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We consider the Ising model on an annealed scale-free network with node-degree distribution characterized by
a power-law decay P(K) ~ K~ It is well established that the model is characterized by classical mean-field
exponents for A > 5. In this note we show that the specific-heat discontinuity d ¢y, at the critical point remains
A-dependent even for A > 5: 5¢j, = 3(A —5)(A —1)/[2(A —3)?] and attains its mean-field value 5¢j, = 3/2 only
in the limit A — co. We compare this behaviour with recent measurements of the d dependency of d¢;, made
for the Ising model on lattices with d > 4 [Lundow P.H., Markstrom K., Nucl. Phys. B, 2015, 895, 305].
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In the Ehrenfest classification, a second-order phase transition is manifest by a discontinuity of the
second derivative of the free energy at the transition temperature 7t [E|]. However, derivatives taken with
respect to different thermodynamic variables may demonstrate qualitatively different behaviour. For
magnetic systems, it is well known that the isothermal susceptibility yr and magnetocaloric coefficient
mr (a mixed derivative of the free energy with respect to magnetic field and temperature) are strongly
diverging quantities, whereas the specific heat c; often does not diverge at T;. Considered in the mean-
field approximation, the first two quantities are singular at 1 = |T — T¢|/Tc = 0: Y7 ~ 17, mr ~ 7-% with
y™2 = 1, ™2 = 1/2. However, the third quantity displays a jump at T:

Scp=cp(T— Tg) = cp(T — T, €]

with 602‘&" =3/2 and hence cj, ~ 7~ % with a™@ = 0.

For the Ising model in d dimensions, the singularity of the specific heat is d-dependent: the famous
Onsager solution 12 predicted cj(d = 2) ~ Int (a weak singularity with a = 0) while a(d = 3) = 0.109(4)
[E] and «a attains its mean-field value in dimensions higher than the upper critical value, a(d > 4) = 0.
Strictly at d = 4, the scaling is affected by the logarithmic correction 141

cp~ 7o (InT)%. )
Since @™ = 0 and the logarithmic correction-to-scaling exponent d = 1/3 is positive I@], the specific heat
of the Ising model diverges at d = 4.

Although the critical exponents attain their mean-field values above the upper critical dimension,
this is not the case for critical amplitudes. For d > 4, the latter determine the value of the specific heat
discontinuity in equation . As has been shown recently IE], O cy, for the Ising model at d > 4 remains a
d-dependent quantity that reaches the mean-field result only in the limit 6 ¢j,(d — oo) = 3/2. Inspired by
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this observation, which was produced using Monte Carlo simulations for 5, 6, and 7-dimensional lattices
[B], in this note we analyze the behaviour of the specific-heat discontinuity of the Ising model on complex
networks. Recent interest in structures of numerous natural and man-made systems [B—B] lead, in partic-
ular, to the development of phase transition theory on complex networks [IE}]] Of particular interest are
scale-free networks, where the node-degree distribution is characterized by a power-law decay:

P(K) = c/K*. (3)

Here, P(K) is the probability that the number of nearest neighbours of a node (node degree) is K and cisa
normalizing constant. It appears that many real-world complex networks (e.g., the internet, www, trans-
ortation networks, social networks of communication between people and many others) are scale-free
]. In turn, studying properties of phase transitions on scale-free networks may also explain peculiar-
ities of processes occurring on such networks too. To give just two examples, the analysis of percolation
phenomena on scale-free networks is directly related to the stability of the network to random break-
downs or targeted attacks, whereas the onset of an ordered phase (e.g., ferromagnetic ordering in a spin
model on a network) may correspond to a unanimous opinion formation in a social network.

Here, the subject of our analysis is the Ising model on a complex scale-free network. In particular,
we will consider the behaviour of the specific heat on an annealed network. This has been widely used
to analyze properties of various spin models (see e.g., [ﬂ—lﬂ] and references therein). For annealed net-
works, the links fluctuate on the same time scale as the spin variables ], therefore, the partition
function is averaged both with respect to the link distribution and the Boltzmann distribution. This is
achieved by assigning to each node i a hidden variable k;. In our particular case of a scale-free network,
the distribution of k; is given by @) too. The probability of a link between any pair of nodes (i, j) is cho-
sen to be proportional to the product k; k; of k-variables on these nodes. One can check that the expected
node-degree value is then E[K;] = k;. This choice leads to the Hamiltonian which, in the absence of an
external magnetic field, reads: .

S =———) kik;S;S;. 4
NGO gj ik;SiS; )
Here, S; = 1 is a spin variable, the sum spans all pairs of N nodes and (k) = Zﬁ.\il k;/N .

The prominent feature of (@) is that the interaction term attains a separable form. In turn, this allows
for an exact representation of the partition function via e.g., Stratonovich-Hubbard transformation, as
it is usually done for the Ising model on a complete graph II;L_AI], see [IE, |E] and references therein. It
is straightforward to get thermodynamic functions and, in particular, to arrive at the conclusion that
universal behaviour of the specific heat depends on the node-degree distribution exponent A —@ﬂ

a=(A1-5)/(1-3), 3<A<5; a=0, A>5. (5)

The negativity of the exponent « in the region 3 < A < 5 means that dcj, = 0 there. Moreover, directly
at A =5 the logarithmic correction-to-scaling exponent governs the behaviour, similar as for lattices at
d = 4, see equation (). However, in contrast to the lattice case, the value of the exponent for scale-free
networks is negative: & = —1 [ﬂ—@]. This means that §¢;, =0 at A =5 too.

Here, we are interested in the behaviour of the specific heat in the region A > 5, where usual mean-
field results for the critical exponents hold. Keeping terms leading in NN for the partition function, one
can represent it in the form (see , ] for more details)

_ 2 4\ 4
<I;>x (T—T,) - (k™) x

+00
ZN(T)=fexp{N

}dx, A>5, (6)

where T. = (k?)/(k) and we have omitted a prefactor which is not important for our analysis.
Using the method of steepest descent one finds points of maxima (x,) of the function under integra-
tion at T > T, (%, =0) and T < Te (x4 = [—(3¢k)/(k*)) (T — T.)]"/?). The free energy reads:

T>T,,

0,
= { SMT(T-T)?, T<T. D

IThe system remains ordered at any finite temperature for 2 < A <3.
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Figure 1. The jump in the specific heat of the Ising model on lattices at d > 4 (squares, results of MC
simulations IE]) and on an annealed scale-free network for A > 5, bold line equation (I0). The thin line
shows classical mean-field value dc¢j, = 3/2. Although 6c¢j, (A — co) = dc¢j(d — oo) = 3/2, the functions
approach the mean-field limit from below and from above.

Correspondingly, for the specific heat one obtains

{ 0, T>Te., ®
Ch = 9k)2 2 | 6(k)? 8
—mT +2<k4)TTC7 T<T..
The jump of the specific heat at T, is defined by the ratio
3<’C2>2
ocp=———. 9
h= )
Substituting the averages calculated with the distribution (@) we obtain
31-5((-1)
ocp=——""""75—, A>5. 10
h 2A-3) (10)

In the limit of large A this delivers d ¢;, = 3/2, which coincides with the corresponding value on a complete
graph.

It is well known that Ising model on an annealed scale-free network is characterized by classical
mean-field exponents at A > 5. As we have shown in this note, the mean-field behaviour does not concern
the specific heat jump dc¢j at A > 5. The jump remains A-dependent and reaches the mean-field value
dcp = 3/2 only in the limit A — co. The function §c¢y(A) is shown in figure [1l Similar effect has been
observed for the Ising model on lattices at d > 4. We show the results of MC simulations of d = 5,6, 7-
dimensional lattices [5] in the figure too. Note, that although d ¢y, (1 — 00) = dcy (d — 00) = 3/2, the func-
tions approach the mean-field limit from below and from above. Another essential difference between
the behaviour of ¢y, in the Ising model on scale-free networks and on lattices is observed directly at the
upper critical values of A and of d, respectively. While a = 0 in both cases, the overall behaviour of ¢y,
remains singular on lattices at d = 4 (logarithmic singularity, & = 1/3) whereas @ = —1 for networks at
A =5 and hence dcp, = 0. This last case provides an example where the logarithmic correction to scaling
leads to smoothing of behaviour of the thermodynamic function at T¢.
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CTpn60K TenN0EMHOCTI moaeni I3iHra Ha 6esmacluTabHin
MepeXxi

M. Kpachuuskad®™2 B, bepuf®, 0. ronosad™ P, Kenna™

L IHCTUTYT Qi3nKn KoHAeHcoBaHMX cuctem HAH Ykpainu,

Byn. I. CBeHuiybkoro, 1, 79011 JibBiB, YKpaiHa
2 IHcTuTyT XK. Jlamypa, YHisepcuteT JloTapuHrii, F-54506 BaHaysp ne HaHci, PpaHuis
3 LleHTp nprknagHoi matematuku, YHisepcuteT KoseHTpi, KoseHTpi CV1 5FB, AHrnis

4 Konemx gokTopaHTiB cTaTUCTUYHOI Gi3nKu cknagHux cuctem, Jlannuir-lotapuHris-/iesie-KoseHTpi ([L4)

Mwu po3rnsgaemo Mogenb I3iHra Ha BignaneHili 6e3macluTabHili Mepexi 3i cTeneHeBO-CNaAHO GYHKLIiE po3-
noginy sysnis P(K) ~ KA, Bigomo, Lo Us MoAeNb ONNCYETLCA KNACUYHUMUN KPUTUYHVMU NOKa3HMUKaMu cepe-
AHbOro nons npu A > 5. TyT MU Nokaxemo, Lo CTPUBOK TeN0EMHOCTI §¢y, NPV KPUTWYHIN TemnepaTypi 3a1u-
LIAEeTbCA A-3aN1eXHUM HagiTb Ansi A >5: ¢y, =3(A-5)(A-1)/ [2(A—3)2] i gocsirae cBoro CepesHbOMOoILOBOro
3HaYeHHs dc¢y = 3/2 Tinbkn B rpaHnLi A — co. M1 NOPIBHIOEMO Lit0 NMOBEAIHKY i3 HeAaBHIMU pe3ynbTaTamu
3anexHocti d ¢y, Big d ans mogeni I3iHra Ha rpatkax 3 d > 4 [Lundow P.H., Markstrom K., Nucl. Phys. B, 2015,
895, 305].

KntouvoBi cnoBa: mMogesb I3iHra, 6e3maclutabHa Mepexa, BignaneHa Mepexa
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