СТРУКТУРА И ФУНКЦИИ БИОПОЛИМЕРОВ

Самоассоциация молекул дезоксиолигонуклеотида d(GpApCpApTpGpTpC) в водном растворе: термодинамический анализ образования дуплекса октамера по данным ¹H-ЯМР

А. Н. Веселков, С. Г. Осетров, В. И. Пахомов, Н. В. Веселкова, Д. Б. Дэвис¹

Севастопольский государственный технический университет Министерства образования Украины 335053, Севастополь, Студгородок

1 Лондон, Беркбек колледж

> Изучена самоассоциация молекул дезоксиоктануклеотида d(GpApCpApTpGpTpC) в водном растворе методом одномерной и двухмерной ¹H-ЯМР спектроскопии (500 и 600 МГц). Двухмерная гомоядерная ПМР спектроскопия (2M-TOCSY и 2M-NOESY) использована для полного отнесения сисналов протонов дезоксиолигонуклеотида. Измерены концентрационные (при температурах TI= - 298 K и T₂ = 308 K) и температурные зависимости химических сдвигов протонов октамера. Экспериментальные результаты проанализированы с помощью предложенной методики на основе димерной модели ассоциации молекул. Определены равновесная константа самоассоциации, температура плавления дуплекса, термодинамические параметры ΔH и ΔS реакции образования дуплекса октамера в водном растворе. Проведен сравнительный анализ характеристик самоассоциации дезоксиолигонуклеотида d(GpApCpApTpGpTpC) с полученными ранес данными для дезокситетрануклеотидов различной последовательности оснований в цепи.

Введение. Термодинамическая стабильность олигонуклеотидных дуплексов существенно зависит от длины олигонуклеотида, а также от состава и последовательности оснований в цепи [1-5]. Экспериментальные данные [3-5] свидетельствуют о том, что даже небольшие изменения в нуклеотидной последовательности приводят к заметным различиям в значениях термодинамических параметров реакций образования олигонуклеотидных дуплексов. Отметим при этом, что внутримолекулярные взаимодействия в отдельных нитях ДНК при комнатной температуре дают значительный вклад (40 %) в энтальпию образования дуплекса [6]. Определение термодинамических характеристик реакций самоассоциации олигонуклеотидов позволяет провести детальный анализ роли тех или иных физических взаимодействий в стабилизации дуплексов в растворе, что необходимо, в частности, для выяснения физико-химической природы зави-

С А. Н. ВЕСЕЛКОВ, С. Г. ОСЕТРОВ, В. И. ПАХОМОВ, Н. В. ВЕСЕЛКОВА, Д. Б. ДЭВИС, 1998 симости специфичности связывания от последовательности оснований биологически активных лигандов с нуклеиновыми кислотами [7, 8].

Ранее [4, 5] методом одно- и двухмерной ¹Н-ЯМР спектроскопии изучено равновесие самокомплементарных дезокситетрануклеотидов в водно-солевом растворе. Следует отметить, что в короткой двойной спирали, состоящей из четырех нуклеотидных пар, существенное влияние на величину энтальпии (ΔH) образования дуплекса оказывает нестабильность концевых пар. В связи с этим для тетрамера величина ΔH образования дуплекса оказывается несколько ниже соответствующего расчетного значения энтальпии образования «идеального» дуплекса [4, 5]. В настоящей работе в тех же условиях, что и в [4, 5], проведено исследование самоассоциации самокомплементарного дезоксиолигонуклеотида 5'-d(СрАрСрАрТрGpТрС) методом ¹Н-ЯМР спектроскопии. Можно ожидать, что в двойной спирали, состоящей из восьми пар оснований, относительное влияние концевых нуклеотидов

будет значительно меньшим, чем в случае тетрануклеотидных последовательностей. Термодинамические параметры самоассоциации молекул определяли, изучая температурные зависимости химических сдвигов протонов дезоксиолигонуклеотида d(GACATGTC) в водном растворе. Данные двухмерной ЯМР спектроскопии (2M-TOCSY и 2M-

NOESY) использованы для полного отнесения сигналов в спектре ¹H-ЯМР. Методика. Дезоксиолигонуклеотид 5'd(GpApCpApTpGpTpC) синтезирован компанией «Oswel DNA Service» (Великобритания). Образец лиофилизировали из D₂O с изотопной чистотой 99,95 % D («Sigma», США) и растворяли в дейтерированном 0,1 М фосфатном буфере (pD = 7,15), содержащем 10^{-4} моль/л EDTA.

Одномерные спектры 'Н-ЯМР измерены на импульсном спектрометре «JEOL GSX 500» с резонансной частотой 500 МГц. Концентрационные измерения протонных химических сдвигов дезоксиолигонуклеотида d(GACATGTC) выполнены при двух температурах $T_1 = 298$ К и $T_2 = 308$ К в интервале концентраций от 4,2 до 0,1 ммоль/л октамера в растворе. Температурные зависимости химических сдвигов протонов дезоксиолитонуклеотида измерены в диапазоне температур от 283 до 353 К. Двухмерные гомоядерные ТОСЅҮ- и NOESY-эксперименты, использованные для отнесения сигналов необменивающихся протонов октамера, выполняли на спектрометре «Bruker AMX» (600 МГц). Методика проведения эксперимента достаточно подробно описана в [9]. Одномерные и двухмерные спектры измеряли в стандартных ампулах с внешним диаметром 5 мм, минимальный объем раствора 5 мл. Химический сдвиг определяли относительно ДСС (2,2-диметил-2-силапентан-5сульфокислота), в качестве внутреннего стандарта использовали ТМА (бромид тетраметиламмония).

Результаты и обсуждение. Отнесение сигналов в спектре ПМР дезоксиолигонуклеотида 5'd(GpApCpApTpGpTpC) (рис. 1) получено на основании двухмерных гомоядерных TOCSY- и NOE-SY-экспериментов. Спектр 2M-TOCSY использовали для выявления протонов, связанных J-взаимодействием и принадлежащих отдельному дезоксирибозному кольцу, а также для идентификации необменивающихся протонов по Ј(Н5, Н6)и Ј (СН₃, Нб)-корреляциям в основаниях цитозина и тимина. Из 2M-NOESY спектра (рис. 2), анализируя кросс-пики между ароматическими протонами и протонами дезоксирибозы по известной схеме [10], определено, какие сигналы протонов дезоксирибозного кольца и нуклеотидного основания относится к отдельному нуклеозиду и в каком порядке САМОАССОЦИАЦИЯ МОЛЕКУЛ ОЛИГОНУКЛЕОТИДА В ВОДНОМ РАСТВОРЕ

Рис. 1. Схематическое представление дуплекса октамера 5'd(GpApCpApTpGpTpC). Линиями обозначены сахарофосфатные цели, точками — водородные связи между основаниями в уотсон-криковских парах

Рис. 2. 2М-NOE спектр (600 МГц, $\tau_m = 200$ мс) раствора дезоксиолигонуклеотида 5'-d(GpApCpApTpGpTpC) при концентрации октамера С = 4,2 $\cdot 10^{-3}$ моль/л и температуре T = 298 К

углеводные остатки связаны в олигомерную цепь. На рис. 3 в качестве примера показан фрагмент контурного 2M-NOESY-спектра, в котором приведены корреляции между ароматическими протонами и протонами H2'—H2'' сахарного кольца октамера. В спектре отчетливо выявляются ароматические протоны H8(G1) и H6(C8) оснований гуанина

Рис. 3. Расвирение контурього 2М-NOESY спектра (600 МГц, $\tau_m = 200$ мс) раствора дезоксиолигонуклеотида 5'd(GpApCpApTpGpTpC) при T = 298 К и концентрации С = = 4,2 · 10⁻³ моль/л, в котором приведены корреляции между ароматическими протонами и протонами H2', H2'' дезоксирибозных остатков в цепи. Сплошными линиями показаны корреляции для протонов концевь/х нуклеотидов G(1) и C(8)

Рис. 4. Концентрационные зависимости химических сдвигов необменивающихся протопов дезоксиолигонуклеотида 5'd(GpApCpApTpGpTpC) при T = 298 K: I = H2(A4); 2 = H8(G1); 3 = H8(G6); 4 = FI6(C8); 5 = H6(T7); 6 = H6(C3)

и цитозина, расположенных в начале и в конце цепи октамера, которые не имеют кросс-пиков с протонами H2' дезоксирибозы предшествующего им или соответственно последующего нуклеотида в олигонуклеотидной последовательности. В табл. 1 представлены полученные в результате отнесения сигналов значения химических сдвигов для всех необменивающихся протонов анализируемого дезоксиолигонуклеотида 5'-d (GACATGTC). Сравнение значений протонных химических сдвигов, приведенных в табл. 1, с опубликованными ранес результатами отнесения для протонов октамера практически в идентичных экспериментальных условиях [11] показывает их хорошее соответствие.

На рис. 4 представлены концентрационные зависимости химических сдвигов протонов дезоксиолигонуклеотида 5'-d(GACATGTC) при 298 К. Для всех протонов октамера наблюдаются очень слабые изменения химического сдвига Дд при увеличении концентрации в исследованном диапазоне от 0,1 до 4,2 ммоль/л, при этом для большинства протонов эти изменения находятся в пределах точности экспериментальных измерений (∆ $\delta \approx$ несколько тысячных миллионных долей). Аналогичная картина наблюдается и для кривых титрования при $T_2 =$ = 308 К. Такая ситуация может быть связана с высокой равновесной константой образования дуплекса октамера, т. е. при $T_1 = 298$ К и $T_2 = 308$ К в исследованном диапазоне концентраций практически весь олигонуклеотид находится в дуплексной форме в растворе и соответственно вклад мономерной формы в измеряемый химический сдвиг протона δ пренебрежимо мал. Следует отметить, что для получения ЯМР сигнала достаточной интенсивности требуются относительно высокие в сравнении со спектрофотометрическими исследованиями концентрации образцов в растворе. Вместе с тем для надежного определения равновесной константы реакции образования комплексов в растворе исходя из концентрационных кривых титрования концентрации молекул должны быть близкими к обратной величине константы реакции ($\approx 1/K$) [7]. Из всего вышеизложенного следует, что проанализировать закономерности образования дуплекса октамера с использованием концентрационных зависимостей протонных химических сдвигов дезоксиолигонуклеотида d(GACATGTC) на основе модели двух состояний, как это делалось ранее для дезокситетрануклеотидов [4, 5], в этом случае не представляется возможным.

При определении равновесной константы и термодинамических параметров реакции самоассоциации октамера использованы температурные зависимости протонных химических сдвигов (рис. 5). Экспериментальные зависимости $\delta = \delta(T)$, в отличие от наблюдаемых для дезокситетрануклеотидов [4, 5], носят явно выраженный S-образный характер. Для описания экспериментальные кривых ис-

Туклеозид	H8/B6	H2/H5	HĽ	H2'	H2''	H3'	H4'	н5', н5''	СНЗ
Gi	7,89	_	5,61	2,54	2,72	4,80*	4,19	3,69	
A2	8,26	7,53	6,26	2,74	2,93	5,05	4,46	4,25	-
C3	7,28	5,29	5,58	2,07	2,43	4,92*	4,19	4,16	
A4	8,24	7,95	6,25	2,63	2,93	5,00	4,42	4,19	
T5	7,13	_	5,75	2,10	2,44	4,97*	4,20	4,16	1,40
G6	7,79	_	5,95	2,58	2,72	4,91*	4,36	4,16	
T7	7,31	_	6,10	2,12	2,50	4,81*	4,19	4,22	1,37
C8	7,60	5,95	6,26	2,26	2,26	4,56	4,00	4,12; 4,19	

Сигналы ЯМР δ (млн⁻¹) протонов дезоксиолигонуклеотида 5'-d(GACATGTC) при T = 298 K и C = 4,2 · 10⁻³ моль/л

*Химические сдвиги протонов октамера по данным работы [11].

Таблица І

Рис. 5. Температурные зависимости химических сдзигов необменивающихся протонов дезоксиолигонуклеотида 5'd(GpApCpApTpGpTpC) при C = $1,9 \cdot 10^{-3}$ моль/л: I = H6(C3): 2 = H6(T7); 3 = H1'(G6); 4 = H1'(T5); 5 = H1'(C3); 6 = H5(C3)

пользована модель двух состояний, в которой химический сдвиг *i*-го протона октамера при температуре *T* может быть представлен в виде:

$$\delta_i(T) = f_m(T)\delta_{mi}(T) + f_d(T)\delta_{di}, \qquad (1)$$

где $\delta_{mi}(T)$, δ_{di} и $f_m(T)$, $f_d(T)$ — протонные химические сдвиги и равновесные мольные доли октамера при температуре Т в мономерной и дуплексной форме соответственно $(f_m(T) + f_d(T) = 1)$. В соотношении (1) предполагается, что величина δ_{mi} меняется при вариации температуры, что свидетельствует о конформационных изменениях молекул октамера в мономерной форме, связанных, в частности, с изменением внутримолекулярного стэкинга. Зависимость δ_{mi} от температуры наблюдалась для коротких дезокси- и рибонуклеотидных последовательностей [1, 2] и для исследуемых нами ранее дезокситетрануклеотидов [4, 5]. Что касается сдвига δ_{di} протонов в дуплексе, то из структурных соображений можно ожидать, что он не булет испытывать заметных изменений с ростом температуры, поскольку дуплекс является конформационно более устойчивым, чем мономер. Это подтверждается расчетными данными, полученными для дезокситетрануклеотидов исходя из концентрационных измерений химического сдвига при нескольких температурах [4, 5].

Для описания температурной зависимости $f_d(T)$ использовано следующее регрессионное уравнение [7]:

$$f_d(T) = f_d(T_1) [1 + S(T_1)] / [1 + S(T)], \qquad (2)$$

где $S(T) = (T/\Theta)^b$; Θ и *b* — параметры регрессионного уравнения. Аппроксимирующая зависимость для $f_d(T)$ представлена в форме, обычно используемой для описания кооперативных переходов типа «спираль — клубок». В уравнении (2) величина $f_d(T_l)$ представляет собой значение мольной доли при $T_l = 298$ К. Параметр Θ при такой записи

регрессионного уравнения имеет определенный физический смысл — величина Θ соответствует температуре плавления дуплекса (T_m) , т. е. температуре, при которой мольная доля дуплекса уменьшается в 2 раза по сравнению с его содержанием при низких температурах. Отметим, что для описания монотонных температурных зависимостей протонных химических сдвигов дезокситетрануклеотидов, исследованных ранее [4, 5], было использовано рсгрессионное уравнение второго порядка относительно температуры. Величина $f_d(T)$ может быть выражена через равновесную константу образования дуплекса в растворе в соответствии с моделью двух состояний [4, 5]:

$$f_d(T) = (\sqrt{1 + 8K(T)C} - 1)^2 / [8K(T)C], \qquad (3)$$

где C — концентраци октамера в растворе. В свою очередь, равновесная константа образования дуплекса в растворе может быть представлена через соответствующие термодинамические параметры ΔH и ΔS

$$K(T) = \exp[\Delta S^0 / R - \Delta H^0 / RT]$$
(4)

в предположении, что величины ΔS^0 и ΔH^0 не зависят существенным образом от температуры в исследованном диапазоне температур.

Неизвестные параметры, входящие в уравнения (1)—(4), определяли из условия минимизации квадратичной функции невязки экспериментальных и расчетных значений протонных химических сдвигов при различных температурах [12]. Численная процедура минимизации функции невязки описана в [4, 5]. Найденные таким образом значения параметров Θ (т. с. T_m), K (при 298 K), ΔH , ΔS (298 K), рассчитанные по температурным зависимостям химических сдвигов различных протонов октамера, представлены в табл. 2.

Согласно модели (1)—(4), используемой для описания зависимости наблюдаемого химического сдвига протона δ от температуры, параметр Kявляется равновесной константой, Т_т - температура плавления дуплекса, ΔH , ΔS — соответственно энтальпия и энтропия реакции образования дуплекса, и они должны быть одинаковыми для всех протонов. Усредненные значения этих параметров составили: $K = (830 \pm 190) \cdot 10^3$ л/моль при 298 К: $T_m = (321 \pm 5)$ K; $\Delta H = -(410 \pm 38)$ кДж/(моль дуплекса); $\Delta S = -(1, 26 \pm 0, 13)$ кДж/(моль дуплекса К). Полученные величины термодинамических параметров реакций образования дуплекса дезоксиолигонуклеотида d(GpApCpApTpGpTpC) находятся в хорошем согласии (в расчете на одну пару оснований) с соответствующими значениями ΔH и

 ΔS для реакций димеризации самокомплементарных гексамеров в растворе [2, 13]. При этом значение энтальпии реакции образования дуплекса октамера (в предёлах погрешности) согласуется с соответствующим теоретическим значением ΔH , рассчитанным по модели «ближайшего соседа» [14].

Вместе с тем при самоассоциации дезоксиоктануклеотида величина ΔH изменяется больше, чем в два раза (≈ в 2,4÷2,8 раза), по сравнению с вдвое меньшими по длине дезокситетрануклеотидными последовательностями [4] в идентичных условиях растворителя. Одна из возможных причин такого расхождения между октамером и тетрануклеотидными последовательностями может быть связана с существенно большим влиянием в тетрамере по сравнению с октамером раскрытия концевых пар, а также со «скольжением» комплементарных нитей относительно друг друга в коротком тетрануклеотидном дуплексе так, что при этом в растворе в равновесном состоянии находятся различные спиральные структуры [4]. Отметим, что подобное соотношение для ΔH наблюдается и при формировании дезокситетрануклеотидных и динуклеотидных дуплексов [15] — увеличение длины последовательности вдвое приводит к возрастанию абсолютных значений энтальпии примерно в 2,5 раза. По-видимому, в более длинной последовательности имеет место влияние дополнительных факторов, в частности, кооперативное взаимоусиление уотсон-криковских водородных связей и стэкинг-взаимодействий, а также конформационных изменений цепи [4].

Очевидно, что каждый из найденных термодинамических параметров ΔH , ΔS , ΔG представляет собой суммарную величину, учитывающую различные виды взаимодействий при образовании дуплекса олигонуклеотида. В общем случае термодинамические характеристики реакций самоассоциации олигонуклеотидов могут определяться следующими факторами [16, 17]: 1) молекулярными взаимодействиями (ван-дер-ваальсовыми, электростатическими, гидрофобными и водородными связями); 2) конформационными изменениями в олигонуклеотиде: 3) изменением гидратации, высвобождением иона или протона при самоассоциации олигонуклеотидных цепей. Вопросы, связанные с определением величины вклада в измеряемые термодинамические параметры каждого из рассмотренных выше факторов, до конца не выяснены и требуют специальных исследований [16]. Отметим, что теоретический анализ [6, 18, 20] и экспериментальные данные [19] свидетельствуют о том, что водородные связи и стэкинг-взаимодействия оснований да-

Таблица 2

Расчетные значения равновесных констант K (л/моль) и термодинамических параметров ΔH (кДж/(моль дуплекса)); ΔS (кДж/(моль дуплекса)); ΔG (кДж/(моль дуплекса)) реакции самоассоциации дезоксиолигонуклеотида 5'-d(GpApCpApTpGpTpC) при температуре 298 K

Протон	<i>K</i> , 10 ³	Тт. К.	-ΔH ⁰	- <u>A</u> s ⁰	$-\Delta G^0$	
H8 (A2)	477	300	466	1,46	32,4	
H8 (A4)	679	324	410	1,26	33,3	
H8 (G1)	982	327	440	1,36	34,2	
H8 (G6)	997	324	422	1,30	34,2	
H6 (C8)	625	320	434	1,35	33,1	
H2 (A2)	997	320	284	0,84	34,2	
H1' (T7)	986	319	454	1,41	34,2	
H1' (G6)	972	330	398	1,22	34,1	
H1' (T5)	434	326	350	1,07	32,1	
H1' (C3)	976	323	432	1,33	34,2	
H5 (C3)	801	324	380	1,16	33,7	
H5 (C8)	998	319	448	1,39	34,2	
Среднее	(830 ± 190)	(321 ± 5)	(410 ± 38)	$(1,26\pm0,13)$	(33,8±0,5)	

ют сравнимый вклад [20] в стабилизацию двойной спирали при преимуществе первого фактора.

Выражает благодарность Королевскому обществу Великобритании за частичное финансирование (А. Н. В.) экспериментальных исследований; Объединенному исследовательскому центру Лондонского университета — за предоставленную возможность в Беркбек колледже и Куин Мери колледже использовать для измерений ЯМР-спектрометры 500 и 600 Мгц.

О. Н. Веселков, С. Г. Осетров, В. І. Пахомов, Н. В. Веселкова, Д. Б. Девіс

Самоасоціація молекул дезоксиолігонуклеотиду d(GpApCpApTpGpTpC) у водному розчині: термодинамічний аналіз утворення дуплексу октамера за даними ¹Н-ЯМР

Резюме

Вивчено самоасоціацію молекул дезоксиоктануклеотиду d(GpApCpApTpGpTpC) у водному розчині методом одно- та двомірної H-ЯМР спектроскопії (500 та 600 МГц). Двомірну гомоядерну IIMР спектроскопію (2M-TOCSY і 2M-NOESY) використано для повного віднесення сигналів протонів дезоксиолігонуклеотиду. Виміряно концентраційні (при температурах $T_1 = 298$ К та $T_2 = 308$ К) і температурні залежності хімічних зсувів протонів октамера. Експериментальні результати проаналізовано за допомогою запропонованої методики на основі димерної моделі асоціації молекул. Визначено рівноважну константу самоасоціації, температуру плавленняя дуплексу, термодинамічні параметри ΔH і ΔS реакції утворення дуплексу октамера у водному розчині. Здійснено порівняльний аналіз характеристик самоасоціації дезоксиолігонуклеотиду d(GpApCpApTpGpTpC) з отриманими раніше даними для дезокситетрануклеотидів різної послідовності основ у ланцюгу.

A. N. Veselkov, S. G. Osetrov, V. I. Pahomov, N. V. Veselkova, D. B. Davies

Self-association of deoxyoligonucleotide d(GpApCpApTpGpTpC) in aqueous solution: ¹H-NMR thermodynamical analysis of the octamer duplex formation

Summary

Self-association of deoxyoctanucleotide 5'-d(GpApCpApTpGpTpC) in aqueous solution has been studied by one-dimensional and twodimensional 'H-NMR spectroscopy (500 and 600 MHz). Twodimensional homonuclear PMR spectroscopy (2D-TOCSY and 2D-NOESY) was used for complete assignments of deoxyoligonucleotide proton signals. Concentration (at temperatures $T_1 =$ = 298 K and T_2 = 308 K) and temperature dependences of proton chemical shifts of the octamer have been measured. Experimental results have been analysed using the proposed method based on a dimer model of association of the molecules. Equilibrium association constant, melting temperature of the duplex, thermodynamical parameters ΔH and ΔS of the reaction of duplex formation of the octamer in aqueous solution have been determined. A comparative analysis has been made of the characteristics of the self-association of the deoxyoligonucleotide d(GpApCpApTpGpTpC) with previous data for deoxytetranucleotides of different base sequence.

СПИСОК ЛИТЕРАТУРЫ

1. Albergo D. D., Marky L. A., Breslauer K. J., Turner D. H.

веселков А. Н. И др.

Thermodynamics of $(dG-dC)_3$ double-helix formation in water and deuterium oxide // Biochemistry.--1981.--20, N 6.--P. 1409--1417.

- Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: Thermodynamics of doublehelix formation with CGCG, CCGGp, CCGGAp, ACCGGp, CCGGUp and ACCGGUp // Ibid.-1983.-22, N 2.---P. 256-263.
- Bailey S. A., Graves D. E., Rill R., Marsh G. Influence of DNA base sequence on the binding energetics of actinomycin D // Ibid.-1993.-32, N 22.-P. 5881-5887.
- Веселков А. Н., Дэвис Д., Дымант Л. Н. и др. ¹Н-ЯМР исследование самоассоциации дезокситетрарибонуклеозидтрифосфатов различной последовательности оснований в водном растворе // Биополимеры и клетка.—1991.—7, № 5.—Р. С. 15—23.
- 5. Веселков А. Н., Дымант Л. Н., Кодинцев В. В. и др. Исследование самоассоциации молекул дезокситетрарибонуклеозидтрифосфатов d(ТрбрСрА) в водном растворе методом ¹Н-ЯМР спектроскопии // Биофизика.—1995.— 40, № 2.—С. 283—292.
- Chen Y. K., Pettit B. M. Stability of double- and triple-strand helical nucleic acids // Progr. Biophys. Mol. Biol.—1992.— 58.—P. 225-257.
- Davies D. B., Veselkov A. N. Structural and thermodynamical analysis of molecular complexation by ¹H NMR spectroscopy: Interaction of ethidium bromide with isomeric deoxytetranucleoside triphosphates 5'-d(GpCpGpC) and 5'-d(CpGpCp-G) in aqueous solution // J. Chem. Soc. Faraday Trans.-1996.-92, N 19.-P. 3545-3557.
- Davies D. B., Karawajew L. N., Veselkov A. N. ¹H NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'd(ApGpCpT) and 5'-d(TpGpCpA) in aqueous solution // Biopolymers.-1996.-38.-P. 745-757.
- 9. Веселков А. Н., Барановский С. Ф., Петренко Н. В. и др. Исследование самоассоциации молекул некомплементарных дезокситетрануклеотилов различной последовательности оснований в водном растворе методом ¹Н-ЯМF спектроскопии // Биополимеры и клетка.—1996.—12, № 4.—С. 27—34.

- 10. Wjimenga S. S., Mooten M. W., Hilbers C. W. NMR of nucleic acids: from spectrum to structure. NMR of macromolecules. A practical approach.—London: Oxf. Univ. press, 1993.— P. 217.
- Chen H., Patel D. J. Solution structure of the menogaril-DNA complex // J. Amer. Chem. Soc.-1995.-117, N 22.-P. 5901-5913.
- Veselkov A. N., Djimant L. N., Karawajew L. S., Kulikov E. L. Investigation of the aggregation of acridine dyes in aqueous solution by ¹H NMR // Stud. biophys.-1985.-120, N 3.-P. 171-180.
- Freir S. M., Albergo D. D., Turner D. H. Solvent effects on the dynamics of (dG-dC)₃ // Biopolymers.--1983.--22.--P. 1107---1131.
- Marky L. A., Breslauer K. J. Calorimetric determination of base stacking enthalpies in double-helical DNA molecules // Ibid.--1982.--21, N 10.--P. 2185-2194.
- 15. Дымант Л. Н., Веселков А. Н. Исследование самоассоциации дирибонуклеозидмонофосфатов СрG и GpC в водном растворе // Биофизика.—1988.—33, № 4.—С. 728.
- Chaires J. B. Thermodynamics of the daunomycin-DNA interaction: Ionic strength dependence of the enthalpy and entropy // Biopolymers.-1985.-24.-P. 403-419.
 Rentzeperis D., Marky L. A., Dwyer T. J. et al. Interaction of
- Rentzeperis D., Marky L. A., Dwyer T. J. et al. Interaction of minor groove ligands to an AAATT/ATTTT site: Correlation of thermodynamics characterization and solution structure // Biochemistry.-1995.-34, N 9.-P. 2937-2945.
- Kollman P. A., Weiner P. K., Dearing A. Molecular mechanism studies of proflavine and acridine orange intercalation // Biopolymers.-1981.-20.-P. 2583-2597.
- Wada A., Yabuki S., Husimi Y. Fine structure in the thermal denaturation of DNA: high temperature — resolution spectrophotometric studies // CRC Crit. Rev. Biochem.-1980.-9, N 2.-P. 87-114.
- Sponer J., Leszczrynski J., Hobza P. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical *ab initio* studies // J. Biomol. Struct. and Dynam.—1996.—14, N 1.— P. 117—135.

Поступила в редакцию 05.05.97