Finite groups admitting a dihedral group of automorphisms*

Guilinn Ercan and İsmaĩı ş. Güloğlu

Communicated by A. Yu. Olshanskii

Abstract. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β and let $F=\langle\alpha \beta\rangle$. Suppose that D acts on a finite group G by automorphisms in such a way that $C_{G}(F)=1$. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups $C_{G}(\alpha)$ and $C_{G}(\beta)$.

1. Introduction

Throughout the paper all groups are finite. Let F be a nilpotent group acted on by a group H via automorphisms and let the group G admit the semidirect product $F H$ as a group of automorphisms so that $C_{G}(F)=1$. By a well known result [1] due to Belyaev and Hartley, the solvability of G is a drastic consequence of the fixed point free action of the nilpotent group F. A lot of research, $[7,10,11,13-15]$, investigating the structure of G has been conducted in case where $F H$ is a Frobenius group with kernel F and complement H. So the immediate question one could ask was whether the condition of being Frobenius for $F H$ could be weakened or not. In this direction we introduced the concept of a Frobenius-like group in [8] as a generalization of Frobenius group and investigated the structure of G when the group $F H$ is Frobenius-like [3],[4],[5],[6]. In particular,

[^0]we obtained in [3] the same conclusion as in [10]; namely the nilpotent lengths of G and $C_{G}(H)$ are the same, when the Frobenius group $F H$ is replaced by a Frobenius-like group under some additional assumptions. In a similar attempt in [16] Shumyatsky considered the case where $F H$ is a dihedral group and proved the following.

Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β and let $F=\langle\alpha \beta\rangle$. (Here, $D=F H$ where $H=\langle\alpha\rangle$) Suppose that D acts on the group G by automorphisms in such a way that $C_{G}(F)=1$. If $C_{G}(\alpha)$ and $C_{G}(\beta)$ are both nilpotent then G is nilpotent.

In the present paper we extend his result as follows.
Theorem. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β and let $F=\langle\alpha \beta\rangle$. Suppose that D acts on the group G by automorphisms in such a way that $C_{G}(F)=1$. Then the nilpotent length of G is equal to the maximum of the nilpotent lengths of the subgroups $C_{G}(\alpha)$ and $C_{G}(\beta)$.

After completing the proof we realized that it follows as a corollary of the main theorem of a recent paper [2] by de Melo. The proof we give relies on the investigation of D-towers in G in the sense of [17] and the following proposition which, we think, can be effectively used in similar situations.

Proposition. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β. Suppose that D acts on a q-group Q for some prime q and let V be a $k Q D$-module for a field k of characteristic different from q such that the group $F=\langle\alpha \beta\rangle$ acts fixed point freely on the semidirect product VQ. If $C_{Q}(\alpha)$ acts nontrivially on V then we have $C_{V}(\alpha) \neq 0$ and $\operatorname{Ker}\left(C_{Q}(\alpha)\right.$ on $\left.C_{V}(\alpha)\right)=\operatorname{Ker}\left(C_{Q}(\alpha)\right.$ on $\left.V\right)$.

Notation and terminology are standard unless otherwise stated.

2. Proof of the proposition

We first present a lemma to which we appeal frequently in our proofs.
Lemma. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β and let $F=\langle\alpha \beta\rangle$. Suppose that D acts on the group S by automorphisms in such a way that $C_{S}(F)=1$. Then the following hold.
(i) For each prime p dividing its order, the group S contains a unique D-invariant Sylow p-subgroup.
(ii) Let N be a normal D-invariant subgroup of S. Then $C_{S / N}(F)=1$, $C_{S / N}(\alpha)=C_{S}(\alpha) N / N$ and $C_{S / N}(\beta)=C_{S}(\beta) N / N$.
(iii) $S=C_{S}(\alpha) C_{S}(\beta)$.

Proof. See the proofs of Lemma 2.6, Lemma 2.7 and Lemma 2.8 in [16].
We are now ready to prove the proposition.
Notice that $V=C_{V}(\alpha) C_{V}(\beta)$ by Lemma (iii) applied to the action of D on V. Suppose first that $C_{V}(\alpha)=0$. Then $[V, \beta]=0$ whence $[Q, \beta] \leqslant$ $\operatorname{Ker}(Q$ on $V)$ by the Three Subgroup Lemma. Set $\bar{Q}=Q / \operatorname{Ker}(Q$ on $V)$. We observe that $C_{Q}(F)=1$ implies $C_{\bar{Q}}(F)=1$ by Lemma (ii). This forces $C_{\bar{Q}}(\alpha)=1$. As the equality $C_{\bar{Q}}(\alpha)=\overline{C_{Q}(\alpha)}$ holds by Lemma (ii), we get $C_{Q}(\alpha)$ acts trivially on V. This contradiction shows that $C_{V}(\alpha) \neq 0$ establishing the first claim.

To ease the notation we set $H=\langle\alpha\rangle$ and $K=\operatorname{Ker}\left(C_{Q}(H)\right.$ on $\left.C_{V}(H)\right)$. Here $D=F H$. To prove the second claim we use induction on $\operatorname{dim}_{k} V+$ $|Q D|$. We choose a counterexample with minimum $\operatorname{dim}_{k} V+|Q D|$ and proceed over several steps.

1) We may assume that k is a splitting field for all subgroups of $Q F H$.

We consider the $Q D$-module $\bar{V}=V \otimes_{k} \bar{k}$ where \bar{k} is the algebraic closure of k. Notice that $\operatorname{dim}_{k} V=\operatorname{dim}_{\bar{k}} \bar{V}$ and $C_{\bar{V}}(H)=C_{V}(H) \otimes_{k} \bar{k}$. Therefore once the proposition has been proven for the group $Q D$ on \bar{V}, it becomes true for $Q D$ on V also.
2) V is an indecomposable $Q D$-module on which Q acts faithfully.

Notice that V is a direct sum of indecomposable $Q D$-submodules. Let W be one of these indecomposable $Q D$-submodules on which K acts nontrivially. If $W \neq V$, then the proposition is true for the group $Q D$ on W by induction. That is,

$$
\operatorname{Ker}\left(C_{Q}(H) \text { on } C_{W}(H)\right)=\operatorname{Ker}\left(C_{Q}(H) \text { on } W\right)
$$

and hence

$$
K=\operatorname{Ker}\left(K \text { on } C_{W}(H)\right)=\operatorname{Ker}(K \text { on } W)
$$

which is a contradiction with the assumption that K acts nontrivially on W. Hence $V=W$.

Recall that $\bar{Q}=Q / \operatorname{Ker}(Q$ on $V)$ and consider the action of the group $\bar{Q} D$ on V assuming $\operatorname{Ker}(Q$ on $V) \neq 1$. An induction argument gives $\operatorname{Ker}\left(C_{\bar{Q}}(H)\right.$ on $\left.C_{V}(H)\right)=\operatorname{Ker}\left(C_{\bar{Q}}(H)\right.$ on $\left.V\right)$. This leads to a contradiction as $C_{\bar{Q}}(H)=\overline{C_{Q}(H)}$ by Lemma(ii). Thus we may assume that Q acts faithfully on V.
3) Let Ω denote the set of Q-homogeneous components of V. K acts trivially on every element W in Ω such that $\operatorname{Stab}_{H}(W)=1$ and so H fixes an element of Ω.

Let W be in Ω such that $\operatorname{Stab}_{H}(W)=1$. Then the sum $X=W+W^{\alpha}$ is direct. It is straightforward to verify that $C_{X}(H)=\left\{v+v^{\alpha}: v \in W\right\}$. By definition, K acts trivially on $C_{X}(H)$. Note also that K normalizes both W and W^{α} as $K \leqslant Q$. It follows now that K is trivial on X and hence on W. This shows that H fixes at least one element of Ω because otherwise $K=1$, a contradiction.
4) F acts transitively on Ω.

Let $\Omega_{i}, i=1, \ldots, s$ be all distinct D-orbits of Ω. Then $V=$ $\bigoplus_{i=1}^{s} \bigoplus_{W \in \Omega_{i}} W$. Since $\bigoplus_{W \in \Omega_{i}} W$ is $Q D$-invariant for each i we have $s=1$ by (2), that is, D acts transitively on Ω. Let W be an H-invariant element of Ω whose existence is guaranteed by (3). Then the F-orbit containing W in Ω is the whole of Ω.

From now on W denotes an H-invariant element of Ω. It should be noted that the group $Z(Q / \operatorname{Ker}(Q$ on $W))$ acts by scalars on the homogeneous Q-module W, and so $[Z(Q), H] \leqslant \operatorname{Ker}(Q$ on $W)$. Set $F_{1}=$ $\operatorname{Stab}_{F}(W)$ and let T be a transversal containing 1 for F_{1} in F. Then $F=\bigcup_{t \in T} F_{1} t$ and so $V=\bigoplus_{t \in T} W^{t}$. Note that an H-orbit on $\Omega=\left\{W^{t}\right.$: $t \in T\}$ is of length at most 2 .
5) The number of H-invariant elements in Ω is at most 2 , and is equal to 2 if and only if $\left|F / F_{1}\right|$ is even. Furthermore $V=U \oplus X$ where X is a Q-submodule centralized by K and U is the direct sum of all H-invariant elements in Ω.

If W^{t} is H-invariant then $W^{t \alpha}=W^{t}$ implies $t^{\alpha} t^{-1} \in F_{1}$. On the other hand $t^{\alpha} t^{-1}=t^{-2}$ since α inverts F. That is, $t F_{1}$ is an element of F / F_{1} of order at most 2. If $t F_{1}=F_{1}$ then $t=1$. Otherwise $t F_{1}$ is the unique element of order 2 in F / F_{1}. Thus the number of H-invariant elements in Ω is at most 2 and if it is equal to 2 then $\left|F / F_{1}\right|$ is even. If conversely F / F_{1} is of even order, let $y F_{1}$ be the unique element of order 2 in F / F_{1}. Then $y^{\alpha} F_{1}=y F_{1}$ and so $\left(W^{y}\right)^{\alpha}=W^{y^{\alpha}}=W^{y} \neq W$. This shows that there exist exactly two H-invariant elements in Ω if and only if F / F_{1} is of even order.
6) Since $1 \neq K \unlhd C_{Q}(H)$, we can choose a nonidentity element $z \in$ $K \cap Z\left(C_{Q}(H)\right)$. Set $L=\langle z\rangle$. Then $Q=L^{F_{2}} C_{Q}(U)$ where $F_{2}=\operatorname{Stab}_{F}(U)$.

It follows from an induction argument applied to the action of $L^{F} D$ on V that $Q=L^{F}$. Let $F_{2}=\operatorname{Stab}_{F}(U)$ and observe that for any $f \in$
$F-F_{2}, U^{f} \leqslant X$ and hence is centralized by L by (5). Thus we get $Q=L^{F_{2}} C_{Q}(U)=L^{F_{2}} C_{Q}(W)$.
7) Set $Y=F_{q^{\prime}}$. Then $Y \cap F_{1} \neq Y \cap F_{2}$.

Suppose that $Y \cap F_{1}=Y \cap F_{2}$. Pick a simple commutator $c=$ $\left[z^{f_{1}}, \ldots, z^{f_{m}}\right]$ of maximal weight in the elements $z^{f}, f \in F_{1}$ such that $c \notin C_{Q}(W)$. Since $Q=L^{F_{2}} C_{Q}(W)$, the weight of this commutator is equal to the nilpotency class of $Q / C_{Q}(W)$. It should be noted that the nilpotency classes of $Q / C_{Q}(W)$ and Q are the same, since Q can be embedded into the direct product of $Q / C_{Q}\left(W^{f}\right)$ as f runs through F. Hence $c \in Z(Q)$. Clearly, $C_{Q}(F)=1$ implies $C_{Q}(Y)=1$ and hence $\prod_{x \in Y} c^{x}=1$, as $\prod_{x \in Y} c^{x}$ is contained in $Z(Q)$ and is fixed by Y. In fact we have

$$
1=\prod_{x \in Y} c^{x}=\prod_{x \in Y-F_{1}} c^{x} \prod_{x \in Y \cap F_{1}} c^{x} .
$$

Recall that $\left[Z(Q), F_{1}\right] \leqslant C_{Q}(W)$ and hence $\left[Z(Q), F_{1}\right] \leqslant \bigcap_{f \in F} C_{Q}\left(W^{f}\right)=$ $C_{Q}(V)=1$. This gives $\prod_{x \in Y \cap F_{1}} c^{x}=c^{\left|Y \cap F_{1}\right|}$. On the other hand, for any $f \in F_{1}$ and any $x \in Y-F_{1}, f x \notin F_{2}$ and so z centralizes $W^{(f x)^{-1}}$, that is, $z^{f x} \in C_{Q}(W)$. Therefore c^{x} lies in $C_{Q}(W)$ for any x in $Y-F_{1}$. It follows that $\prod_{x \in Y-F_{1}} c^{x} \in C_{Q}(W)$. This forces that $c^{\left|Y \cap F_{1}\right|} \in C_{Q}(W)$ which is impossible as $c \notin C_{Q}(W)$.
8) Final contradiction.

By (5) and (7), $\left|F_{2}: F_{1}\right|=2$ and q is odd. Now $Z_{2}(Q)=$ $\left[Z_{2}(Q), H\right] C_{Z_{2}(Q)}(H)$ as $(|Q|,|H|)=1$. Notice that $U=W \oplus W^{t}$ for some $t \in T$ which may be assumed to lie in $F_{2}=\operatorname{Stab}_{F}(U)$. We have $\left[Z_{2}(Q), L, H\right] \leqslant[Z(Q), H] \leqslant C_{Q}(W) \cap C_{Q}\left(W^{t}\right)=C_{Q}(U)$. We also have $\left[L, H, Z_{2}(Q)\right]=1$ as $[L, H]=1$. It follows now by the Three Subgroup Lemma that $\left[H, Z_{2}(Q), L\right] \leqslant C_{Q}(U)$. On the other hand $\left[C_{Z_{2}(Q)}(H), L\right]=1$ by the definition of L. Thus $\left[L, Z_{2}(Q)\right] \leqslant C_{Q}(U)$. Then we have $\left[L^{F_{2}}, Z_{2}(Q)\right] \leqslant C_{Q}(U)$, as U is F_{2} - invariant, which yields that $\left[Q, Z_{2}(Q)\right] \leqslant C_{Q}(U)$. Thus $\left[Q, Z_{2}(Q)\right] \leqslant \bigcap_{f \in F} C_{Q}(U)^{f}=C_{Q}(V)=1$ and hence Q is abelian.

Now $\left[Q, F_{1} H\right] \leqslant C_{Q}(W)$ due to the scalar action of $Q / C_{Q}(W)$ on W. Notice that $C_{W}(H)=0$ because otherwise L is trivial on W due to its action by scalars. So H inverts every element of W. Since $\operatorname{Stab}_{F}\left(W^{t}\right)=$ $\operatorname{Stab}_{F}(W)^{t}=F_{1}^{t}=F_{1}$, we can replace W by W^{t} and conclude that H inverts every element in U. That is, H acts by scalars and hence lies in the center of $Q F_{2} H / C_{Q F_{2}}(U)$. On the other hand H inverts $F_{2} / C_{F_{2}}(U)$. It follows that $\left|F_{2} / C_{F_{2}}(U)\right|=1$ or 2 . Since $\left|F_{2}: F_{1}\right|=2$, we have $F_{1} \leqslant C_{F_{2}}(U)$. This contradicts the fact that $C_{W}\left(F_{1}\right)=0$ as $C_{V}(F)=0$.

3. Proof of the theorem

Suppose that $n=f(G) \geqslant f\left(C_{G}(\alpha)\right) \geqslant f\left(C_{G}(\beta)\right)$ and set $H=\langle\alpha\rangle$. We may assume by Proposition 5 in [9] that $C_{G}(F)=1$ implies $[G, F]=G$. In view of Lemma (i) for each prime p dividing the order of G there is a unique D-invariant Sylow p-subgroup of G. This yields the existence of an irreducible D-tower $\widehat{P}_{1}, \ldots, \widehat{P}_{n}$ in the sense of [17] where
(a) \widehat{P}_{i} is a D-invariant p_{i}-subgroup, p_{i} is a prime, $p_{i} \neq p_{i+1}$, for $i=$ $1, \ldots, n-1$
(b) $\widehat{P}_{i} \leqslant N_{G}\left(\widehat{P}_{j}\right)$ whenever $i \leqslant j$;
(c) $P_{n}=\widehat{P}_{n}$ and $P_{i}=\widehat{P}_{i} / C_{\widehat{P}_{i}}\left(P_{i+1}\right)$ for $i=1, \ldots, n-1$ and $P_{i} \neq 1$ for $i=1, \ldots, n$;
(d) $\Phi\left(\Phi\left(P_{i}\right)\right)=1, \Phi\left(P_{i}\right) \leqslant Z\left(P_{i}\right)$, and $\exp \left(P_{i}\right)=p_{i}$ when p_{i} is odd for $i=1, \ldots, n$;
(e) $\left[\Phi\left(P_{i+1}\right), P_{i}\right]=1$ and $\left[P_{i+1}, P_{i}\right]=P_{i+1}$ for $i=1, \ldots, n-1$;
(f) $\left(\Pi_{j<i} \widehat{P_{j}}\right) F H$ acts irreducibly on $P_{i} / \Phi\left(P_{i}\right)$ for $i=1, \ldots, n$;
(g) $P_{1}=\left[P_{1}, F\right]$.

Set now $X=\prod_{i=1}^{n} \widehat{P}_{i}$. As $P_{1}=\left[P_{1}, D\right]$ by (g), we observe that $X=[X, D]$. If X is proper in G, by induction we have $n=f(X)=$ $f\left(C_{X}(H)\right)$ and so the theorem follows. Hence $X=G$. Notice that G is nonabelian and hence $C_{G}(H) \neq 1$, that is $f\left(C_{G}(H) \geqslant 1\right.$. Therefore the theorem is true if $G=F(G)$. We set next $\bar{G}=G / F(G)$. As \bar{G} is a nontrivial group such that $\bar{G}=[\bar{G}, F]$, it follows by induction that $f(\bar{G})=n-1=f\left(C_{\bar{G}}(H)\right)$. This yields that $\left[C_{\widehat{\widehat{P}_{n-1}}}(H), \ldots, C_{\widehat{\widehat{P}_{1}}}(H)\right]$ is nontrivial. Since $C_{\widehat{\widehat{P}_{i}}}(H)=\overline{C_{\widehat{P}_{i}}(H)}$ for each i by Lemma (ii), we have $Y=\left[C_{\widehat{P}_{n-1}}(H), \ldots, C_{\widehat{P}_{1}}(H)\right] \not \leq F(G) \cap \widehat{P}_{n-1}=C_{\widehat{P}_{n-1}}\left(\widehat{P}_{n}\right)$.

By the Proposition applied to the action of the group $\widehat{P}_{n-1} F H$ on the module $\widehat{P}_{n} / \Phi\left(\widehat{P}_{n}\right)$ we get

$$
\operatorname{Ker}\left(C_{\widehat{P}_{n-1}}(H) \text { on } C_{\widehat{P}_{n} / \Phi\left(\widehat{P}_{n}\right)}(H)\right)=\operatorname{Ker}\left(C_{\widehat{P}_{n-1}}(H) \text { on } \widehat{P}_{n} / \Phi\left(\widehat{P}_{n}\right)\right)
$$

It follows now that Y does not centralize $C_{\widehat{P}_{n}}(H)$ and hence $f\left(C_{G}(H)=\right.$ $n=f(G)$. This completes the proof.

References

[1] V. V. Belyaev and B. Hartley, Centralizers of finite nilpotent subgroups in locally finite groups, Algebra Logika 35 (1996) 389-410; English transl., Algebra Logic 35 (1996) 217-228.
[2] E. de Melo, Fitting height of a finite group with a metabelian group of automorphisms, Comm. Algebra 43 no. 11 (2015) 4797-4808.
[3] G. Ercan and İ. Ş. Güloğlu, Action of a Frobenius-like group with fixed-point-free kernel, J. Group Theory 17 no. 5 (2014) 863-873.
[4] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Rank and Order of a Finite Group admitting a Frobenius-like Group of Automorphisms, Algebra and Logic 53 no. 3 (2014) 258-265.
[5] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Derived length of a Frobenius-like Kernel, J. Algebra 412 (2014) 179-188.
[6] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Frobenius-like groups as groups of automorphisms, Turkish J. Math. 38 no. 6 (2014) 965-976.
[7] G. Ercan, İ. Ş. Güloğlu, and E. Öğüt, Nilpotent length of a Finite Solvable Group with a coprime Frobenius Group of Automorphisms, Comm. Algebra 42 (2014) no. $114751-4756$.
[8] İ. Ş. Güloğlu and G. Ercan, Action of a Frobenius-like group, J. Algebra 402 (2014) 533-543.
[9] I. M. Isaacs, Fixed points and characters in groups with non-coprime operator groups, Canad. J. Math. 20 (1968) 1315-1320.
[10] E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1-11.
[11] E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms, Algebra Logika 52 (2013) 99-108; English transl., Algebra Logic 52 (2013) 72-78.
[12] E. I. Khukhro and N. Yu. Makarenko, Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms, J. Algebra 386 (2013) 77-104.
[13] E. I. Khukhro and N. Yu. Makarenko, Finite p-groups admitting a Frobenius groups of automorphisms with kernel a cyclic p-group, Proc. Amer. Math. Soc., 143 no. 5 (2015) 1837-1848.
[14] E. I. Khukhro, N. Y. Makarenko, and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Math. 26 (2014) 73-112.
[15] N. Y. Makarenko and P. Shumyatsky, Frobenius groups as groups of automorphisms, Proc. Amer. Math. Soc. 138 (2010) 3425-3436.
[16] P. Shumyatsky, The dihedral group as a group of automorphisms, J. Algebra 375 (2013) 1-12.
[17] A. Turull, Fitting Height of Groups and of Fixed Points, J. Algebra 86 (1984) 555-556.

Gülİn Ercan

Contact information

Department of Mathematics, Middle East Technical University, Ankara, Turkey
E-Mail(s): ercan@metu.edu.tr

İsmaİl Ş. Güloğlu Department of Mathematics,
 Doğuş University, Istanbul, Turkey
 E-Mail(s): iguloglu@dogus.edu.tr

Received by the editors: 23.11.2016.

[^0]: *This work has been supported by the Research Project TÜBİTAK 114F223. 2010 MSC: 20D10, 20D15, 20D45.
 Key words and phrases: dihedral group, fixed points, nilpotent length.

