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Abstract. In the paper the split metacyclic groups which
are the additive groups of finite local nearrings are classified.

Introduction

Nearrings are generalized rings in the sense that the addition need not
be commutative and only one distributive law is assumed. For a detailed
account of basic concepts concerning the nearrings we refer the reader to
the books [12] or [13]. A nearring R with an identity is called local if the
set of all non-invertible elements of R forms a subgroup of the additive
group of R.

Maxson [9] described all non-isomorphic zero-symmetric local nearrings
with non-cyclic additive group of order p2 which are not nearfields. He
also shown in [10] that every non-cyclic abelian p-group of order pn > 4 is
the additive group of a zero-symmetric local nearring which is not a ring.
This result was extended to infinite abelian p-groups of finite exponent [5].

However in the case of finite non-abelian p-groups the situation is
different. For instance, neither a generalized quaternion group nor a non-
abelian group of order 8 can be the additive group of a local nearring [11]
(see also [10]).
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In [14] all minimal non-abelian groups (the Miller–Moreno groups
in other words) which are the additive groups of finite nearrings with
identity are classified. In this paper the split metacyclic groups which
appear as the additive groups of finite local nearrings are considered and
their full classification is given.

1. Preliminaries

First we recall some notions and facts concerning nearrings and meta-
cyclic groups.

Definition 1. A (left) nearring is a set R = (R, +, ·) with two binary
operations, addition “ + ” and multiplication “ · ”, such that

1) (R, +) is a group with neutral element 0,
2) (R, ·) is a semigroup, and
3) x(y + z) = xy + xz for all x, y, z ∈ R.

The group (R, +) of a nearring R is denoted by R+ and called the
additive group of R. It is easy to see that for each subgroup M of R+

and for each element x ∈ R the set xM = {x · y|y ∈ M} is a subgroup
of R+ and in particular x · 0 = 0. If in addition 0 · x = 0 for all x ∈ R,
then the nearring R is called zero-symmetric. In general, the set of all
y ∈ R with 0 · y = 0 is a subnearring called the zero-symmetric part of
R. Furthermore, R is a nearring with an identity i if the semigroup (R, ·)
is a monoid with identity element i. In the latter case the group of all
invertible elements of the monoid (R, ·) is denoted by R∗ and called the
multiplicative group of R. A subgroup M of R+ is called R∗-invariant, if
rM 6 M for each r ∈ R∗, and (R, R)-subgroup, if xMy ⊆ M for arbitrary
x, y ∈ R.

As usual, for every element r ∈ R and each integer n ∈ Z we define
the element rn of R as follows:

rn =







r + · · · + r
︸ ︷︷ ︸

n times

if n > 0,

0 if n = 0,
(−r) + · · · + (−r)
︸ ︷︷ ︸

−n times

if n < 0.

Then r(m + n) = rm + rn for any integers m and n, so that we can
identify the neutral element 0 with integer 0. On the other hand, if i is
an identity of R, then we will not identify i with integer 1, because in
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general (in)r 6= rn = r(in) for n 6= 1. Thus, to avoid a confusion, we do
not use a notation nr with an integer n.

The following two simple assertions are well-known.

Lemma 1. Let R be a finite nearring R with identity i. Then the exponent

of the additive group R+ is equal to the additive order of i which coincides

with additive order of every element of the multiplicative group R∗.

Proof. Indeed, if ik = 0 for some positive integer k, then for each x ∈ R
we have xk = (xi)k = x(ik) = x0 = 0. On the other hand, if y ∈ R∗ and
yl = 0 for a positive integer l, then il = y−1(yl) = 0, so that the additive
orders of r and i coincide.

Lemma 2. Let R be a nearring with identity i and a ∈ R∗. For any

elements x, y ∈ R we put x ◦ y = xa−1y. Then with respect to the

operations “+” and “◦” the set (R, +, ◦) is a nearring with identity a
which is isomorphic to R.

Proof. It can be easily verified that the operation “◦” is associative and
left distributive with respect to the addition and the mapping r 7→ ar
determines an isomorphism of the nearring R onto (R, +, ◦).

Definition 2. [8] A nearring R with identity is said to be local if the set
L = R \ R∗ of all non-invertible elements of R is a subgroup of R+.

As it was shown in [8], Theorem 7.4, the additive group of a finite
local nearring is a p-group for a prime p.

The following lemma characterizes the main properties of local near-
rings (see [1], Lemma 3.2).

Lemma 3. Let R be a local nearring with an identity i and L the subgroup

of all non-invertible elements of R. Then the following statements hold:
1) L is an (R, R)-subgroup of R+;
2) each proper R∗-invariant subgroup of R+ is contained in L;
3) the set i + L forms a subgroup of the multiplicative group R∗.

Recall that a group G is called metacyclic if there exists a cyclic
normal subgroup 〈a〉 such that the factor-group G/〈a〉 is cyclic. For a
prime p, a metacyclic p-group G is split if and only if it is decomposed in
a semidirect product G = 〈a〉⋊ 〈b〉 of the cyclic normal subgroup 〈a〉 and
a cyclic subgroup 〈b〉.

The following useful characterization of non-abelian split metacyclic
p-groups is due to B. King (see [7], Theorem 3.2 and Proposition 4.10).
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Proposition 1. Let G = 〈a〉 ⋊ 〈b〉 be a non-abelian split metacyclic p-

group with apm

= bpn

= 1 for some positive integers m and n. Then the

exponent of G is equal to max{pm, pn} and one of the following statements

holds:
I. b−1ab = a1+pm−r

with 1 6 r < min{m, n + 1} and r < m − 1 for

p = 2;
II. p = 2 and b−1ab = a−1+2m−r

with 0 6 r < min{m − 1, n + 1}.

Henceforth, a group G satisfying one of statements I or II of Propo-
sition 1 will be denoted by G(pm, pn, r) or G(2m, 2n, −r), respectively.
Furthermore, for any integers v and w > 0 we put j(v, 0) = 0 and
j(v, w) = 1 + v + . . . + vw−1 for w > 1.

Lemma 4. Let p be a prime and t, u positive integers. If d, k and l are

non-negative integers, then the following statements hold:
1) j(td, k) + j(td, l)tdk = j(td, k + l);
2) if t ≡ 1 ( mod pu), then

td ≡ tdt ≡ 1 + d(t − 1) ( mod p2u)

and

j(td, k) ≡ k +

(

k

2

)

d(t − 1) ( mod p2u);

3) if t ≡ −1 ( mod 2u), then

td2k

≡

{

(−1)d(1 − d(t + 1)) ( mod 22u) if k = 0,
1 − d(t + 1)2k ( mod 22u+k−1) if k > 0,

and

j(td, k) ≡







1−(−1)k

2 + (2k−1)(−1)k+1
4 d(t + 1) ( mod 22u)

if d ≡ 1 ( mod 2),

k −
(k

2

)
d(t − 1) ( mod 22u)

if d ≡ 0 ( mod 2).

Proof. Since all statements are obvious for d = 0, we assume that d > 0.
Clearly statement 1) is trivial if kl = 0. In the other case we have

j(td, k) + j(td, l)tdk = (1 + td + · · · + td(k−1)) + (1 + td + · · · + td(l−1))tdk

= 1 + td + · · · + td(k+l−1) = j(td, k + l),

as desired.
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Statement 2) is easily proved by induction on d. Indeed, we have

td−1 ≡ 1 + (d − 1)(t − 1) ( mod p2u)

and so td−1(t − 1) ≡ t − 1( mod p2u). Therefore

td ≡ td−1 + t − 1 ≡ 1 + d(t − 1) ( mod p2u).

This implies

tdt − td ≡ 1 + dt(t − 1) − (1 + d(t − 1)) = d(t − 1)2 ≡ 0 ( mod p2u)

and thus tdt ≡ td ( mod p2u). Furthermore,

j(td, k) = 1+td+· · ·+td(k−1) ≡ 1+(1+d(t−1))+· · ·+(1+d(k−1)(t−1))

= k + (1 + · · · + (k − 1))d(t − 1) = k +

(

k

2

)

d(t − 1) ( mod p2u),

which proves statement 2).

For proving statement 3), we put v = t + 1. Then v ≡ 0 ( mod 2u)
and

td2k

= (−1 + v)d2k

= (−1)d2k

+ (−1)d2k−1

(

d2k

1

)

v

+(−1)d2k−2

(

d2k

2

)

v2 + · · · + vd2k

.

Since
(d2k

2

)
≡ 0 ( mod 2k−1), the congruence for td2k

follows from this
equality. Therefore

j(td, k) = 1 + td + · · · + t(k−1)d ≡ 1 + (−1)d(1 − v)

+(−1)2d(1 − 2dv) + · · · + (−1)(k−1)d(1 − (k − 1)dv) ( mod 22u).

In particular, for odd d we have

j(td, k) ≡ 1 + (−1 + dv) + (1 − 2dv) + · · · + ((−1)k−1 + (−1)k−2(k − 1)dv)

=
1 − (−1)k

2
+ (1 − 2 + 3 − · · · + (−1)k−2(k − 1))dv

=
1 − (−1)k

2
+

(2k − 1)(−1)k + 1

4
dv ( mod 22u).
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If d is even, then

j(td, k) ≡ 1 + (1 − dv) + (1 − 2dv) + · · · + (1 − (k − 1)dv)

= k − (1 + 2 + · · · + (k − 1))dv = k −

(

k

2

)

dv ( mod 22u),

as claimed.

Lemma 5. Let G be an additively written group whose elements a and

b satisfy the relation a + b = b + as for some natural number s. If t is

the least natural number such that ast = 0, then for any non-negative

integers d, k and u the equalities au+bd = bd+asdu, bd+au = autd +bd,

(au + bd)k = auj(td, k) + bdk and (bd + au)k = bdk + auj(sd, k) hold.

Proof. Since −b + a + b = as and −b + at + b = (−b + a + b)t = ast = a,
we have b + a = at + b and so b + au = atu + b. By induction on d, we
derive au + bd = bd + asdu and bd + au = atdu + bd. Therefore

(au + bd)k = au(1 + td + . . . + td(k−1)) + bdk = auj(td, k) + bdk

and hence

(bd + au)k = bdk + au(1 + sd + . . . + sd(k−1)) = bdk + auj(sd, k).

The following proposition on the automorphism group of a non-abelian
split metacyclic p-group can be found in [2], Theorem 3.1, for p > 2 and
in [4], Theorem 3.5, for p = 2.

Proposition 2. Let G be a split non-abelian metacyclic p-group and let

S be a Sylow p-subgroup of the automorphism group Aut(G). Then S is a

normal subgroup of index p − 1 in Aut(G). In particular, if p = 2, then

Aut(G) is a 2-group.

An information about orbits of the group G under the action of its
automorphism group Aut(G) is given by the following lemma.

Lemma 6. Let G = G(pm, pn, r) with m 6 n + r, A = Aut(G) and let

〈x〉 be a cyclic subgroup of G. Then the following statements hold:

1) if 〈x〉 is a normal subgroup of order pm in G, then

|xA| 6 p2m−r−1(p − 1);
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2) if p> 2, m 6 n and 〈x〉 is a non-normal subgroup of order pn, then

x−1 /∈ xA.

Proof. If G = 〈a〉⋊〈b〉 with b−1ab = a1+pm−r

and 〈x〉 is a normal subgroup
of order pm in G, then either 〈a〉 ∩ 〈x〉 = 1 and so 〈x〉 centralizes the
subgroup 〈a〉, or apm−1

∈ 〈x〉. Since G′ = 〈apm−r

〉 is a characteristic
subgroup of G, it follows that in the first case 〈a〉 ∩ 〈xα〉 = 1 for each
α ∈ A. Hence xA ⊆ CG(a) = 〈a〉 × 〈bpr

〉 and so |xA| 6 p2m−r−1(p − 1).
In the second case G = 〈x〉 ⋊ 〈b〉 and so G′ = 〈apm−r

〉 6 〈x〉. Then

|〈x〉〈xα〉| = |x||xα|
|〈x〉∩〈x〉α| 6 p2m−r, whence 〈x〉〈xα〉 6 〈x〉 ⋊ 〈bpn+r−m

〉 and in

particular xα ∈ 〈x〉 ⋊ 〈bpn+r−m

〉. Taking into account that the number
of elements of order pm in 〈x〉 is equal to pm−1(p − 1), we have |xA| 6
p2m−r−1(p − 1), which proves statement 1).

Now let p > 2, m 6 n and let 〈x〉 be a non-normal subgroup of
order pn in G. Since G′ = 〈apm−r

〉, it follows that 〈a〉 ∩ 〈x〉 = 〈aps

〉 for
some integer s such that m > s > m − r and so 〈aps

〉 = 〈xpn−m+s

〉.
Therefore x = aubvpm−s

for some integers u and v with (v, p) = 1 and
hence [a, x] = [a, bvpm−s

] = awp2m−r−s

, where

w =
(1 + pm−r)vpm−s−1

p2m−r−s

and in particular (w, p) = 1.
Assume that xα = x−1 for some automorphism α ∈ A. As it was

shown above, aα ∈ 〈a〉 ⋊ 〈bpn+r−m

〉, whence aα = akblpn+r−m

for some

integers k and l with (k, p) = 1. Furthermore, 〈apm−r

〉
α

= 〈apm−r

〉 and
so (apm−r

)α = (akblpn+r−m

)pm−r

= akpm−r

blpn

= akpm−r

. Thus (apm−r

)α =
akpm−r

. On the other hand, because of m 6 n it follows that blpn+r−m

∈
〈br〉 6 Z(G). Therefore akwpm−r

= (awpm−r

)α = [a, x]α = [aα, x−1] =
[akblpn+r−m

, x−1] = [ak, x−1] = [a, x−1]k = ([a, x]−k)x−1

= (a−kwpm−r

)x−1

and hence (akwpm−r

)x = a−kwpm−r

. However for p > 2 the last equality
holds only in the case where akwpm−r

= 1. Since (kw, p) = 1, this means
that apm−r

= 1, contrary to the hypothesis of the lemma. Therefore,
x−1 /∈ xA, as claimed in statement 2).

Lemma 7. Let R be a local nearring whose additive group R+ is a

split non-abelian metacyclic p-group and let L be the subgroup of all

non-invertible elements of R. Then L is a subgroup of index p in R+.

Proof. Indeed, we have the index |R+ : L| = pk for some k > 1 and
so |R| = pk|L|. Since R = R∗ ∪ L with R∗ ∩ L = ∅, it follows that
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|R∗| = pk|L| − |L| = (pk − 1)|L| and thus the order of R∗ is divisible by
pk − 1. On the other hand, for each element r ∈ R∗ the mapping x 7→ rx
with x ∈ R is an automorphism of R+, because of r(x + y) = rx + ry
for all x, y ∈ R. Therefore R∗ can be viewed as a subgroup of Aut(R+).
Furthermore, it follows from Proposition 2 that the order of Aut(R+) is
divisible by pk − 1 only if k = 1. Hence |R+ : L| = p, as desired.

As a direct consequence of Lemmas 1, 2 and 7 we have the following
assertion.

Corollary 1. Let R be a local nearring whose additive group R+ is a

non-abelian split metacyclic p-group. Then the group R+ is generated by

elements a and b of orders pm and pn, respectively, one of which coincides

with identity element of R and a+b = b+a(1+pm−r), if R+ is isomorphic

to the group G(pm, pn, r), and a+b = b+a(−1+2m−r), if R+ is isomorphic

to the group G(2m, 2n, −r).

2. Nearrings with identity on non-abelian split metacyclic
p-groups

Let R be a nearring with identity whose additive group R+ is a split
non-abelian metacyclic p-group with p > 2. Then R+ = 〈a〉 + 〈b〉 for
some elements a and b of R satisfying the relations apm = bpn = 0 and
b+a = at+b with (p, t) = 1. In particular, each element x ∈ R is uniquely
written in the form x = ax1 + bx2 with coefficients 0 6 x1 < pm and
0 6 x2 < pn. In this section we will consider the cases when at least one of
the elements a or b is invertible in R, i. e. it belongs to the multiplicative
group R∗.

Assume first that a ∈ R∗. Then R+ is a group of exponent pm by
Lemma 1 and so m > n. Furthermore, according to Lemma 2, without loss
of generality we can assume that a is an identity of R, i. e. ax = xa = x for
each x ∈ R. Moreover, for each x ∈ R there exist coefficients α(x) and β(x)
such that xb = aα(x) + bβ(x). It is clear that they are uniquely defined
modulo pm and pn, respectively, so that some mappings α : R → Zpm and
β : R → Zpn are determined.

Lemma 8. Let x = ax1 + bx2 and y = ay1 + by2 be elements of the

nearring R. If a is an identity of R, then m > n and the following

statements hold:
(0) α(0) = β(0) = 0 if and only if the nearring R is zero-symmetric;
(1) α(a) = 0 and β(a) = 1;
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(2) xy = a(x1j(tx2 , y1) + α(x)j(tβ(x), y2)tx2y1) + b(x2y1 + β(x)y2);
(3) α(x)(tx2t − 1) ≡ x1(tβ(x) − j(tx2 , t)) ( mod pm);
(4) x2(t − 1) ≡ 0 ( mod pn).

Proof. Since 0 ·a = a ·0 = 0, it follows that R is a zero-symmetric nearring
if and only if 0 = 0 · b = aα(0) + bβ(0) or equivalently α(0) = β(0) = 0.
Moreover, since b = ab = aα(a) + bβ(a), we have α(a) = 0 and β(a) = 1,
so that statements (0) and (1) hold.

Further, using the left distributive law, we derive

xy = (xa)y1 + (xb)y2 = (ax1 + bx2)y1 + (aα(x) + bβ(x))y2.

Applying Lemma 5, we have also

(ax1 + bx2)y1 = ax1j(tx2 , y1) + bx2y1,

(aα(x) + bβ(x))y2 = aα(x)j(tβ(x), y2) + bβ(x)y2

and

bx2y1 + aα(x)j(tβ(x), y2) = aα(x)j(tβ(x), y2)tx2y1 + bx2y1.

Thus

xy = a(x1j(tx2 , y1) + α(x)j(tβ(x), y2)tx2y1) + b(x2y1 + β(x)y2)

and so statement (2) holds. Setting in this formula y = at + b, we derive

xy = a(x1j(tx2 , t) + α(x)tx2t) + b(x2t + β(x)).

On the other hand, y = b + a and so

xy = xb + x = a(α(x) + x1tβ(x)) + b(x2 + β(x))

by Lemma 5. Comparing the coefficients under a and b in the latter two
expressions for xy, we get for each x ∈ R the equalities

α(x)(tx2t − 1) ≡ x1(tβ(x) − j(tx2 , t)) ( mod pm)

and
x2(t − 1) ≡ 0 ( mod pn),

i. e. statements (3) and (4), as desired.

Consider now the case when b ∈ R∗.
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Lemma 9. If b ∈ R∗, then m 6 n, a /∈ R∗ and p = 2.

Proof. Since b is of order pn, the group R+ is of exponent pn by Lemma 1
and so m 6 n. Let A denote the automorphism group Aut(R+) of R+.
Considering R∗ as a subgroup of A, we have R∗x ⊆ xA for each x ∈ R
and in particular R∗ = R∗b ⊆ bA. If a ∈ bA, then a = bφ for some
automorphism φ ∈ A and so 〈a〉φ = 〈b〉. Since the subgroup 〈a〉 is normal
in R+ and the subgroup 〈b〉 is not, the latter equality is impossible.
Therefore a /∈ bA and hence a /∈ R∗.

Assume that p > 2. Then −b 6∈ bA by Lemma 6 and so −b 6∈ R∗. On
the other hand, if i is an identity of R, then b−1(−b) = −(b−1b) = −i.
Since (−i)2 = −(−i) = i, this implies b−1(−b) = −i ∈ R∗ and so
−b ∈ bR∗ = R∗. This contradiction shows that p = 2 and completes the
proof.

As above, according to Lemma 2, in the case b ∈ R∗ we can assume
that b is an identity of R and for each x ∈ R there exist the coefficients α(x)
and β(x) which are uniquely determined modulo 2m and 2n, respectively,
such that xa = aα(x) + bβ(x).

Lemma 10. Let x = ax1 + bx2 and y = ay1 + by2 be elements of the

nearring R. If b is an identity of R, then p = 2, m 6 n and the following

statements hold:

(0) α(0) = β(0) = 0 if and only if the nearring R is zero-symmetric;
(1) α(b) = 1 and β(b) = 0;
(2) xy = a(α(x)j(tβ(x), y1) + x1j(tx2 , y2)tβ(x)y1) + b(β(x)y1 + x2y2);
(3) α(x)(j(tβ(x), t) − tx2) ≡ x1(1 − tβ(x)t) ( mod 2m);
(4) β(x)(t − 1) ≡ 0 ( mod 2n).

Proof. Observe first that p = 2 and m 6 n by Lemma 9. Since 0·b = b·0 =
0, the nearring R is zero-symmetric if and only if 0 = 0 ·a = aα(0)+bβ(0),
whence α(0) = β(0) = 0. Similarly, the equality a = ba = aα(b) + bβ(b)
implies that α(b) = 1 and β(b) = 0, i. e. statements (0) and (1) hold.
Further, applying the left distributive law, we obtain

xy = (xa)y1 + (xb)y2 = (aα(x) + bβ(x))y1 + (ax1 + bx2)y2.

Using Lemma 5, we have also

(aα(x) + bβ(x))y1 = aα(x)j(tβ(x), y1) + bβ(x)y1,

(ax1 + bx2)y2 = ax1j(tx2 , y2) + bx2y2
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and
bβ(x)y1 + ax1j(tx2 , y2) = ax1j(tx2 , y2)tβ(x)y1 + bβ(x)y1.

Therefore

xy = a(α(x)j(tβ(x), y1) + x1j(tx2 , y2)tβ(x)y1)
+ b(β(x)y1 + x2y2),

which proves statement (2). Substituting y = at + b in this equality, we
get

xy = a(α(x)j(tβ(x), t) + x1tβ(x)t) + b(x2 + β(x)t).

On the other hand, y = b + a and thus

xy = x + xa = a(x1 + α(x)tx2) + b(x2 + β(x)).

Comparing the coefficients under a and b in the latter two expressions
for xy, we obtain the congruences

α(x)j(tβ(x), t) + x1tβ(x)t ≡ x1 + α(x)tx2 ( mod 2m)

and
x2 + β(x)t ≡ x2 + β(x) ( mod 2n),

from which statements (3) and (4) follow directly.

2.1. Nearrings with identity on the group G(pm, pn, r)

Assume now that m, n and r are positive integers satisfying statement I
of Proposition 1, and let t be the least natural number such that (1 +
pm−r)t ≡ 1 ( mod pm). It is easy to see that t = 1 + hpm−r for some h
with 0 < h < pr and (h, p) = 1.

The following two lemmas describe the multiplication in a nearring R
whose additive group R+ is isomorphic to the group G(pm, pn, r), i. e. R+

is generated by elements a and b satisfying the relations apm = bpn = 0
and b + a = at + b. As it was mentioned above, we restrict ourselves to
the cases when one of the generators a or b is an identity of R. In what
follows x = ax1 + bx2 and y = ay1 + by2 are arbitrary elements of R.

Lemma 11. If a is an identity of R, then m > n + r > 2r and

xy = a(x1y1 + α(x)y2 − x1x2

(

y1

2

)

pm−r) + b(x2y1 + β(x)y2).

Moreover, the following statements hold:
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(1) α(x) ≡ 0 ( mod pm−n );
(2) either x1(β(x) − 1) ≡ 0 ( mod pr ) or p = 2, m > 2r and

x1(β(x) − 1) ≡ 0 ( mod 2r );
(3) α(xy) = x1α(y) + α(x)β(y) − x1x2

(α(y)
2

)
pm−r;

(4) β(xy) = x2α(y) + β(x)β(y).

Proof. Since x2(t − 1) ≡ 0 ( mod pn) by statement (4) of Lemma 8 and
t − 1 = hpm−r with (h, p) = 1, we have m − r > n. Therefore

(i) m > n + r > 2r

and in particular 2(m − r) > m. Furthermore, since (1 + pm−r)t ≡
1 ( mod pm ), it follows that

(ii) t − 1 ≡ −pm−r ( mod pm ).

Using this and statement 2) of Lemma 4, we obtain the congruences

(iii) j(tx2 , y1) ≡ y1 − x2

(

y1

2

)

pm−r ( mod pm ),

(iv) j(tβ(x), y2) ≡ y2 − β(x)

(

y2

2

)

pm−r ( mod pm )

and

(v) tx2y1 ≡ 1 − x2y1pm−r ( mod pm ).

Substituting now in formula (2) of Lemma 8 instead of the left parts of
congruences (iii)–(v) their right parts, we derive the equality

(∗)
xy = a((x1y1 + α(x)y2) − (x1x2

(y1

2

)
+ α(x)β(x)

(y2

2

)

+ α(x)x2y1y2)pm−r) + b(x2y1 + β(x)y2).

Setting in this equality y = bpn = 0, we have

0 = x(bpn) = a(α(x)pn − α(x)β(x)

(

pn

2

)

pm−r)

= aα(x)pn(1 − β(x)

(

pn

2

)

pm−r−n).
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As m − r > 1 for p > 2 and m − r > 2 for p = 2, it follows that
1 − β(x)

(pn

2

)
pm−r−n ≡ 1 ( mod p ) and so aα(x)pn = 0. Therefore

(vi) α(x) ≡ 0 ( mod pm−n),

i.e. statement (1) holds. Moreover, since m − n > r by (i), it follows that
aα(x)pm−r = 0 and hence equality (*) can be rewritten in the form

xy = a(x1y1 + α(x)y2 − x1x2

(

y1

2

)

pm−r) + b(x2y1 + β(x)y2),

as claimed.
Replacing in this equality y by yb = aα(y) + bβ(y) and taking into

account that x(yb) = (xy)b = aα(xy) + bβ(xy), we obtain two expressions
for the element x(yb). Comparing the coefficients at a and b in these
expressions, we derive the equalities

α(xy) = x1α(y) + α(x)β(y) − x1x2

(

α(y)

2

)

pm−r

and
β(xy) = x2α(y) + β(x)β(y)

of statements (3) and (4) of the lemma.
Furthermore, using statement 2) of Lemma 4, we have also

(vii) tx2t ≡ 1 − x2pm−r ( mod pm),

(viii) tβ(x) ≡ 1 − β(x)pm−r ( mod pm)

and

(ix) j(tx2 , t) ≡

{

1 − pm−r ( mod pm) if p > 2,
1 − 2m−r(1 − x22m−r−1) ( mod 2m) if p = 2.

Substituting the right parts of congruences (vi)–(viii) in congruence (3)
of Lemma 8, we get the congruences

(x) α(x)x2 ≡ x1(β(x) − 1) ( mod pr )

for p > 2 and

(xi) α(x)x2 ≡ x1(β(x) − 1 + x22m−r−1) ( mod 2r )

for p = 2. Since m−n > r by (i), it follows from conditions (vi), (x) and (xi)
that x1(β(x)−1) ≡ 0 ( mod pr ) for p > 2 and x1(β(x)−1+x22m−r−1) ≡
0 ( mod 2r ) for p = 2. In the latter case m > 2r and this implies
x1(β(x) − 1) ≡ 0 ( mod 2r ), so that statement (2) holds.
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Lemma 12. If b is an identity of R, then p = 2 < m 6 n, r = 1 and

xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2).

Moreover, the following statements hold:
(0) α(0) = β(0) = 0;
(1) β(x) ≡ 0 ( mod 2n−m+1 );
(2) α(x)(1 − x2) ≡ 0 ( mod 2 );
(3) α(xy) = α(x)α(y) + x1j(tx2 , β(y));
(4) β(xy) = β(x)α(y) + x2β(y).

Proof. It follows from Lemma 10 that p = 2 and m 6 n. Furthermore,
statement (4) of this lemma and the equality t−1 = h2m−r with (h, 2) = 1
imply that

β(x) ≡ 0 ( mod 2n−m+r ).

Therefore it follows from statement 2) of Lemma 4 that for each integer
k > 0 the congruences

(i) tβ(x)k ≡ 1 ( mod 2n)

and

(ii) j(tβ(x), k) ≡ k ( mod 2n )

hold. In particular, taking k = y1 and applying these congruences to
formula (2) of Lemma 10, we get for R the multiplication formula

(∗∗) xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2),

as claimed. Furthermore, expressing the left part of the equality x(ya) =
(xy)a by formula (**) and taking into consideration that ya = aα(y) +
bβ(y) and (xy)a = aα(xy) + bβ(xy), we derive the formulas for α(xy) and
β(xy), i. e. statements (3) and (4) of the lemma.

Next, setting k = t in congruences (i) and (ii), we have

(iii) 1 − tβ(x)t ≡ 0 ( mod 2n )

and

(iv) j(tβ(x), t) − tx2 ≡ t − tx2 ( mod 2n ).

Since m 6 n, it follows from congruences (iii), (iv) and statement (3) of
Lemma 10 that

(v) α(x)(t − tx2) ≡ 0 ( mod 2m ).
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On the other hand,

tx2 ≡ 1 + x2h2m−r ( mod 22(m−r) )

by statement 2) of Lemma 4 and hence

(vi) t − tx2 ≡ (1 − x2)h2m−r ( mod 22(m−r) ).

Therefore congruences (v) and (vi) imply that

α(x)(1 − x2) ≡ 0 ( mod 2min{r,m−r} ).

In particular, α(−b)(1 + 1) ≡ 0 ( mod 2min{r,m−r} ) and hence

(vii) α(−b) ≡ 0 ( mod 2min{r,m−r}−1 ).

Finally, since b = (−b)2 and α(b) = 1 by statement (1) of Lemma 10, it
follows that α((−b)2) = 1. However, α((−b)2) = α(−b)2 by statement (3)
of the lemma, so that α(−b) ≡ ±1 ( mod 2 ). Comparing this congruence
with congruence (vii), we conclude that min{r, m − r} = 1 and

α(x)(1 − x2) ≡ 0 ( mod 2 ),

i. e. statement (2) of the lemma holds. Moreover, as r < m − 1 by
Proposition 1, it follows that r = 1 and thus β(x) ≡ 0 ( mod 2n−m+1 ).
In particular, if x = 0, then both α(0) and β(0) are even integers. Since
α(0) = α(0)2 and β(0) = β(0)α(0) by statements (3) and (4) of the
lemma, we get α(0) = β(0) = 0. This proves statements (0) and (1) of
the lemma and completes the proof.

2.2. Nearrings with identity on the group G(2m, 2n, −r)

In this subsection the integers m, n and r satisfy statement II of
Proposition 1 and t is the least natural number satisfying the congruence
(−1 + 2m−r)t ≡ 1 ( mod 2m). It is easy to check that t = −1 + h2m−r for
some odd h with 0 < h < 2r.

We describe the multiplication in a nearring R whose additive group
R+ is isomorphic to the group G(2m, 2n, −r) and one of two generators a
and b of this group is an identity of R. Recall that the generators a and b
of R+ satisfy the relations a2m = b2n = 0 and b + a = at + b. As before,
x = ax1 + bx2 and y = ay1 + by2 denote arbitrary elements of R.

Lemma 13. If a is an identity of R, then m = 2, n = 1 and r = 0, i. e.,

R+ is the dihedral group of order 8.
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Proof. Since x2(−2+h2m−r) ≡ 0( mod 2n ) by statement (4) of Lemma 8,
it follows that −1 + h2m−r−1 ≡ 0 ( mod 2n−1 ) and so n = 1. Hence
0 6 r 6 1 and thus either r = 0 and t = −1 + 2m or r = 1 and
t = −1 + 2m−1. But if t = −1 + 2m, then R+ = 〈a〉 + 〈b〉 is isomorphic to
the dihedral group of order 2m+1 and this is possible only if m = 2 by [6],
Proposition 4.4.

Let t = −1 + 2m−1. Then m > 3 and statement (3) of Lemma 8
implies that

α(x)(tx2t − 1) ≡ x1(tβ(x) − j(tx2 , t)) ( mod 2m )

for each x = ax1 + bx2 of R. In particular, if x = a + b, then

α(x)(tt − 1) ≡ tβ(x) − j(t, t) ( mod 2m ).

Moreover, tt ≡ −1 + 2m−1 ( mod 2m ), j(t, t) ≡ 1 + 2m−1 ( mod 2m ) and
tβ(x) ≡ (−1)β(x)(1 − β(x)2m−1) ( mod 2m ) by statement 3) of Lemma 4.
Therefore

α(x)(−2 − 2m−1) ≡ ((−1)β(x) − 1) − ((−1)β(x)β(x) − 1)2m−1 ( mod 2m )

and hence either

(i) α(x) ≡ 1 ( mod 2m−1 )

if β(x) ≡ 1 ( mod 2 ) or

(ii) α(x) ≡ 2m−2 ( mod 2m−1 )

if β(x) ≡ 0 ( mod 2 ).
On the other hand, we have b2 = 0 and xb = aα(x) + bβ(x), so that

0 = (xb)2 = aα(x)j(tβ(x), 2) by Lemma 5. Since

j(tβ(x), 2) = 1 + tβ(x) ≡

{

2m−1 ( mod 2m) if β(x) ≡ 1 ( mod 2 ),
2 ( mod 2m) if β(x) ≡ 0 ( mod 2 ),

it follows that aα(x)2m−1 = 0 in the case (i) and aα(x)2 = 0 in the case
(ii). But then in both cases a2m−1 = 0 and this contradiction completes
the proof.

It should be noted that the nearrings with identity on the dihedral
group of order 8 were firstly classified by J. Clay in [3]. He shown in
particular that there exist exactly 7 non-isomorphic such nearrings.
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Lemma 14. If b is an identity of R, then r + 1 < m 6 n, 0 6 r 6 1 and

xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2).

Moreover, the following statements hold:

(0) α(0) = β(0) = 0;
(1) β(x) ≡ 0 ( mod 2n−1 );

(2) α(xy) =

{

α(x)α(y) + x1β(y), if m = n and x2 ≡ 0 ( mod 2 ), and

α(x)α(y), in the other cases;

(3) β(xy) = β(x)α(y) + x2β(y).

Proof. Note first that r+1 < m by Proposition 1, m 6 n by Lemma 9 and
β(x)(t − 1) ≡ 0 ( mod 2n ) by statement (4) of Lemma 10. Since t = −1 +
h2m−r for some odd integer h, we have β(x)(−2 + h2m−r) ≡ 0 ( mod 2n )
and so β(x) ≡ 0 ( mod 2n−1 ), i. e., statement (1) of the lemma holds. As
2(m − r) + n − 2 > m + n − r and tβ(x) ≡ 1 + h2m+n−r−1 ( mod 2m+n−r )
by statement 3) of Lemma 4, it follows that tβ(x)k ≡ 1 ( mod 2m ) and so
j(tβ(x), k) ≡ k ( mod 2m ) for every integer k > 0. In particular, setting
k = y1 and using the latter two congruences in statement (2) of Lemma 10,
we can rewrite the formula for xy in the form

(***) xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2),

as claimed.

Next, if k = t, then the above-mentioned congruences and statement (3)
of Lemma 10 imply that α(x)(t − tx2) ≡ 0 ( mod 2m ). In particular,
if x = −b = b(2n − 1), then x2 = 2n − 1 and t − tx2 = t − t2n−1 ≡
t2 − t2n

( mod 2m ). Since t2m−1

≡ 1 ( mod 2m ) and m 6 n, it follows
that t − tx2 ≡ t2 − 1 = h2m−r+1(−1 + h2m−r−1) ( mod 2m ). Thus
α(−b)2m−r+1 ≡ 0 ( mod 2m ), so that either r = 0 or r > 1 and

(i) α(−b) ≡ 0 ( mod 2r−1 ).

Now, expressing both parts of the equality x(ya) = (xy)a by formula
(***) and comparing the coefficients at a and b, we derive

(ii) α(xy) = α(x)α(y) + x1j(tx2 , β(y))

and

(iii) β(xy) = β(x)α(y) + x2β(y).
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In particular, if x = y = −b, then x1 = 0 and from equality (ii) it
follows that α((−b)2) = α(−b)2. As (−b)2 = −(−b) = b and α(b) = 1 by
statement (1) of Lemma 10, this implies α(−b) ≡ ±1 ( mod 2m ) and
hence congruence (i) holds if and only if r = 1.

Finally, it follows from statement 3) of Lemma 4 that j(tx2 , β(x)) ≡
0 ( mod 2n−1 ) for x2 ≡ 0 ( mod 2 ) and j(tx2 , β(x)) ≡ 0 ( mod 2n )
for x2 ≡ 1 ( mod 2 ). Therefore statements (2) and (3) of the lemma
follow directly from equalities (ii) and (iii). Furthermore, if x = y = 0,
then α(0) = α(0)2 by equality (ii) and β(0) = β(0)α(0) by equality (iii),
so that either α(0) = β(0) = 0 or α(0) = 1. Since in the latter case
0 · y = ay1 + bβ(0)y1 by formula (***), it follows that 0 · y = 0 if and only
if y1 = 0 and hence y ∈ 〈b〉. But then, as the zero-symmetric part of R,
the subgroup 〈b〉 is normal in R+ by [12], Theorem 1.15, and thus the
group R+ is abelian, contrary to the assumption. This proves statement
(0) of the lemma and completes the proof.

3. Local nearrings on the groups G(pm, pn, r)
and G(2m, 2n, −r)

Now we apply the results of the previous section for describing local
nearrings whose additive groups are non-abelian split metacyclic. Recall
that if R is such a local nearring, then the additive group R+ is a p-group
for some prime number p and so it is isomorphic to one of the groups
G(pm, pn, r) or G(2m, 2n, −r) by Proposition 1. Furthermore, the set L
of all non-invertible elements of R is a subgroup of index p in R+ by
Lemma 7.

Our first theorem concerns local nearrings on the group G(pm, pn, r).

Theorem 1. Let R be a local nearring whose additive group R+ is isomor-

phic to the group G(pm, pn, r). Then R+ = 〈a〉 + 〈b〉, one of the elements

a or b coincides with an identity of R and the following statements hold:

1) apm = bpn = 0 and a + b = b + a(1 + pm−r) with

1 6 r < min{m, n + 1} and r < m − 1 for p = 2;
2) if a is an identity of R, then m > n + r > 2r + [2

p
], L = 〈ap〉 + 〈b〉

and R∗ = {ax1 + bx2 | x1 6≡ 0 ( mod p )};
3) if b is an identity of R, then p = 2 < m 6 n, r = 1, L = 〈a〉 + 〈b2〉

and R∗ = {ax1 + bx2 | x2 ≡ 1 ( mod 2 )}.

Proof. It follows from Corollary 1 that R+ = 〈a〉 + 〈b〉 for some elements
a and b one of which coincides with an identity of R and that statement 1)
of the theorem holds.
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If a is an identity of R, then m > n + r > 2r + [2
p
] by Lemma 11. In

particular, m > n and so b ∈ L by Lemma 1. Therefore L = 〈ap〉 + 〈b〉.
Since R∗ = R \ L, an element x = ax1 + bx2 belongs to R∗ if and only if
x1 6≡ 0 ( mod p ).

Similarly, if b is an identity of R, then Lemmas 9 and 12 imply that
a ∈ L, p = 2 < m 6 n and r = 1. Hence L = 〈a〉 + 〈b2〉 and so an element
x = ax1 + bx2 belongs to R∗ if and only if x2 ≡ 1 ( mod 2 ).

Applying now statements 2) and 3) of Theorem 1 to Lemmas 11 and
12, respectively, we obtain the following formulas for multiplying any two
elements x = ax1 + bx2 and y = ay1 + by2 in a local nearring R whose
additive group is isomorphic to G(pm, pn, r).

Corollary 2. If a is an identity of R and xb = aα(x) + bβ(x), then

m > n + r > 2r > 0 and

xy = a(x1y1 + α(x)y2 − x1x2

(

y1

2

)

pm−r) + b(x2y1 + β(x)y2)

with coefficients α(x) and β(x) satisfying the following conditions:

(0) α(0) = β(0) = 0 if and only if the nearring R is zero-symmetric;
(1) α(a) = 0 and β(a) = 1;
(2) α(x) ≡ 0 ( mod pm−n);
(3) x1(β(x) − 1) ≡ 0 ( mod pr ) and m > 2r + [2

p
];

(4) α(xy) = x1α(y) + α(x)β(y) − x1x2
(α(y)

2

)
pm−r;

(5) β(xy) = x2α(y) + β(x)β(y).

Corollary 3. If b is an identity of R and xa = aα(x) + bβ(x), then

p = 2 < m 6 n, r = 1 and

xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2)

with coefficients α(x) and β(x) satisfying the following conditions:

(0) α(0) = β(0) = 0;
(1) α(b) = 1 and β(b) = 0;
(2) β(x) ≡ 0 ( mod 2n−m+1);
(3) α(x)(1 − x2) ≡ 0 ( mod 2 );
(4) α(xy) = α(x)α(y) + x1j(tx2 , β(y));
(5) β(xy) = β(x)α(y) + x2β(y).

We now turn to local nearrings on the group G(2m, 2n, −r).
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Theorem 2. Let R be a local nearring whose additive group R+ is iso-

morphic to the group G(2m, 2n, −r). Then R+ = 〈a〉 + 〈b〉, the element b
is an identity of R and the following statements hold:

1) r + 1 < m 6 n and 0 6 r 6 1;
2) a2m = b2n = 0 and a + b = b + a(−1 + 2m−r);
3) L = 〈a〉 + 〈b2〉 and R∗ = {ax1 + bx2 | x2 ≡ 1 ( mod 2 )}.

Proof. As in the proof of Theorem 1, it follows from Corollary 1 that there
exists a decomposition R+ = 〈a〉 + 〈b〉 in which one of the elements a or b
is an identity of R and that statement 2) of the theorem holds. But if a is
an identity of R, then the group R+ is dihedral of order 8 by Lemma 13
and so it cannot be the additive group of a local nearring by [11]. Hence
the element b is an identity of R. Then r + 1 < m 6 n and 0 6 r 6 1 by
Lemma 14 and a ∈ L by Lemma 9. Therefore L = 〈a〉 + 〈b2〉 by Lemma 1
and thus R∗ = {ax1 + bx2 | x2 ≡ 1 ( mod 2 )}, as claimed.

As a consequence of Lemmas 10, 14 and Theorem 2, we have the
following formula for multiplying any two elements in a local nearring R
whose additive group is isomorphic to G(2m, 2n, −r).

Corollary 4. If x = ax1 + bx2 and y = ay1 + by2 are elements of R, then

xy = a(α(x)y1 + x1j(tx2 , y2)) + b(β(x)y1 + x2y2)

with coefficients α(x) and β(x) satisfying the following conditions:

(0) α(0) = β(0) = 0;
(1) α(b) = 1 and β(b) = 0;
(2) β(x) ≡ 0 ( mod 2n−1 );

(3) α(xy) =

{

α(x)α(y) + x1β(y), if m = n and x2 ≡ 0 ( mod 2 ), and

α(x)α(y), in the other cases;

(4) β(xy) = β(x)α(y) + x2β(y).

4. Groups G(pm, pn, r) and G(2m, 2n, −r)
as the additive groups of local nearrings

The following two theorems show that the conditions given in Theo-
rems 1 and 2 are also sufficient for existing finite local nearrings on groups
G(pm, pn, r) and G(2m, 2n, −r). Therefore this completes our classification
of all non-abelian split metacyclic p-groups which are the additive groups
of local nearrings.
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Theorem 3. For each prime p and positive integers m, n and r such

that either m > n + r > 2r + [2
p
] or p = 2, 2 < m 6 n and r = 1 there

exists a local nearring R whose additive group R+ is isomorphic to the

group G(pm, pn, r).

Proof. Let G be an additively written group G(pm, pn, r) with generators
a, b satisfying the relations apm = 0, bpn = 0 and a + b = b + a(1 + pm−r).
Then G = 〈a〉 + 〈b〉 and each element x ∈ G is uniquely written in the
form x = ax1 + bx2 with coefficients 0 6 x1 < pm and 0 6 x2 < pn.

We assume first that m > n + r > 2r > 0 and put x · b = b for each
x ∈ G. Then the coefficients α(x) = 0 and β(x) = 1 satisfy the conditions
(1) - (5) of Corollary 2 and so the formula

x · y = a(x1y1 − x1x2

(

y1

2

)

pm−r) + b(x2y1 + y2)

determines a multiplication “·” on G such that the system R = (G, +, ·)
is a nearring with identity element a. Furthermore, it is easy to check
that an element x = ax1 + bx2 ∈ G is invertible in R if and only if x1 ≡ 1 (
mod p ). Therefore the set of all non-invertible elements of R coincides
with the subgroup L = 〈ap〉 + 〈b〉 of index p in G, so that the nearring R
is local. Moreover, it is also easily verified that the zero-symmetric part
of R coincides with the subgroup 〈a〉 and the constant part 0 · R = 〈b〉.

In the other case, if p = 2, 2 < m 6 n and r = 1, then G is a metacyclic
Miller-Moreno p-group, so that G is the additive group of a zero-symmetric
local nearring with identity element b by [15], Theorem 2.

Theorem 4. If m, n and r are integers such that r + 1 < m 6 n and

0 6 r 6 1, then there exists a local nearring R whose additive group R+

is isomorphic to the group G(2m, 2n, −r).

Proof. Let G be an additively written group G(2m, 2n, −r) with generators
a, b satisfying the relations a2m = 0, b2n = 0 and a + b = b + at with
t = −1 + 2m−r. Then G = 〈a〉 + 〈b〉 and each element x ∈ G is uniquely
written in the form x = ax1 + bx2 with coefficients 0 6 x1 < 2m and
0 6 x2 < 2n.

In order to define a required multiplication “·” on G, for each x ∈ G
we put x · a = aα(x) with

α(x) =

{

1, if x2 ≡ 1 ( mod 2 ), and
0, if x2 ≡ 0 ( mod 2 ).
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Then the coefficients α(x) and β(x) = 0 satisfy the conditions (0) - (4) of
Corollary 4 and so the formula

x · y = a(α(x)y1 + x1j(tx2 , y2)) + b(x2y2)

determines multiplication “·” on G such that the system R = (G, +, ·) is
a nearring with identity element b.

Indeed, it is easy to see that x · b = a(α(x) · 0 + x1j(tx2 , 1)) + bx2 =
ax1 + bx2 = x = b · x, so that b is the identity of R.

We show further that x ·(y+z) = x ·y+x ·z for arbitrary y = ay1 +by2

and z = az1 +bz2 of G. Since y+z = a(y1 +z1ty2)+b(y2 +z2) by Lemma 5,
we have

(i) x · (y + z) = a(α(x)(y1 + z1ty2) + x1j(tx2 , y2 + z2)) + bx2(y2 + z2).

On the other hand,

x · z = a(α(x)z1 + x1j(tx2 , z2)) + b(x2z2)

and

b(x2y2)+a(α(x)z1+x1j(tx2 , z2)) = a(α(x)z1+x1j(tx2 , z2))tx2y2)+b(x2y2)

by Lemma 5. Therefore

(ii) x · y + x · z = a(α(x)(y1 + z1tx2y2)

+x1(j(tx2 , y2) + j(tx2 , z2)tx2y2)) + bx2(y2 + z2).

Subtracting equality (ii) from (i), we obtain

x · (y + z) − (x · y + x · z) = a(α(x)(y1 + z1ty2) + x1j(tx2 , y2 + z2))

−a(α(x)(y1 + z1tx2y2) + x1(j(tx2 , y2) + j(tx2 , z2)tx2y2)

= a(α(x)(y1 + z1ty2) + x1j(tx2 , y2 + z2) − x1(j(tx2 , y2) + j(tx2 , z2)tx2y2)

−(α(x)(y1 + z1tx2y2)) = a(α(x)(y1 + z1ty2 − z1tx2y2 − y1)),

because
j(tx2 , y2 + z2) = j(tx2 , y2) + j(tx2 , z2)tx2y2)

by statement 1) of Lemma 4. Thus

x · (y + z) − (x · y + x · z) = a(α(x)(y1 + z1ty2 − z1tx2y2 − y1))
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and since α(x) = 0 for x2 ≡ 0 ( mod 2 ), it remains to consider the case
α(x) = 1 in which x2 ≡ 1 ( mod 2 ). But then tx2 ≡ t ( mod 2m ) by
statement 3) of Lemma 4 and so tx2y2 ≡ ty2 ( mod 2m ). Therefore (y1 +
z1ty2−z1tx2y2−y1) ≡ 0 ( mod 2m ) and hence a(y1+z1ty2−z1tx2y2−y1) = 0,
as claimed.

It is also clear that the associativity of multiplication “·” follows from
its left distributivity and the equality x · (y · a) = (x · y) · a. Indeed, since
y · a = aα(y) and (x · y) · a = aα(x · y) by definition, we have x · (y · a) =
x · (aα(y)) = (x · a)α(y) = (aα(x))α(y) = a(α(x)α(y)) = aα(x · y).

Finally, we show that an element x = ax1 + bx2 ∈ G is invertible
if and only if x2 ≡ 1 ( mod 2 ). This means that we need to find an
element y = ay1 + by2 such that x · y = y · x = b. Clearly there ex-
ists an odd integer y2 such that x2y2 ≡ 1 ( mod 2n ). Thus if we put
y1 = −x1j(tx2 , y2), then it easy to see that x · y = y · x = b. Therefore
R∗ = {ax1 + bx2 | x2 ≡ 1 ( mod 2)} and hence the set of all non-invertible
elements of R coincides with the subgroup L = 〈a〉 + 〈b2〉 of G. Thus
R = (G, +, ·) is a local nearring, as desired.
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