemma $22, T \subseteq R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$. But both T and $R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ contain a unique element from each \mathcal{R}-class of $I S_{X}$ and so we must have $T=R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$.

The anti-involution $a \mapsto a^{-1}$ interchanges \mathcal{R} - and \mathcal{L}-classes in every inverse semigroup. Clearly, this anti-involution also maps \mathcal{L}-crosssections to \mathcal{R}-cross-section and vice versa. Hence, dualizing Theorem 3, one immediately gets the description of the \mathcal{L}-cross-sections in $I S_{X}$. To formulate this theorem it is convenient to introduce the following notation.

Let α_{i} be the order-type of the set X_{i}. Now construct the set $L\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ in the following way: an element $a \in L(A)$ belongs to $L\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ if and only if the map $\left.a\right|_{X_{i}\left(\eta_{i}\right)}$ is an isomorphism of $X_{i}\left(\eta_{i}\right)$ and $A \cap X_{i}$, where $\eta_{i}=\xi\left(A \cap X_{i}\right) \leq \alpha_{i}$ for all $i \in I$.

Theorem 4. a) For an arbitrary decomposition $X=\bigcup_{i \in I} X_{i}$ and arbitrary well orders on the elements of every block of this decomposition the set $L\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ is an \mathcal{L}-cross-section of $I S_{X}$.
b) If $\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\} \neq\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}$ then one has that $L\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right) \neq L\left(\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}\right)$.
c) Moreover, every \mathcal{L}-cross-section of $I S_{X}$ has the form $L\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ for some decomposition $X=\bigcup_{i \in I} X_{i}$ and some well orders $<_{i}$ on the elements of every block.

4. Classification of $\mathcal{R}-(\mathcal{L}-)$ cross-sections up to isomorphism

By $\omega_{\alpha+1}$ denote the smallest ordinal number of cardinality $\aleph_{\alpha+1}$. Let $R=R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ be an \mathcal{R}-cross-section of $I S_{X}$, where $|X|=\aleph_{\alpha}$. The map $f_{R}: W\left(\omega_{\alpha+1}\right) \rightarrow\left[0, \aleph_{\alpha}\right], \eta \mapsto\left|\left\{i \in I \mid \xi\left(X_{i}\right)=\eta\right\}\right|$, will be called the type of R. Analogously one defines the type of an \mathcal{L}-cross-section.

Theorem 5. Two $\mathcal{R}-(\mathcal{L}-)$ cross-sections in $I S_{X}$ are isomorphic if and only if they have the same type.

Proof. Clearly, it is enough to prove the statement for, say \mathcal{R}-crosssections. Let $R_{1}=R\left(\left\{\bigcup_{i \in I}\left(X_{i},<_{i}\right)\right\}\right)$ and $R_{2}=R\left(\left\{\bigcup_{j \in J}\left(X_{j},<_{j}\right)\right\}\right)$ be two arbitrary \mathcal{R}-cross-sections of types $f_{R_{1}}$ and $f_{R_{2}}$ respectively.

Necessity. Assume first that $R_{1} \simeq R_{2}$ and f is an arbitrary isomorphism of these cross-sections. Since every idempotent of the cross-sections has the form $i d_{A}$ for some subset $A \subseteq X$, we have $f\left(i d_{A}\right)=i d_{B}$. Consider the equation $i d_{A} \cdot x=x$ in the semigroup R_{1}. Its solutions form the set $\left\{x \in R_{1} \mid \operatorname{dom}(x) \in A\right\}$. Since R_{1} is a cross-section, this equation has exactly $2^{|A|}$ solutions. Also, since corresponding equations have the same quantity of solutions under the isomorphism, we obtain $2^{|A|}=2^{|B|}$. Thus if $|A|=n<\infty$, then $|B|=n$. This implies that there exists a bijection between idempotents of the finite rank n. In particular, for
$n=1$, there exists a bijection \widetilde{f} between the set I and the set J given by the rule $\widetilde{f}(i)=j$ iff $f\left(i d_{\{i\}}\right)=i d_{\{j\}}$. For any $i \in I$ and $x \in X_{i}$ by a_{x} denote a unique element of $R_{1} \cap R(\{x\})$. Further, for any $i \in I$ define the map $f_{i}: X_{i} \rightarrow Y_{\widetilde{f}(i)}$ by the rule $x \mapsto \operatorname{dom}\left(f\left(a_{x}\right)\right)$. Since $f\left(a_{x}\right)$ satisfies the equation $y \cdot i d_{\{\tilde{f}(i)\}}=y$, we see that this map is well defined. Also, since f is isomorphism, we see that f_{i} is bijection. To complete the proof it is now enough to show that f_{i} is an isomorphism of the wellordered sets X_{i} and $Y_{\widetilde{f}(i)}$ for all $i \in I$. Since for all $a \in R_{1}$ such that $r k(a)=n<\infty$, we have $a \cdot i d_{i m(a)}=a$, where $r k\left(i d_{i m(a)}\right)=n$, we obtain that in the semigroup R_{2} the equality $f(a) \cdot i d_{B}=f(a)$ holds true, where $r k\left(i d_{B}\right)=n$. This implies $r k(f(a)) \leq n=r k(a)$. Similarly, we can show that $r k(a) \leq r k(f(a))$ and so for all $a \in R_{1}$ such that $r k(a)=n<\infty$, we have $r k(a)=r k(f(a))$.

Let an element i of the set I be fixed. If $\left|X_{i}\right|=1$, then it is obvious, that f_{i} is an isomorphism of the well-ordered sets. If $\left|X_{i}\right|>1$, then by i^{\prime} denote the successor of i in the well-ordered set $\left(X_{i},<_{i}\right)$. Let $j:=$ $f_{i}(i)=\widetilde{f}(i), j^{\prime}:=f_{i}\left(i^{\prime}\right), a_{i}=i d_{\{i\}}$ and $b_{j}=i d_{\{j\}}$. Suppose $a_{i^{\prime}}$ is a unique element of $R_{1} \cap R\left(\left\{i^{\prime}\right\}\right)$ and $b_{j^{\prime}}$ is a unique element of $R_{2} \cap R\left(\left\{j^{\prime}\right\}\right)$. Then $f\left(a_{i}\right)=b_{j}$ and $f\left(a_{i^{\prime}}\right)=b_{j^{\prime}}$. Since $i d_{\left\{i, i^{\prime}\right\}} \in R_{1}$, we see that in R_{1} the equalities $i d_{\left\{i, i^{\prime}\right\}} \cdot a_{i}=a_{i}, i d_{\left\{, i^{\prime}\right\}} \cdot a_{i^{\prime}}=a_{i^{\prime}}$ hold true. Therefore in R_{2} the equalities $f\left(i d_{\left\{i, i^{\prime}\right\}}\right) \cdot b_{j}=b_{j}, f\left(i d_{\left\{i, i^{\prime}\right\}}\right) \cdot b_{j^{\prime}}=b_{j^{\prime}}$ hold true. This implies $j, j^{\prime} \in \operatorname{dom}\left(f\left(i d_{\left\{i, i^{\prime}\right\}}\right)\right)$ and $\left.f\left(i d_{\left\{i, i^{\prime}\right\}}\right)\right|_{\left\{j, j^{\prime}\right\}}=i d_{\left\{j, j^{\prime}\right\}}$. But since $r k\left(f\left(i d_{\left\{i, i^{\prime}\right\}}\right)\right)=2$, we obtain $f\left(i d_{\left\{i, i^{\prime}\right\}}\right)=i d_{\left\{j, j^{\prime}\right\}}$. Hence $i d_{\left\{j, j^{\prime}\right\}} \in R_{2}$. This means that j^{\prime} is the successor of j in the well-ordered set $\left(Y_{j},<_{j}\right)$.

Let x_{1} and x_{2} be two different elements of X_{i} such that $x_{1}<_{i} x_{2}$. Then the element $\alpha=\left(\begin{array}{cc}x_{1} & x_{2} \\ i & i^{\prime}\end{array}\right)$ belongs to R_{1}. Let $y_{1}:=f_{i}\left(x_{1}\right), y_{2}:=$ $f_{i}\left(x_{2}\right)$. Defining elements $a_{x_{1}}, a_{x_{2}}, b_{y_{1}}, b_{y_{2}}$ similarly, we can show that $\left(\begin{array}{cc}y_{1} & y_{2} \\ j & j^{\prime}\end{array}\right)=f(\alpha) \in R_{2}$. This means $y_{1}<_{j} y_{2}$. Therefore f_{i} is an isomorphism of the well-ordered sets $\left(X_{i},<_{i}\right)$ and $\left(Y_{j},<_{j}\right)$ and the statement is proved.

Sufficiency. Obvious.

Acknowledgements

I would like to thank Prof. O. G. Ganyushkin for fruitful discussions.

References

[CR] Cowan D., Reilly N., Partial cross-sections of symmetric inverse semigroups International J. Algebra and Comput. 5 (1995), no. 3, 259-287.
[GM1] Ganyushkin O., Mazorchuk V., \mathcal{L} - and \mathcal{R}-cross-sections in $I S_{n}$ Com. in Algebra 31 (2003), no. 9, 4507-4523.
[GM2] Ganyushkin O., Mazorchuk V., The full finite Inverse symmetric semigroup $I S_{n}$, Preprint 2001:31, Chalmers University of Technology and Goteborg University, Goteborg, 2001.
[KMM] Kudryavtseva G., Maltsev V., Mazorchuk V., \mathcal{L} - and \mathcal{R}-cross-sections in the Brauer semigroup, U.U.D.M. Report 2004:43, Uppsala University, 2004.
[P1] Pyekhtyeryev V., \mathcal{H} - and \mathcal{R}-cross-sections of the full finite semigroup T_{n}. J. Algebra and Discrete Mathematics no. 3 (2003), 82-88.
[P2] Pyekhtyeryev V., \mathcal{R}-cross-sections of \mathcal{T}_{X} Mathematical studio, 21 (2004), 133139. [ukrainian]

Contact information

Pyekhtyeryev V. Department of Mechanics and Mathematics, Kiyv Taras Shevchenko University, 64, Volodymyrska st., 01033, Kiyv, UKRAINE E-Mail: vasiliy@univ.kiev.ua

Received by the editors: 29.12.2004
and in final form 21.03.2005.

[^0]: 2000 Mathematics Subject Classification: 20M20, $20 M 10$.
 Key words and phrases: Symmetric inverse semigroup, Green relations, crosssections.

