Condensed Matter Physics, 2015, Vol. 18, No 4, 43703: 1{T6] CONRENSED

. /AT UER
DOL:[10.5488/CMP.18.43703 DBYAIEe)

http://www.icmp.lviv.ua/journal

Statistical theory of thermodynamic and dynamic
properties of the RbHSO, ferroelectrics

L.R. Zachek® R.R. LevitskiZ Ya.Shchur 0O.B.Bilenka®

T Lviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine

2 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii St., 79011 Lviv, Ukraine

Received June 10, 2015, in final form August 5, 2015

Within the modified four-sublattice model of RbHSO4 with taking into account the piezoelectric coupling to the
strains €;, €4, €5, and &g, the polarization components, static and dynamic dielectric permittivity of clamped
and free crystal are calculated in the mean field approximation. At the proper choice of the values of the theory
parameters, a satisfactory quantitative description of the available experimental data is obtained.
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1. Introduction

Chemical compounds such as sodium-potassium tartrate NaKC4H404-4H,0 (Rs), sodium-ammonium
tartrate NaNH4C4H,;0¢-4H>0 (ARs), rubidium hydrosulphate RbHSO4 (RHS), and ammonium hydrosul-
phate NH,;HSO4 (AHS) belong to the order-disorder type ferroelectrics. According to neutron and X-ray
structure studies of RHS [T-4], Rb® [5] and D? [6} [7] NMR measurements, infrared [8] and Raman scat-
tering experiments [9]], the phase transition in RHS is of the second order. Protons are already ordered
in the paraelectric phase. Only one second-order phase transition point (7; = 265 K) is present. In the
high-temperature phase, the structure of RHS is monoclinic and is described by the space group P2;/c-
Cgh. Below the transition point, the monoclinic symmetry remains, but the space group changes to PC—C§.
The unit cell consists of eight molecules Z = 8 in both phases.

The phase transition in RHS is associated with the motion of sulphate complexes (SO4)11, (SO4)12,
(SO4)13, (SO4)14 between two equilibrium positions. (SO4)25, (S04)26, (S04)27, (SO4)28-complexes are com-
pletely ordered in the entire temperature range and do not play any direct role in the ferroelectric phase
transition. These complexes form a network of elementary dipoles directed along the z-axis (figure ).
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Figure 1. Orientations of the d, ¢ vectors within the primitive cell of R in the high-symmetry phase (the
paraelectric phase).
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The dipole moments created in the paraelectric phase by the (14) and (12) (S04) complexes have the
same direction which is opposite to the direction of the dipole moments created by the (11) and (13)
complexes. Analogously, the dipole moments of the (25) and (26) type complexes are opposite to those of
the (27) and (28) complexes.

Two equilibrium positions (potential wells) of the (1 f)-complexes (f = 1,2,3,4) are not equivalent.
Above the transition temperature T, the (1 f)-complexes are located in the energetically favorable equi-
librium positions (deeper potential wells). Mathematically, non-equivalence of equilibrium positions is
described by an additional longitudinal field A acting on the dipoles of the sulphate-complexes. This field
is oppositely directed for the (11), (14) and (12) complexes.

The phenomenological [10] and statistic [11H15] models of the phase transition in RHS-crystals, anal-
ogously to the Mitsui model for Rs, well describe the dielectric properties [16H20] and the Debye-type
dynamic dielectric permittivity [12H15] in the mean field approximation. However, it is impossible to
calculate the experimentally measurable dielectric permittivity of a mechanically free crystal, the piezo-
electric coefficients, elastic constants and transverse dielectric permittivities using these models [12H15].
That is why the piezoelectric coupling to the strains should be taken into account [21].

In this work we propose a modification of the four-sublattice model of the RbHSO,4 crystals, which
takes into account the piezoelectric coupling to the strains ¢;, €; in the ferroelectric phase. The dielectric,
piezoelectric, elastic, thermal and dynamic characteristics of RHS are calculated within the mean field
approximation. The corresponding experimental data for this crystal are described.

2. Four-sublattice model: Hamiltonian

The system Hamiltonian is a modification of the Hamiltonian proposed in [22] that takes into account
the piezoelectric coupling, and a generalization of the Hamiltonian in [13] to the ’three-dimensional’
model. In the quasi-spin representation, it reads as follows:

A (o) !
i = NUseed—EZZJff(qq) Zaf ;’f ZZZKﬂ(qq) L ZaL
qq' f=1 qaq' f#f'

Ay (L2t G2 a3 Tat) Jar _9q2 943 Tq4
A;(z R TN b sht s )

Oq1 O0q2 O0g3 0 g4 Oq1 O‘qg 0g3 Og4
2By (——+—+— ) E § ( +—+—), 2.1)
H2E> . 2 2 2 M3 L3 2 2 2 (

where N is the number of unit cells. In Jrf(qq") and Krf(qq') are the interaction potentials be-
tween the pseudospins from the same and from different chains, respectively; the parameter A describes
the asymmetry of the potential, in which the pseudospins move; y; is the effective dipole moment per
one pseudospin; o4 is the z-component of the pseudospin operator situated at f-th bond (f =1,2,3,4)
in g-th unit cell.

Ulseeq 1S the seed energy that includes the elastic, piezoelectric and dielectric contributions expressed
in terms of the electric fields E; (i = 1,2,3) and strains ¢; and ; (j = i+3). cfo (M), e”, )(” are the so-called
seed elastic and piezoelectric constants and dielectric permittivities:

Useed = [ Z C (T)5 Ejr+ — Z CEO(T)E - Z egieiEg - 9(3)555E3
zt’ 1 =1
_Eﬁ? - ‘Xz(z)EZ - ‘ngEz] (2.2)

v is the unit cell volume.
Having analyzed the results of [23], we assume the seed elastic constants cf](.’(T) to be linearly de-
creasing with temperature [24]

(M =cp —kin(T=T),  ¢f)(T)=cf} —kj;(T-To), 2.3)
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where the coefficients k;; phenomenologically take into account the high-temperature lattice anhar-
monism.
We make an identity transformation

Uqf:nf+(gqf_nf)y (f:]-r2)3,4)y (24)

and neglect the quadric fluctuations. The Fourier transforms of the interaction constants at q =0, J =
]ff = Z]ff(qq’), Kff/ = ZKffr(qq’) and A are expanded in series over the strains ¢;, £; up to the linear
q q

terms:
0 a] 3 6 0 3 6
J=] +6—g€i=]O+ZW1i€i+ZW1j€j, Kiz = Kpp + ) Yaiei+ ) yaj€),
12 i=1 ]’7 i=1 ]’74
KIS—K13+Z1//3151+21//3]£]’ Kl4—K14+ZV/4151+ZU/4]5];
i=1 j=4 i=1 j=4
+Z1//5,gl+21//5]e] (2.5)

i=1

As a result, Hamiltonian within the mean field approximation takes the form:
1
HO = VUseed + EJO (ﬂ% +77§ +Tl§ +7ﬁ1)

1 1 1
+ 7 Kz (mn2 +n3ma) + 2Kz (103 +n2ma) + 2 K3y (m1n4 +n273)

1 3
+8(Z 115t+ZW1131)("1+772+773+774 (ZW2151+ZW2]€]) (mmn2 +1m3n4)
i=1 i=1
1 3 3
+4(Zi1//3181 + 2;11#3]5]) (min3 +m2n4) + (Z U2 Z:}U/ufj) (mmna+mn2ms),  (2.6)
1= J i=1 j=
i, = —Z(Jfl%i Jz?z%+a7€3 +Jf4%) @2.7)
q
Thus, we find the mean pseudospin values
_ p
ng= tanhgiff. (2.8)

Let us use new variables:

1 1
&1 = Z(_"l —1M2+n3+1M4) = 1 (—tanhgiﬁ —tanhgjfg + tanh?]ﬁg, +tanh§if4) s

1 1
&= Z(—m +1M2+1N3—1g) =— (—tanh?]ﬁ +tanh§i€2 + tanhgifg —tanhgiﬂl) ,

1
é3= Z(’“ +12+1n3+M4) = (tanhﬁjfl +tanh‘6J€2 +tanhﬁfﬁg +tanh'6J£4)
_1 B B B p
(= Z(nl—nz +1M3—14) = tanhziﬁ —tanh2%2+tanhzjﬁ3—tanh F6 |, (2.9)
where the self-consistency fields . are given by the expressions:
SO = (—y1—Y2+7y3+0), J& =(=y1+y2+73-0),
J3=(y1+72+y3+0), Fy=(y1-v2+y3-0), (2.10)

and

J T T ]
Y1=(5151+M151), Y2=(?2§2+N2E2)r Y3=(5353+H353), 6= 34(+A)-
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Taking into account (2.3), we obtain

3 6
=1+ vei+ Y Wjej,

i=1 j=4

3 6
0 - -
J=Jg+Y Wsiei+ Y Wsjej,

j=4

i=1
. 3 6
A=A+ ysiei+ ) Ysjej,
i=1 j=4
where
0 0_ 0 0 0
Ji =T =K + K3+ Kyy,

]ngo"'Kfz"'K?s"‘K&’

Y1i =—Y1i —Y2i +Y3i + Y,
Yoi =W1i —W2i —¥3i + V4,
Y3i = Y1 +W2i + Y31+ W4,
Yai =Y1i—W2i +Ysi — Vai)

3 6
=9+ Waiei+ Y. W2jE),

i=1 j=4

3 6
Ja=J3+ Y Waiei+ ) Yajej,
i=1 j=4

0_ 70 _ 0 0 0
T =17 =K = K3+ Ky,

0_ 40 _ 0 0
Js=] —K12+Kf3—K14,

Y1j=—W1j = W2 +¥3j+Waj,
V2j =Y1j—Waj —Y3j+Vaj,
W35 = Y15+ Was + W35 + Yys,
Va5 = W15 —Ya5 + Y35 — Yas.

(2.11)

(2.12)

Parameters ¢, &2, &3 describe the dipole pseudospin ordering along the a, b and c-axes, respectively,
and the parameter ( is responsible for the paraelectric phase pseudospin ordering.
Without external electric fields and mechanical strains, the pseudospin mean values in the paraelec-
tric phases are 71 = —12 =13 = —ng =n and §1p = ¢2p = {3p = 0, respectively, and

J
{p =tanh§ (gcpm).

(2.13)

In the ferroelectric phase at zero fields E; = 0 and stresses 0 =0, 771 =173 =113, 72 = 74 = 7]24. As a result

¢15=0,¢2s=0,and

1

&35 = 3 tanhg
1

(sz 5 ’B

I3 Ja B(J3 Ja
(5515+553+A) +tanh (3513—553—A” ,

2

J J J J
tanh? (33513 n 54(5 + A) _tanh? (?35“ - 34(3 - A)] )

2

3. Thermodynamic characteristics of RHS

(2.14)

To calculate the dielectric, piezoelectric, and elastic characteristics RHS, we use the electric thermo-
dynamical potential per unit cell obtained in the mean field approximation

§=~
N F=1

1, & . 6 ,
+§(]1+ZU/U61'+ZW1]'€/')51

i=1 j=4

1 0 3 ~ 6 _ )
+§(]3 + ZU’&'&' + Z 1//3]'6]')53
i=1

j=4

From the thermodynamic equilibrium conditions

v d n E ncos
see B B 2 !

1y & 6 ,
+E(]2+ZW2i€i+ZU/2j€j)fz

i=1 j=4

1 0 3 _ 6 _ )
+5(]4 + ) Paigi+ ) W4j€j)( .
i=1

j=4

1(0 1(0 1(0
v\0¢; ), v \0¢; Epo v \0E;

(3.1)
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we obtain
0—011 (T)€1+C (T)£2+c 0(T)gq— egiEs Wufz WZlfz W3zf3 W4z (2 21//51(
0=cE(T)eq - 1l/14 52 U/24 52 1!/34 53 W44 (2 25, s,
= 055 (Tes — e35E3— 1//15 52 W?}S &— W35 fg %C 21;/%{’
0=c(es - 2205 - W’ Vg Voo ‘”“65 ZWTSGC,
by = eusl + e12£2 + e13£3 + e15£5 + )(1151 + — 2t f L
Py =e9,e4+ €56+ Yoo Er + 52 &,
Py = €361+ egp€2 + €563 + €565 + Y55 s + :ts &. (3.2)

In the ferroelectric phase, the static isothermic dielectric permittivities of mechanically clamped RHS
along the crystallographic axes are as follows:

2

0P; s
Xzzi(o) = 1 m (6E ) Xf? + 71,31311'5(0). 3.3)
ilej

E;i—0
The following notations are used

bk
p31— (p3, — ) 222

Fi1500) =
] J: J1 BJ.
1_p31(ﬁ1 ﬁ2)+(p31 P32)ﬁ41 ﬁ42
J
Fibe(0) p31 = (0% — p) B
12s - ’
1_p31(ﬂh ﬁ]2)+(p31 2)@%
_ (,02 _pZ )%
FlSs(O) 31 327 4

1-p3 l(ﬁ]3 ﬁ]4)+(931 sz)%%
and
pa1=1-&. -, P32 = 2635(s.

In the paraelectric phase:
2

H; .
Xity ) = x5+ — PRp0,  (i=1,23), (3.4)

where

1-0% .
1-(1-¢3)Ek

From relations , we get expressions for isothermic piezoelectric coefficients e;; of RHS

Flip(o) =

0P _ _ _
el = (6_53) = eg,- + 'u—;g [W3i€35F135(0) — (Wi s + 2¥s;) Fi35(0)],
i1 /E3

oP: _ _ _
€355 = (O_EE)E =5+ H—jg [W35¢35F135(0) — (Was{ s + 2955) Fi35(0)] .

By differentiating the relations with respect to the strains at a constant polarization, we obtain
the expressions for the for piezoelectric constants

T _ €3is T _ €355
3is — & ? 358 T ¢ (3'5)
33s X33s
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Now, we calculate the contributions of the pseudospin system to the elastic constants of RHS. From
(3.2) we obtain the relations for elastic coefficients at a constant field:

00 r2;(s+2 i it Ce +2We
cIE = (6_0'1) B0y - ﬁW&U/sz Pvsivsi o 3(0)_ﬁ(1l/4z(s Wsi) (Vairds w5l)Fl4s(0)
i) E 4v
_- _./+ _./ _. _ _. '/+ _./ . _
T ﬁ(W311//414U Y3 1//41) §3s(sFl3s(0) " ﬁ(V/MWSLZU Yy WSL)EE,sFlSs(O)» (3.6)
4iCp +2Ws) (Wil p + 2Wsy
C,];Fp — Cﬁ([)(T)_ﬁ(V’M(p WS:)(WM Cp 1//51)F14p(0),
4y
00 pvs; B(wa;(s+2ys;)°
A (a—g’) =cf;)(T)—Ll—vfé%sFlgs(O)—(“+U5’)F143(0)
J/E;
,31//3 iWaj Bysjvs; . -
o sl sFuas(0) + = £:Fasg 0), 3.7)
 TE E0 B(Wa;ds+ 2‘//5j)2
Cijp = ij(T)—TFMp(O),
where
— (p%, - ) 22 1-05
F1as(0) = ﬁf : mfsl o2 papn 0= N
1-pa1 (57 + 5 + (05, — p3) 7 7 1-(-0p) 7
From (3.2), (3.3) we get isothermic coefficients of piezoelectric strain dy; = (0P1/00;)E,,

dij = (0P;/00 j)E; in the following form:

TE.T , .TE,T TE.T , TE,T , TE,T , JTE,T
Z Sik €3k T Si5 €35 d35 = S15 €31 T Sp5 €32 + S35 €33 + S55 €35,

where sfk = (0€;i/00)E,, sfj = (0¢;/00 ;) g, are the compliances at the constant field.
Using relations one can obtain the expression for the static dielectric permittivity of a free RHS
crystal

T(T_(ap3

X33 = _OEg) Xzs + 931‘131 + eszdsz + 933d33 + 935‘135

Molar entropy of RHS caused by its pseudospin subsystem is as follows:

) 4
S=-R (%) = R[4ln2 +) lncoshgjff —2y1&1 —2y2¢, —2y3é3 - 25¢ |, (3.8)
f=1

where R is the universal gas constant. Molar heat capacity at a constant pressure is calculated by differ-
entiating the entropy (3.8)

38
) , (3.9)

AC”:T(—
aT ),

4. Relaxation dynamics of RHS crystal

This section describes the dynamic phenomena in RHS at the application of electrical field E} to a
crystal. While calculating the dynamic characteristics, we use the kinetic equation [25}26] based on the
Zubarev nonequilibrium statistical operator method [27].

The kinetic equation for the mean values of pseudospin operator is as follows:

a

d . o hﬁQ#
E“”"“‘%% Qg fpua(Pm) +ta0h—=Q 1 (Pm) | K 4.1)
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where
_ _ ’ F
Qe Pm) = ([ [P o1 (28], 0% (Q8)] e 4.2)
oo
Ky =fdte‘”cosszfjtRe(ﬁ(t)a+>q, a=0,%1, (4.3)
0

while <a“(t)a“’>q is correlation function of the thermostat; UZ f(Qﬁ) is a Fourier component of the op-
erator ac‘x] f(t); Qﬁ are the eigenfrequencies of the Hamiltonian of the quasispin model ; 0?7 I Ogfs
0;—’ PEHTEL a’

Taking into account (2.7), operators p,, have such a form:

4.4

Using the evolution law of the quasispin operators S‘; 7 (a = 0+) and their permutation relations,
we calculate the commutators occurring in as well as the expression for Q; fﬂa(ﬁm). The kinetic
equation (4.1) can be rewritten as follows:

d H
—Enfzﬂ(fnf—ZKftanh%, 4.5)

where

Ky = fdre‘”cos(Hft)ReKa‘(t)zf)q @ (O ) gl
0

Note that at Ky = ﬁ, the obtained kinetic equation agrees with the equation found within the
stochastic Glauber model [28]. Using the variables &1, &2, &3, ¢ in equations , we obtain

—adf =& L L+ Ls+ Ly
dtl—l 1 1 2 3 4))

—adf =& LY S
dt2—2 1 1 2 3 4))

d &3=¢ L (Li+Ly+ L3+ Ly)
G —Ea=Eq— = ,
qe3 e gt lat st L
d (=¢ 1(L Ly+L3— L) (4.6)
—ax—C¢=6(—— - - ) .
az g fetis =L
where the following notations are used:
1 1
L= tanhE(—}q —Y2+7v3+9), L, = tanhg(—)q +7Y2+7y3—9),
1 1
Ly = tanhi(}q +vY2+7v3+9), Ly= tanhz()q —Y2+7v3—9). @.7)

The dynamic properties RHS are explored using the system of equations and at small deviations
from the equilibrium. We separate these equations into the static and dynamic parts. The distribution
functions are presented as sums of two components: the equilibrium functions and their deviations from
the equilibrium values (fluctuations)

G =&+&;,  (i=123), (={+(;. 4.8)

Also E;; = Ejpel®".
As a result, we obtain the following system of equations for the fluctuation parts:

i( $1es(D) ):( an  an )( $1es() )_M( a ),

_ 4.9
dr \ &2s5(1) a» az Ears(1) 2 as (4.9
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i( $215(2) ):( b b )( S215(2) )_ﬁquzt( by ) (4.10)
$1es(2) by b2 )\ $115(2) 2 by |’ '
_i( $365(3) ):( a1 2 )( $315(3) )_ﬁ#sEst( a ) @11)
(st €21 022 (st 2 e ) '
Solving the systems (£.9)-(&.11), we find the dynamic permittivities of the clamped RHS crystal
2 Amyjis & ATOTjis) jis
£ (0) = €5+ 3 —= 4.12)

i 1+ (w7 ji5)? i 1+ (w7 ji5)? '
In (4.12)

2 2
H; T1isT2is D, 0), - K T1isT2is P 0),+
tiis = 2 [ D)+ 1 m @@, gass = L [P (0) - 10i,m @ (0)],
V' Ti1is—T2is V' Tiis—T2is

b= %[”H(i)? \/ mE (i) —4mo(i)]. (4.13)

In (4.13), we use the following notations:

1 1
mi(1) = m(2) = (1 P31_ﬁh)+_(1_p3l_ﬁ]2)
a a

4 4
1 ] J. J1 BJ
== 1 B2 -
J
m® W = [p31 (P51 - p32)ﬁT' m®(2) = [P31 (051 - Psz)ﬁl]
1 J. 1 J)
m(3) = (1 P31%) a(l—ml%),

31~ P32 4 1

mp(3) = —[1— 31(%+%)+(p2 2)[3]3,3]4]’

1
mY3) = 5031, m?3) = 2 [.031 - (Psl Psz) L ]

5. Comparison of numerical results with experimental data

To compare the temperature and field dependences of the above derived dielectric, piezoelectric,
elastic, and thermal characteristics of RHS, we need to set the values of the following parameters: the
interaction potentials Jo, Kfz, K?s: K 4 and, accordingly, /1, J2, J3, J4; the parameter A, which characterizes
an asymmetry of populations of the two equilibrium positions of a dipole; the deformation potentials
v j; effective dipole moments y;; seed dielectric permittivities y¢; 9; piezoelectric coefficients e ; elastic

constants cfi‘? and cf](.), and the parameter a that defines the time scale of the relaxation processes.

To find the optimum values of the theory parameters it is necessary to use the dependence of temper-
ature T, on hydrostatic pressure. Unfortunately, different sources give different values for 7;(0), varying
from 258 K to 265.1 K. We shall use T.(0) = 265 K [14].

In the fitting procedure, we use the experimentally obtained values for the temperature dependences
of the following physical characteristics of RHS: Ps(T) [20l, €7, (0), €5, (0) [23], £33(w) [14], as well as the
dependence T.(p) [29] of the transition temperature on hydrostatic pressure. In the case of deuterted
RDS crystal, we exploit Pg(T) [16], £g3(0) [16], Tc(p) 1291.

In order to find the values of the parameters Jo+ K{’3, K12 + K 1 4» A, we found the point at the phase
diagram (a, b), where

U+ KDy - (KD, + KP)) ~ A
U+ 13)+(K° +K9)’ U+ KO + (KO, + KD’
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at which the system undergoes a single second order phase transition at 7.(0) = 265 K. The values of
the effective dipole moments u3 were determined by fitting the calculated spontaneous polarization to
experiment.

The values of J°, K{,, K5, K?,, 1, and  are determined by fitting the calculated £1; and &5, to the
experimental data given in [23].

The fitting procedure for the models of this class is described in detail in [30], where the thermody-
namic characteristics of Rochelle salt are explored.

The strains should be taken into account in order to calculate the dielectric permittivity of a mechan-
ically free crystal, piezoelectric coefficients, and elastic constants. Therefore, to determine the values of
the deformation potentials v, ;, we analyzed their effect on theoretical values of physical characteristics
of the crystal. Thus, it has been obtained that an increase of the transition temperature with hydrostatic
pressure [29] can be described using the values of ¥;; presented here. It should be stressed that when
the piezoelectric coefficients are measured experimentally, the values of y;; can be determined with a
greater accuracy.

The parameter a g is determined from the condition that the theoretically calculated frequency de-
pendences of £33 (w) agree with the experiment. We also assume that the parameter a; is a weak function
of temperature:

ag=[Py+Ry(AT)x107"%,  AT=T-T..

The unit cell volume of RHS is v = 0.842-1072! cm3.
The obtained sets of optimal parameters are given in table[I]

Table 1. The optimal sets of the theory parameters for Rb(H;_xDy)SO4.

X ]O/kB K{)z/kB K{)g/kB K&/kB Alkp |1, 10718 M2, 10718 us, 10718 )(i? ng )(gg
K K K K K esu-cm esu-cm esu-cm

0.0| 394 190 372 433.7 | 244 3.18 3.65 0.81 ]0.02|0.02|0.159

0.7] 380 189 345 | 430.8 | 245 0.90 |0.02|0.02|0.159

1.0| 378 | 198.8 | 338.4 | 429 |245.4 1.00 |0.02|0.02|0.159

X | Pss| Rss |Psp| Psp |Pi12| Rip
() | /K | )| (S/K) | (s) | (s/K)
0.0{12.5|-0.0521|12.5| -0.091 |10.5|-0.001
0.7(10.7|-0.0510|10.7| —-0.051
1.0] 9.8 |-0.0510| 9.8 |-0.0501

The deformation potentials are taken to be 1;/kg = ¥1j/ks = Wai/ kg = WY2j/ks = 900 K, ¥31/kg =
—4950 K, 1/_/32/1(?]3 = 1/_/33/](?]3 = 1/_/35/](?]3 = —4500 K, 1[_/41/kB =1080 K, 1/_/42/](3]3 = 1/_/43/](3]3 = 1/_/45/](3]3 =900 K,
Ws1/ ks =52/ kg =53/ kg = Y55/ kg = 200 K.

The “seed” constants for RHS are €3, = €3, = €3, = €9, = —1 x 10* esu/em?, ¢} =32.0 x 10'° dyn/cm?,
cf) =17.0 x 10" dyn/em?, cfy = 8.7 x 10'° dyn/em?, ¢f = 38 x 10'° dyn/cm?, ¢, = 6.5 x 10'° dyn/cm?,
k9 = 37.4 x 10" dyn/em?, ¢ = 4.9 x 10'° dyn/em?, ¢V = 5.3 x 101° dyn/cm?, £ = 12.8 x 10" dyn/cm?;
k11 = —0.032 x 10'° dyn/(cm?K), k1> = —0.040 x 10'° dyn/(cm?K), k13 = —0.015 x 10'° dyn/(cm?K), ka3 =
—0.010 x 10 dyn/(cm?K) k33 = —0.032 x 1010 dyn/(cm?K), kz» = ks4 = k55=0.0. We use the same values for
RDS as well.

Now we discuss the obtained results. In ﬁgure the temperature dependences of the strains ¢; and €
are presented. In the ferroelectric phase, ¢; slightly increases with temperature, while the temperature
variation of g4, £, and especially €5 is much stronger. In the paraelectric phase, all these strains weakly
increase with temperature. The temperature dependences of spontaneous polarization P; of RHS and
RDS along with the experimentally obtained values [16}[17,[20] are shown in figure 3} A good description
of experimental data of [20] and [16] is reached. When the deuteration level x increases, the polarization
decreases.
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Figure 2. The temperature dependences of the Figure 3. The temperature dependences of sponta-
strains €; and €j of RHS: €1 — 1,690 —2,63—3,64 — neous polarization of RHS — 1, A [20], O [17] and
4,65 —51i€g—6. RDS — 2, « [16].

Figure [4] shows the calculated temperature dependences of static dielectric permittivities of the me-
chanically clamped £44(0, T) and free £7,(0, T) RHS crystal along with the experimental data [17, 19} 20}
231.

€.
7 ii
822
6
S 811
4
0
10 3b— : : :
-40 -20 0 20 40 AT K 220 260 300 340 T K
Figure 4. The temperature dependences of static di- Figure 5. The temperature dependences of the
electric permittivities of RHS, 1 — £g3, 1 — 553, v transverse permittivities £17 and €22 of RHS. o [23].

[19], A [20], O [17], o [23] and RDS — 2, ¢ [16].

The permittivity £, (0, T) is larger than £5,(0, T). An increase of deuteron concentration increases the
permittivity £5,(0, T) at all temperatures. As shown in figure E} the theoretical results €2, (0, T) are in a
good quantitative agreement with experimental data of [17,[19}/20} 23]. At temperature T = T¢, the value
of the permittivity €%, (0, T) is very large, which is typical of the second order phase transitions.

Figureillustrates the temperature dependences of the transverse permittivities €17 and €2 of a RHS
crystal. They are significantly smaller than the longitudinal permittivity.

The temperature dependences of piezoelectric coefficients es; and ess and constants h3; and hss are
given in figure[6] In the paraelectric phase, these coefficients are equal to zero, whereas in the ferroelec-
tric phase, e3; and es; values have a deep minimum at approaching T, and h3;, h3s constants change
insignificantly.
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x 10° e, esu/ cm? x 10* h,, dyn/esu
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Figure 6. The temperature dependences of piezoelectric coefficients e3; —1, e32 —2, e33 —3, e35 —4 and
constants hgy —1, hgp —2, h33 —3, h35 —4 of RHS.

In figure 7| we show the temperature dependences of the elastic constants cf] A good description

of experimental data [23] is obtained, except for the temperature dependence of elastic constants cfz,

cfz, and cZE3 in the ferroelectric phase, for which the experimental measurements predict deep minima

near T¢.

x10" ¢, dn/cm? C_. J/molK
5 - 150 !
4 22
s ; ° O% : : : 33
S ° Cq
3 L
100
0 ‘ ‘ ‘ 50
150 200 250 300 T, K 100 150 200 250 300 T,K
Figure 7. The temperature dependences of the elastic Figure 8. The temperature dependences of heat ca-
constants cf of RHS, o — [23], lines: the theory. pacity of RHS — 1, « [31] and RDS — 2.

J

The temperature dependences of heat capacity of RHS and RDS crystals along with experimental data
[31]] are depicted in figure[§]

By a dashed line we show the effective lattice heat capacity contribution Cp, which we estimate as
an average difference Cexp(T) — AC(T). A quantitatively good description of experiment [31] is obtained.
The calculated value of the heat capacity jump is also in a good agreement with experiment. Deuteration
increases the heat capacity in the entire temperature range.

Figures show the temperature dependences of the real £§’3(v, T) and imaginary Egg (v, T) parts
of the dynamic dielectric permittivity at different frequencies and compositions of partially deuterated
Rb(H;-,D,)S04 crystals (at x = 0.0, 0.70, 1.00) along with the experimental data [14}/32}I35].

As seen in the figures, the proposed model yields a good description of experimental data for the
Rb(H;_,D,)SO4 crystals over a wide temperature range at different frequencies. For all frequencies, at
AT =0 K, the dynamic permittivity £g3 (v, T) has a sharp minimum, where the permittivity values drop
to egg ; the minimum width increases with an increasing frequency. The maximum in the temperature
curve of Eé3 (v, T) above T, lowers down, smears out, and shifts to higher temperatures at an increasing
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Figure 9. The temperature dependences of the real £§; (v, T) and imaginary Egg (v, T) parts of the dynamic
dielectric permittivity of RHS at different frequencies v (GHz): 0.150 — 1, > [32]; 0.455 — 2, < [32]; 3.27 —
3, A [32];9.50 — 4, v [32], 8.72 — 5, + [14]; 12.5 — 6, * [14]; 22.5 — 7, x [14]; 41.7 — 8, o [14]; 190 — 9, A
[35]; 253 — 10, «[35]; 307 — 11, v [35].

25

20

15
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=,
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-10-5 0 5 10 15 20 2571 -10 -5 0 5 10 15 20 25T K

Figure 10. The temperature dependences of the real 5’33 and imaginary Egs parts of the dynamic dielectric
permittivity of Rb(Hg 30Dg.70)SO4 at different frequencies v (GHz): 8.72 — 1, > [14]; 12.5 — 2, < [14];
18.72 — 3, v [14]; 41.70 — 4, O [14]; 330 — 5, A [14].

frequency. The dispersion width of the real part of the permittivity in the paraelectric phase is wider than
in the ferroelectric phase.

In figures [12] and [13] we plot the temperature dependences of the real and imaginary parts of the
transverse dielectric permittivities €/, £/, and €5,, £}, of RHS at different frequencies.
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2.5 0
-40 =20 0 20 40 60 80AT,K -40 -20 0 20 40 60 80AT,K

Figure 11. The temperature dependences of the real 5{%3 and imaginary £g3 parts of the dynamic dielectric
permittivity of RDS at different frequencies v (GHz): 118 — 1, < [35]]; 177 — 2,  [35]; 235 — 3, ¥ [35]; 330 —
4, W [35]; 510 — 5, A [35].

811

4 5
240 250 260 270 280 290 T K 240 250 260 270 280 290 T, K

Figure 12. The temperature dependences of the real 6’11 and 5’22 parts of the dynamic dielectric permit-
tivity of RDS at different frequencies v (GHz): 0 — 1; 41.7 — 2; 78.5 — 3; 118 — 4; 190 — 5; 253 — 6.

" e"
11 22
1 1 g
0.8
0.8 g
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. 0.2 2
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100 150 200 250 T.K 100 150 200 250 T, K

Figure 13. The temperature dependences of the imaginary 6’1’ ; and 6’2’2 parts of the dynamic dielectric
permittivity of RDS at different frequencies v (GHz): 0 — 1; 41.7 — 2; 78.5 — 3; 118 — 4; 190 — 5; 253 — 6.

In figure we plot the calculated frequency dependences of £%,(v) and £5,(v) for RHS at differ-
ent temperatures AT =2, 5, 10, 20 K and in ﬁgurefor Rb(H;_,D)2S04 with x = 0.70 along with the
experimental points.
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Figure 14. The frequency dependences of 5’33 (v) and Eé’s (v) for RHSat AT: 2 —1;5—2;10 — 3; 20 — 4.
A [32]; « [33]; o [14]; O 351, x, * [33].
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Figure 15. The frequency dependences of 853 (v) and 8g3 (v) for Rb(H;_xDyx)2S0O4 at x=0.70 at AT: 2 —1,

A [14]; 5 —2, 0 [14]; 10 — 3, O [14]; 20 — 4, v [14].

As one can see, the theory is in a good agreement with experiment, except for the data of [33] where
the permittivity dispersion was observed at frequencies lower than in [14} 32} [35]. When AT increases,

the dispersion of €33 (v, T) shifts to higher frequencies.

6. Conclusions

In this paper, using the modified four-sublattice model of a RbHSO, crystal, with taking into account
the piezoelectric coupling to the ¢;, ¢; strains, within the framework of the mean field approach, the
theory of the thermodynamic, dielectric, piezoelectric, elastic, and dynamic properties of RHS crystals has
been developed. A thorough numerical analysis of the dependences of the calculated characteristics on
the model parameters has been performed. Optimal sets of these parameters and “seed” characteristics
for RHS crystals have been found which enabled us to describe the available experimental data.
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CTaTUCTUYHA Teopis TepMOANHAMIYHUX Ta ANHAMIYHUNX
B/lacTUBOCTeW cerHeToenekTpuka RbHSO,

1.P. 3auel P.P. NeBuubkuif 5.1. LU,ypE], 0.B. bineHbka®

1 HauioHansHuii yHiBepcuTeT “/IbBiBCbKa noniTexHika”, Byn. C. banaepw, 12, 79013 Jlbsis, YkpaiHa
2 IHCTUTYT Qi3nKn KoHAeHcoBaHMX cuctem HAH YkpaiHw, Byn. I. CBeHuiupkoro, 1, 79011 JibBiB, YkpaiHa

BukopuctoByroun MogndikoBaHy YoTupunigrpatkoBy Mogens RobHSO4 wnsaxom BpaxyBaHHS N'e30e/1eKTPUYHO-
ro 3B'A3Kky 3 gepopmaLigMu €;, €4, €5 | €5, B HABAVKEHHI MONEKYNSPHOTO MOAS PO3PaXOBaHO KOMMOHEHTH
BeKkTOopa nonspu3aLii Ta TeH3opa CTaTUYHOI AiesIeKTPUYHOI MPOHUKHOCTI M@XaHiYHO 3aTUCHYTOrO i BiIbHOMO
KpWCTaniB, X N'€30€/1eKTPUYHI XapakTepuCTUKK i NPYXHi cTasi. Po3paxoBaHO TaKoX AUHAMiYHiI MPOHUKHOCTI
MexaHi4HO 3aTucHyToro kpuctany RbHSO4. Mpu 3HaligeHoMy Habopi napameTpiB Teopii OTPMMaHO ANS LUX
XapaKTepuCTnK 3af0BiNbHUIA KiNbKiCHWI ONWUC HAABHNX eKCNepuMeHTaAbHUX AaHWX.

KntouoBi cnoBa: cerHeroenekTpuku, AienekTpudHa nPpOHUKHICTb, M'€30MOAY NI

PACS: 77.22.Ch, 77.22.Gm, 77.65.-j, 77.80.Bh, 77.84.-s
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