Algebra and Discrete Mathematics Volume **20** (2015). Number 2, pp. 330–342 © Journal "Algebra and Discrete Mathematics"

Free abelian dimonoids

Yurii V. Zhuchok

Communicated by V. I. Sushchansky

ABSTRACT. We construct a free abelian dimonoid and describe the least abelian congruence on a free dimonoid. Also we show that free abelian dimonoids are determined by their endomorphism semigroups.

1. Introduction

The notion of a dimonoid was introduced by Jean-Louis Loday in [1]. An algebra (D, \dashv, \vdash) with two binary associative operations \dashv and \vdash is called a *dimonoid* if for all $x, y, z \in D$ the following conditions hold:

$$\begin{array}{ll} (D_1) & (x\dashv y)\dashv z=x\dashv (y\vdash z),\\ (D_2) & (x\vdash y)\dashv z=x\vdash (y\dashv z),\\ (D_3) & (x\dashv y)\vdash z=x\vdash (y\vdash z). \end{array}$$

If operations of a dimonoid coincide, the dimonoid becomes a semigroup.

Dimonoids and in particular dialgebras have been studied by many authors (see, e.g., [2]–[5]), they play a prominent role in problems from the theory of Leibniz algebras. The first result about dimonoids is the description of a free dimonoid [1]. T. Pirashvili [4] introduced the notion of a duplex which generalizes the notion of a dimonoid and constructed a free duplex. Free dimonoids and free commutative dimonoids were

²⁰¹⁰ MSC: 08B20, 17A30, 08A30, 08A35.

Key words and phrases: free abelian dimonoid, abelian dimonoid, congruence, endomorphism semigroup.

investigated in [6] and [7] respectively. Free normal dibands and other relatively free dimonoids were described in [8], [9]. In this paper we study free abelian dimonoids.

The paper is organized as follows. In Section 2 we give necessary definitions and examples of abelian dimonoids. In Section 3 we construct a free abelian dimonoid and, in particular, consider a free abelian dimonoid of rank 1. In Section 4 we define the least congruence on a free dimonoid such that the corresponding quotient-dimonoid is isomorphic to the free abelian dimonoid. In Section 5 we prove that free abelian dimonoids are determined by their endomorphisms.

2. Examples of abelian dimonoids

It is well-known that a non-empty class H of algebraic systems is a variety if the Cartesian product of any sequence of H-systems is a H-system, every subsystem of an arbitrary H-system is a H-system and any homomorphic image of an arbitrary H-system is a H-system (Birkhoff [10]).

A dimonoid (D, \dashv, \vdash) we call *abelian* (in the same way as a digroup in [11]) if for all $x, y \in D$,

$$x \dashv y = y \vdash x.$$

The class of all abelian dimonoids satisfies the conditions of Birkhoff's theorem and therefore it is a variety. A dimonoid which is free in the variety of abelian dimonoids will be called a *free abelian dimonoid*.

It should be noted that the class of all abelian dimonoids does not coincide with the class of all commutative dimonoids [7] (both operations of such dimonoids are commutative). For example, a non-singleton left zero and right zero dimonoid [9] is abelian but not commutative.

Let Z be the set of all integers, $E = \{\lambda, \mu\}$ be an arbitrary two-element set. Define two binary operations \dashv and \vdash on $Z \times E$ as follows:

$$(m, x) \dashv (n, y) = \begin{cases} (m + n + 1, x), & y = \lambda, \\ (m + n - 1, x), & y = \mu, \end{cases}$$
$$(m, x) \vdash (n, y) = \begin{cases} (m + n + 1, y), & x = \lambda, \\ (m + n - 1, y), & x = \mu. \end{cases}$$

Proposition 1. The algebra $(Z \times E, \dashv, \vdash)$ is an abelian dimonoid.

Proof. Let $(m, x), (n, y), (s, z) \in Z \times E$. If $y = z = \lambda$ or $y = z = \mu$, we obtain

$$((m, x) \dashv (n, \lambda)) \dashv (s, \lambda) = (m + n + s + 2, x)$$

= $(m, x) \dashv ((n, \lambda) \dashv (s, \lambda))$ or
 $((m, x) \dashv (n, \mu)) \dashv (s, \mu) = (m + n + s - 2, x)$
= $(m, x) \dashv ((n, \mu) \dashv (s, \mu))$

respectively.

For $y = \lambda$, $z = \mu$ or $y = \mu$, $z = \lambda$, we have

$$\begin{split} ((m,x)\dashv (n,y))\dashv (s,z) &= (m+n+s,x) \\ &= (m,x)\dashv ((n,y)\dashv (s,z)). \end{split}$$

Therefore, the operation \dashv is associative. Analogously we can show that \vdash is an associative operation too.

Show that the axiom (D_1) holds. If $y = z = \lambda$ or $y = z = \mu$,

$$(m, x) \dashv ((n, \lambda) \vdash (s, \lambda)) = (m + n + s + 2, x)$$
$$= ((m, x) \dashv (n, \lambda)) \dashv (s, \lambda) \quad \text{or}$$
$$(m, x) \dashv ((n, \mu) \vdash (s, \mu)) = (m + n + s - 2, x)$$
$$= ((m, x) \dashv (n, \mu)) \dashv (s, \mu).$$

For $y = \lambda$, $z = \mu$ or $y = \mu$, $z = \lambda$, we obtain

$$(m,x) \dashv ((n,y) \vdash (s,z)) = (m+n+s,x) \\ = ((m,x) \dashv (n,y)) \dashv (s,z).$$

The axiom (D_3) is checked similarly. Now we consider the axiom (D_2) . Let $x = z = \lambda$ or $x = z = \mu$. Then

$$(m,\lambda) \vdash ((n,y) \dashv (s,\lambda)) = (m+n+s+2,y)$$
$$= ((m,\lambda) \vdash (n,y)) \dashv (s,\lambda) \quad \text{or}$$
$$(m,\mu) \vdash ((n,y) \dashv (s,\mu)) = (m+n+s-2,y)$$
$$= ((m,\mu) \vdash (n,y)) \dashv (s,\mu).$$

If $x = \lambda, z = \mu$ or $x = \mu, z = \lambda$, then

$$\begin{split} (m,x) \vdash ((n,y) \dashv (s,z)) &= (m+n+s,y) \\ &= ((m,x) \vdash (n,y)) \dashv (s,z), \end{split}$$

which completes the verification of (D_2) .

The fact that $(Z \times E, \dashv, \vdash)$ is abelian can be checked immediately. \Box

An element e of an arbitrary dimonoid (D, \dashv, \vdash) is called a *bar-unit* (see, e.g., [1]) if for all $g \in D$,

$$e \vdash g = g = g \dashv e.$$

In contrast to monoids a dimonoid may have many bar-units. For example, for the dimonoid from Proposition 1 we have

$$(-1,\lambda) \vdash (m,x) = (m,x) = (m,x) \dashv (-1,\lambda), (1,\mu) \vdash (m,x) = (m,x) = (m,x) \dashv (1,\mu)$$

for any $(m, x) \in Z \times E$. Thus, $(-1, \lambda)$ and $(1, \mu)$ are bar-units. Moreover, another bar-units of $(Z \times E, \dashv, \vdash)$ do not exist.

Let G be an arbitrary additive abelian group, X_1, X_2, \ldots, X_n $(n \ge 2)$ be non-empty subsets of G and $X_{\alpha} = G$ for some $\alpha \in \{1, 2, \ldots, n\}$. For all $t = (t_1, t_2, \ldots, t_n) \in \prod_{i=1}^n X_i$ we put $t^+ = t_1 + t_2 + \ldots + t_n$.

Take arbitrary $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \prod_{i=1}^n X_i$ and define two binary operations \exists_{α} and \vdash_{α} on $\prod_{i=1}^n X_i$ by

$$x \dashv_{\alpha} y = (x_1, \dots, x_{\alpha} + y^+, \dots, x_n),$$

$$x \vdash_{\alpha} y = (y_1, \dots, y_{\alpha} + x^+, \dots, y_n).$$

Proposition 2. For every $\alpha \in \{1, 2, ..., n\}$ the algebra $(\prod_{i=1}^{n} X_i, \exists_{\alpha}, \vdash_{\alpha})$ is an abelian dimonoid.

Proof. Let $x, y, z \in \prod_{i=1}^{n} X_i$. Then

$$(x \dashv_{\alpha} y) \dashv_{\alpha} z = (x_{1}, \dots, x_{\alpha} + y^{+}, \dots, x_{n}) \dashv_{\alpha} (z_{1}, z_{2}, \dots, z_{n})$$

$$= (x_{1}, \dots, x_{\alpha} + y^{+} + z^{+}, \dots, x_{n})$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \dashv_{\alpha} (y_{1}, \dots, y_{\alpha} + z^{+}, \dots, y_{n})$$

$$= x \dashv_{\alpha} (y \dashv_{\alpha} z),$$

$$(x \vdash_{\alpha} y) \vdash_{\alpha} z = (y_{1}, \dots, y_{\alpha} + x^{+}, \dots, y_{n}) \vdash_{\alpha} (z_{1}, z_{2}, \dots, z_{n})$$

$$= (z_{1}, \dots, z_{\alpha} + x^{+} + y^{+}, \dots, z_{n})$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \vdash_{\alpha} (z_{1}, \dots, z_{\alpha} + y^{+}, \dots, z_{n})$$

$$= x \vdash_{\alpha} (y \vdash_{\alpha} z).$$

Thus, operations \dashv_{α} and \vdash_{α} are associative.

Show that axioms $(D_1) - (D_3)$ hold:

$$(x \dashv_{\alpha} y) \dashv_{\alpha} z = (x_{1}, \dots, x_{\alpha} + y^{+} + z^{+}, \dots, x_{n})$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \dashv_{\alpha} (z_{1}, \dots, z_{\alpha} + y^{+}, \dots, z_{n})$$

$$= x \dashv_{\alpha} (y \vdash_{\alpha} z),$$

$$(x \vdash_{\alpha} y) \dashv_{\alpha} z = (y_{1}, \dots, y_{\alpha} + x^{+}, \dots, y_{n}) \dashv_{\alpha} (z_{1}, z_{2}, \dots, z_{n})$$

$$= (y_{1}, \dots, y_{\alpha} + z^{+} + x^{+}, \dots, y_{n})$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \vdash_{\alpha} (y_{1}, \dots, y_{\alpha} + z^{+}, \dots, y_{n})$$

$$= x \vdash_{\alpha} (y \dashv_{\alpha} z),$$

$$(x \dashv_{\alpha} y) \vdash_{\alpha} z = (x_{1}, \dots, x_{\alpha} + y^{+}, \dots, x_{n}) \vdash_{\alpha} (z_{1}, z_{2}, \dots, z_{n})$$

$$= (z_{1}, \dots, z_{\alpha} + x^{+} + y^{+}, \dots, z_{n})$$

$$= x \vdash_{\alpha} (y \vdash_{\alpha} z).$$

Therefore, $(\prod_{i=1}^{n} X_i, \dashv_{\alpha}, \vdash_{\alpha})$ is a dimonoid. Moreover,

$$x \dashv_{\alpha} y = (x_1, \dots, x_{\alpha} + y^+, \dots, x_n) = y \vdash_{\alpha} x$$

for all $x, y \in \prod_{i=1}^{n} X_i$.

Let (S, \circ) be an arbitrary semigroup. A semigroup (S, *), where $x * y = y \circ x$ for all $x, y \in S$, is called a *dual semigroup* to (S, \circ) .

A semigroup (S, \circ) is called *left commutative* (respectively, *right commutative*) if it satisfies the identity $x \circ y \circ a = y \circ x \circ a$ (respectively, $a \circ x \circ y = a \circ y \circ x$).

Proposition 3. Let (S, \circ) be an arbitrary right commutative semigroup and (S, *) be a dual semigroup to (S, \circ) . Then the algebra $(S, \circ, *)$ is an abelian dimonoid.

Proof. The proof follows from Lemma 3 of [9].

Proposition 4. Let (S, *) be an arbitrary left commutative semigroup and (S, \circ) be a dual semigroup to (S, *). Then the algebra $(S, \circ, *)$ is an abelian dimonoid.

Proof. The proof follows from Lemma 4 of [9].

An important example of abelian dimonoids is the class of abelian digroups (see [11]). The idea of the notion of a digroup first appeared in the work of Jean-Louis Loday [1].

3. The free abelian dimonoid

Let X be an arbitrary set and N be the set of all natural numbers. Denote by FCm(X) the free commutative monoid on X with the identity ε . Words of FCm(X) we write as $w = w_1^{\alpha_1} w_2^{\alpha_2} \dots w_n^{\alpha_n}$, where $w_1, w_2, \dots, w_n \in X$ are pairwise distinct, and $\alpha_1, \alpha_2, \dots, \alpha_n \in N \cup \{0\}$. Here $w_i^0, 1 \leq i \leq n$, is the empty word ε and $w^1 = w$ for all $w \in X$.

We put

$$FAd(X) = X \times FCm(X)$$

and define two binary operations \dashv and \vdash on FAd(X) as follows:

$$(x, u) \dashv (y, v) = (x, uyv),$$
$$(x, u) \vdash (y, v) = (y, xuv).$$

Note that for every element t of an arbitrary abelian dimonoid (D, \prec, \succ) the degrees

$$t^n_{\prec} = \underbrace{t \prec t \prec \ldots \prec t}_n, \qquad t^n_{\succ} = \underbrace{t \succ t \succ \ldots \succ t}_n$$

coincide. Therefore, we will write t^n instead of t^n_{\prec} $(=t^n_{\succ})$.

Theorem 1. The algebra $(FAd(X), \dashv, \vdash)$ is the free abelian dimonoid. Proof. Let $(x, u), (y, v), (z, w) \in FAd(X)$. Then

$$\begin{split} ((x,u)\dashv(y,v))\dashv(z,w)&=(x,uyv)\dashv(z,w)\\ &=(x,uyvzw)=(x,u)\dashv((y,v)\dashv(z,w)),\\ ((x,u)\vdash(y,v))\vdash(z,w)&=(y,xuv)\vdash(z,w)\\ &=(z,yxuvw)=(x,u)\vdash((y,v)\vdash(z,w)). \end{split}$$

Thus, operations \dashv and \vdash are associative. In addition,

$$\begin{array}{l} ((x,u) \dashv (y,v)) \dashv (z,w) = (x,uyvzw) \\ = (x,u) \dashv (z,yvw) = (x,u) \dashv ((y,v) \vdash (z,w)), \\ ((x,u) \vdash (y,v)) \dashv (z,w) = (y,xuvzw) \\ = (x,u) \vdash (y,vzw) = (x,u) \vdash ((y,v) \dashv (z,w)), \\ ((x,u) \dashv (y,v)) \vdash (z,w) = (x,uyv) \vdash (z,w) \\ = (z,yxuvw) = (x,u) \vdash ((y,v) \vdash (z,w)). \end{array}$$

So, $(FAd(X), \dashv, \vdash)$ is a dimonoid and, obviously, it is abelian.

For all $(t, w) \in FAd(X)$, where $w = w_1^{\alpha_1} w_2^{\alpha_2} \dots w_n^{\alpha_n}$, we obtain the following representation:

$$(t,w) = (t,\varepsilon) \dashv (w_1,\varepsilon)^{\alpha_1} \dashv \ldots \dashv (w_n,\varepsilon)^{\alpha_n}.$$

This representation we call a canonical form of elements of the dimonoid $(FAd(X), \dashv, \vdash)$. It is clear that such representation is unique up to an order of $(w_i, \varepsilon), 1 \leq i \leq n$. Moreover, $\langle X \times \varepsilon \rangle = (FAd(X), \dashv, \vdash)$.

Show that the dimonoid $(FAd(X), \dashv, \vdash)$ is free abelian. Let (D', \dashv', \vdash') be an arbitrary abelian dimonoid, ξ be any mapping of $X \times \varepsilon$ into D'. Further, we naturally extend ξ to a mapping Ξ of FAd(X) into D' using the canonical representation of elements of $(FAd(X), \dashv, \vdash)$, that is,

$$(t,w)\Xi = (t,\varepsilon)\xi \dashv' ((w_1,\varepsilon)\xi)^{\alpha_1} \dashv' \ldots \dashv' ((w_n,\varepsilon)\xi)^{\alpha_n}$$

for any $(t, w) \in FAd(X)$, where $w = w_1^{\alpha_1} w_2^{\alpha_2} \dots w_n^{\alpha_n}$.

It is easy to see that Ξ is a homomorphism of $(FAd(X), \dashv)$ into (D', \dashv') . Using that (D', \dashv', \vdash') is an abelian dimonoid too, we obtain

$$\begin{aligned} ((t,u) \vdash (s,v))\Xi &= ((s,v) \dashv (t,u))\Xi \\ &= (s,v)\Xi \dashv' (t,u)\Xi = (t,u)\Xi \vdash' (s,v)\Xi \end{aligned}$$

for all $(t, u), (s, v) \in FAd(X)$.

Observe that the cardinality of a set X is the rank of the constructed free abelian dimonoid $(FAd(X), \dashv, \vdash)$ and this dimonoid is uniquely determined up to an isomorphism by |X|.

Now we consider the structure of a free abelian dimonoid of rank 1.

Lemma 1. Operations of the free abelian dimonoid $(FAd(X), \dashv, \vdash)$ coincide if and only if |X| = 1.

Proof. Assume that operations of $(FAd(X), \dashv, \vdash)$ coincide and $x, y \in X$ are distinct. Then for all $u, v \in FCm(X)$,

$$(x,u) \dashv (y,v) = (x,uyv) \neq (y,xuv) = (x,u) \vdash (y,v),$$

which contradicts the fact that $\dashv = \vdash$.

Let $X = \{x\}$, then for all $(x, u), (x, v) \in FAd(X)$ we have

$$(x,u) \dashv (x,v) = (x,uxv) = (x,u) \vdash (x,v).$$

Let (S, \circ) be an arbitrary semigroup and $a \in S$. Define on S a new binary operation \circ_a by

$$x \circ_a y = x \circ a \circ y$$

for all $x, y \in S$.

Clearly, (S, \circ_a) is a semigroup, it is called a *variant* of (S, \circ) .

Proposition 5. The free abelian dimonoid $(FAd(X), \dashv, \vdash)$ of rank 1 is isomorphic to the variant $(N^0, +_1)$ of the additive semigroup of all non-negative integers.

Proof. Let $X = \{x\}$, then $FAd(X) = \{(x, x^n) | n \in N^0\}$. By Lemma 1, for $(FAd(X), \dashv, \vdash)$ we have $\dashv = \vdash$. Define a mapping φ of $(FAd(X), \dashv, \vdash)$ into $(N^0, +_1)$ by

$$\varphi: (x, x^n) \mapsto n$$

for any $(x, x^n) \in FAd(X)$.

It is clear that φ is a bijection. In addition, for all (x, x^n) , $(x, x^m) \in FAd(X)$ we obtain

$$((x, x^n) \dashv (x, x^m))\varphi = (x, x^{n+m+1})\varphi = n+m+1$$
$$= n+_1 m = (x, x^n)\varphi +_1 (x, x^m)\varphi. \qquad \Box$$

4. The least abelian congruence

Let (D, \dashv, \vdash) be an arbitrary dimonoid, ρ be an equivalence relation on D which is stable on the left and on the right with respect to each of operations \dashv, \vdash . In this case ρ is called a *congruence* on (D, \dashv, \vdash) .

If $f: D_1 \to D_2$ is a homomorphism of dimonoids, then the corresponding congruence on D_1 will be denoted by Δ_f . For a congruence ρ on a dimonoid (D, \dashv, \vdash) the corresponding quotient-dimonoid is denoted by $(D, \dashv, \vdash)/\rho$. A congruence ρ on a dimonoid (D, \dashv, \vdash) is called *abelian* if $(D, \dashv, \vdash)/\rho$ is an abelian dimonoid.

As usual N denotes the set of all positive integers, and let $n \in N$. For an arbitrary set X by \widetilde{X} we denote the copy of X, that is, $\widetilde{X} = \{\widetilde{x} \mid x \in X\}$ and put

$$Y_n^{(1)} = \underbrace{\widetilde{X} \times X \times \dots \times X}_n, \quad Y_n^{(2)} = \underbrace{X \times \widetilde{X} \times X \times \dots \times X}_n,$$
$$Y_n^{(3)} = \underbrace{X \times X \times \widetilde{X} \times \dots \times X}_n, \quad \dots, \quad Y_n^{(n)} = \underbrace{X \times X \times \dots \times \widetilde{X}}_n.$$

We denote the union of *n* different copies $Y_n^{(i)}, 1 \leq i \leq n$, of X^n by Y_n and assume $Fd(X) = \bigcup_{n \geq 1} Y_n$. Define operations \prec and \succ on Fd(X) as follows:

$$(x_1,\ldots,\widetilde{x_i},\ldots,x_m)\prec(y_1,\ldots,\widetilde{y_j},\ldots,y_n)=(x_1,\ldots,\widetilde{x_i},\ldots,x_m,y_1,\ldots,y_n),$$

 $(x_1,\ldots,\widetilde{x_i},\ldots,x_m) \succ (y_1,\ldots,\widetilde{y_j},\ldots,y_n) = (x_1,\ldots,x_m,y_1,\ldots,\widetilde{y_j},\ldots,y_n)$ for all $(x_1,\ldots,\widetilde{x_i},\ldots,x_m), (y_1,\ldots,\widetilde{y_j},\ldots,y_n) \in Fd(X).$

According to [1], $(Fd(X), \prec, \succ)$ is the *free dimonoid* on X. Elements of Fd(X) are called *words*, \widetilde{X} is the *generating set* of $(Fd(X), \prec, \succ)$.

Let $(Fd(X), \prec, \succ)$ be the free dimonoid on X and $w \in Fd(X)$. The canonical form of $w = (w_1, \ldots, \widetilde{w}_l, \ldots, w_k)$ is its representation in the shape:

$$w = \widetilde{w}_1 \succ \ldots \succ \widetilde{w}_l \prec \ldots \prec \widetilde{w}_k.$$

We call k as the *length* of w and denote it by l(w). For any $x \in X$ by $q_{\widetilde{x}}(w)$ we denote the quantity of all elements $\widetilde{x} \in \widetilde{X}$ that are included in the canonical form $\widetilde{w}_1 \succ \ldots \succ \widetilde{w}_l \prec \ldots \prec \widetilde{w}_k$ of w.

Define a binary relation σ on Fd(X) as follows: $u = (u_1, \ldots, \widetilde{u_i}, \ldots, u_n)$ and $v = (v_1, \ldots, \widetilde{v_j}, \ldots, v_m)$ of Fd(X) are σ -equivalent if for all $x \in X$,

$$q_{\widetilde{x}}(u) = q_{\widetilde{x}}(v)$$
 and $u_i = v_j$.

We note that $q_{\widetilde{x}}(u) = q_{\widetilde{x}}(v)$ for all $x \in X$ implies l(u) = l(v).

For example, for $u = (a, \tilde{b}, a, c)$, $v = (a, \tilde{a})$ and $w = (c, a, a, \tilde{b})$ we have $q_{\tilde{a}}(p) = 2$ for all $p \in \{u, v, w\}$, l(v) = 2 and $(u, w) \in \sigma$.

Theorem 2. The binary relation σ is the least abelian congruence on the free dimonoid $(Fd(X), \prec, \succ)$.

Proof. It is easy to see that σ is an equivalence relation. Assume that $u = (u_1, \ldots, \tilde{u}_i, \ldots, u_n), v = (v_1, \ldots, \tilde{v}_j, \ldots, v_m) \in Fd(X)$ such that $u\sigma v$ and $w = (w_1, \ldots, \tilde{w}_k, \ldots, w_l) \in Fd(X)$. Then

$$u \prec w = (u_1, \dots, \widetilde{u}_i, \dots, u_n, w_1, \dots, w_l),$$

$$v \prec w = (v_1, \dots, \widetilde{v}_j, \dots, v_m, w_1, \dots, w_l),$$

$$u \succ w = (u_1, \dots, u_n, w_1, \dots, \widetilde{w}_k, \dots, w_l),$$

$$v \succ w = (v_1, \dots, v_m, w_1, \dots, \widetilde{w}_k, \dots, w_l).$$

Since $u_i = v_j$ and

$$q_{\widetilde{x}}(u \prec w) = q_{\widetilde{x}}(v \prec w), \qquad q_{\widetilde{x}}(u \succ w) = q_{\widetilde{x}}(v \succ w)$$

for any $x \in X$, we have $(u \prec w)\sigma(v \prec w)$ and $(u \succ w)\sigma(v \succ w)$. Analogously we can show that $(w \prec u)\sigma(w \prec v)$ and $(w \succ u)\sigma(w \succ v)$. Thus, σ is a congruence.

In addition, we note that $(u \prec v)\sigma(v \succ u)$ for all $u, v \in Fd(X)$, therefore $(Fd(X), \prec, \succ)/\sigma$ is abelian. A class of $(Fd(X), \prec, \succ)/\sigma$ which contains w we denote by [w].

Further, we show that the quotient-dimonoid $(Fd(X), \prec, \succ)/\sigma$ is isomorphic to the free abelian dimonoid $(FAd(X), \dashv, \vdash)$ (see Theorem 1).

Define a mapping φ of $(Fd(X), \prec, \succ)/\sigma$ into $(FAd(X), \dashv, \vdash)$ by

$$[w]\varphi = (w_k, w_1 \dots w_{k-1} w_{k+1} \dots w_l)$$

for all words $w = (w_1, \ldots, \widetilde{w}_k, \ldots, w_l) \in Fd(X)$ with $l(w) \ge 2$, and $[w]\varphi = (w_1, \varepsilon)$ for any $w = \widetilde{w}_1 \in Fd(X)$. It is clear that φ is a bijection.

For all $[u], [v] \in (Fd(X), \prec, \succ)/\sigma$, where $u = (u_1, \ldots, \widetilde{u_i}, \ldots, u_n)$, $v = (v_1, \ldots, \widetilde{v_j}, \ldots, v_m)$, we have

$$\begin{aligned} ([u] \prec [v])\varphi &= [(u_1, \dots, \widetilde{u}_i, \dots, u_n, v_1, \dots, v_m)]\varphi \\ &= (u_i, u_1 \dots u_{i-1} u_{i+1} \dots u_n v_1 \dots v_m) \\ &= (u_i, u_1 \dots u_{i-1} u_{i+1} \dots u_n) \dashv (v_j, v_1 \dots v_{j-1} v_{j+1} \dots v_m) \\ &= [u]\varphi \dashv [v]\varphi. \end{aligned}$$

Since dimonoids $(Fd(X), \prec, \succ)/\sigma$ and $(FAd(X), \dashv, \vdash)$ are abelian,

$$([u]\succ [v])\varphi = ([v]\prec [u])\varphi = [v]\varphi\dashv [u]\varphi = [u]\varphi\vdash [v]\varphi$$

for all $[u], [v] \in (Fd(X), \prec, \succ)/\sigma$.

Thus, $(Fd(X), \prec, \succ)/\sigma$ is free abelian and the composition $\eta^{\natural} \circ \varphi$, where $\eta^{\natural} : (Fd(X), \prec, \succ) \to (Fd(X), \prec, \succ)/\sigma$ is the natural homomorphism, is an epimorphism of $(Fd(X), \prec, \succ)$ on $(FAd(X), \dashv, \vdash)$ inducing the least abelian congruence on Fd(X). From the definition of $\eta^{\natural} \circ \varphi$ it follows that $\Delta_{\eta^{\natural} \circ \varphi} = \sigma$.

5. Determinability

One of the venerable algebraic problems the first instance of which was considered by E. Galois (see [12]) is the determinability of an algebraic structure by its endomorphism semigroup. The determinability problem for free algebras in a certain variety was raised by B. Plotkin [13]. For free groups this problem was solved by E. Formanek [14]. An analogous problem for free semigroups and free monoids was decided in [15]. Some characteristics for the enomorphism monoid of a free dimonoid of rank 1 were obtained in [16]. Determinability of free trioids by their endomorphism semigroups was proved in [17].

Recall that an algebra A of some class Ω is determined by its endomorphism semigroup in the class Ω if for any algebra $B \in \Omega$ the condition $End(A) \cong End(B)$ implies $A \cong B$. Note that the converse implication is obvious.

Let $\mathfrak{F}_X = (FAd(X), \dashv, \vdash)$ be the free abelian dimonoid on X and $(t, u) \in FAd(X), u = u_1^{\alpha_1} u_2^{\alpha_2} \dots u_n^{\alpha_n}$. From Theorem 1 it follows that an arbitrary endomorphism $\Xi \in End(\mathfrak{F}_X)$ has form:

$$(t,u)\Xi = (t,\varepsilon)\xi \dashv ((u_1,\varepsilon)\xi)^{\alpha_1} \dashv \ldots \dashv ((u_n,\varepsilon)\xi)^{\alpha_n},$$

where $\xi: X \times \varepsilon \to FAd(X)$ is any mapping.

An endomorphism $\theta_{(t,u)} \in End(\mathfrak{F}_X)$ we call *constant* if $(x,\varepsilon)\theta_{(t,u)} = (t,u)$ for all $x \in X$.

Lemma 2.

- (i) An endomorphism f of the free abelian dimonoid 𝔅_X is constant if and only if ψf = f for all ψ ∈ Aut(𝔅_X).
- (ii) An endomorphism f of the free abelian dimonoid \mathfrak{F}_X is constant idempotent if and only if $f = \theta_{(x,\varepsilon)}$ for some $x \in X$.

Proof. (i) Suppose that an endomorphism $f \in End(\mathfrak{F}_X)$ is constant and $\psi \in Aut(\mathfrak{F}_X)$. Then $f = \theta_{(t,u)}$ for some $(t, u) \in FAd(X)$, in addition,

$$(x,\varepsilon)(\psi\theta_{(t,u)}) = ((x,\varepsilon)\psi)\,\theta_{(t,u)} = (t,u) = (x,\varepsilon)\theta_{(t,u)}$$

for any $x \in X$. Thus, $\psi \theta_{(t,u)} = \theta_{(t,u)}$.

Conversely, let $\psi f = f$ for all $\psi \in Aut(\mathfrak{F}_X)$ and some $f \in End(\mathfrak{F}_X)$. For fixed $x \in X$ we obtain

$$(x,\varepsilon)f = (x,\varepsilon)(\psi f) = ((x,\varepsilon)\psi)f = (y,\varepsilon)f,$$

where $(y,\varepsilon) = (x,\varepsilon)\psi$. Since $\{(x,\varepsilon)\psi \mid \psi \in Aut(\mathfrak{F}_X)\} = X \times \varepsilon$, we have $(a,\varepsilon)f = (b,\varepsilon)f$ for all $a, b \in X$. From here $f = \theta_{(t,u)}$ for $(t,u) = (x,\varepsilon)f$.

(ii) Let $f \in End(\mathfrak{F}_X)$ be a constant idempotent endomorphism. Then $f = \theta_{(x,u)}, (x,u) \in FAd(X)$, and $\theta_{(x,u)}^2 = \theta_{(x,u)}$. Since $\theta_{(x,u)}\theta_{(x,u)} = \theta_{(x,u)}^2$, we have

$$\theta_{(x,u)} = \theta_{(x,u)}\theta_{(x,u)} = \theta_{(x,u)\theta_{(x,u)}} = \theta_{(x,u^{l(u)+1}x^{l(u)})}$$

It means that $(x, u) = (x, u^{l(u)+1} x^{l(u)})$, whence l(u) = 0, i.e., $u = \varepsilon$. Clearly, $\theta_{(x,\varepsilon)}^2 = \theta_{(x,\varepsilon)}$ for all $x \in X$. **Theorem 3.** Let $\mathfrak{F}_X = (FAd(X), \dashv, \vdash)$ and $\mathfrak{F}_Y = (FAd(Y), \dashv, \vdash)$ be free abelian dimonoids such that $End(\mathfrak{F}_X) \cong End(\mathfrak{F}_Y)$. Then \mathfrak{F}_X and \mathfrak{F}_Y are isomorphic.

Proof. Let Ψ be an arbitrary isomorphism of $End(\mathfrak{F}_X)$ into $End(\mathfrak{F}_Y)$. In according to the statements of Lemma 2 for some constant idempotent endomorphism $\theta_{(x,\varepsilon)}, x \in X$, of the free abelian dimonoid \mathfrak{F}_X and for all $\alpha \in Aut(\mathfrak{F}_X)$, we have $\alpha \theta_{(x,\varepsilon)} = \theta_{(x,\varepsilon)}$. Taking into account that Ψ is a homomorphism, we obtain

$$\theta_{(x,\varepsilon)}\Psi = \left(\alpha\theta_{(x,\varepsilon)}\right)\Psi = \alpha\Psi \ \theta_{(x,\varepsilon)}\Psi.$$

Since $Aut(\mathfrak{F}_X)\Psi = Aut(\mathfrak{F}_Y)$, by the statement (i) of Lemma 2 we have $\theta_{(x,\varepsilon)}\Psi$ is a constant endomorphism of \mathfrak{F}_Y . Then $\theta_{(x,\varepsilon)}\Psi = \theta_{(y,v)}$ for some $(y,v) \in FAd(Y)$, in addition, $\theta_{(y,v)}$ is an idempotent of $End(\mathfrak{F}_Y)$. By the statement (ii) of Lemma 2, $v = \varepsilon'$, where ε' is the empty word of FCm(Y) (see Section 3).

Define a map $\xi : X \to Y$ putting $x\xi = y$ if and only if $\theta_{(x,\varepsilon)}\Psi = \theta_{(y,\varepsilon')}$. It is clear that ξ is a bijection. Thus, abelian dimonoids \mathfrak{F}_X and \mathfrak{F}_Y are isomorphic.

Using similar arguments, the fact that the free dimonoid also is uniquely determined up to an isomorphism by its endomorphism semigroup can be proved.

References

- Loday J.-L., Dialgebras, in: Dialgebras and related operads, *Lect. Notes Math.* 1763, Springer-Verlag, Berlin, 2001, 7–66.
- [2] Kinyon M.K., Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), no. 1, 99–114.
- [3] Liu K., The Generalizations of groups, Research Monographs in Math. 1, 153 Publishing: Burnaby, 2004.
- [4] Pirashvili T., Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169–183.
- [5] Zhuchok Yu.V., Representations of ordered dimonoids by binary relations, Asian-European J. Math. 07 (2014), 1450006-1–1450006-13.
- [6] Zhuchok A.V., Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 196–208.
- [7] Zhuchok A.V., Free commutative dimonoids, Algebra and Discrete Mathematics 9 (2010), no. 1, 109–119.
- [8] Zhuchok A.V., Free normal dibands, Algebra and Discrete Math. 12 (2011), no. 2, 112–127.

- [9] Zhuchok A.V., Free (*lr*, *rr*)-dibands, *Algebra Discrete Math.* 15 (2013), no. 2, 295–304.
- [10] Birkhoff G., On the structure of abstract algebras, Proc. Cambr. Phil. Soc. 31 (1935), 433–454.
- Felipe R., Generalized Loday algebras and digroups, Comunicaciones del CIMAT, no. I-04-01/21-01-2004.
- [12] Ulam S.M., A Collection of Mathematical Problems, *Interscience Publishers*, New York, 1960. MR22:10884
- [13] Plotkin B.I., Seven Lectures on the Universal Algebraic Geometry, Preprint, Institute of Mathematics, Hebrew University, 2000.
- [14] Formanek E., A question of B. Plotkin about the semigroup of endomorphisms of a free group, Proc. American Math. Society 130 (2001), 935–937. MR2002h:20032
- [15] Mashevitsky G., Schein B.M., Automorphism of the endomorphism semigroup of a free monoid or a free semigroup, *Proceedings of the AMS* 131 (2003), no. 6, 1655–1660.
- [16] Zhuchok Yu.V., The endomorphism semigroup of a free dimonoid of rank 1, Bul. Acad. Ştiinţe Repub. Mold. Mat. 76 (2014), no. 3, 30–37.
- [17] Zhuchok Yu. V., On determinability of free trioids by endomorphism semigroups, Dopovidi NANU 4 (2015), 7–11. (In Russian)

CONTACT INFORMATION

Yurii V. Zhuchok Kyiv National Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska Street, Kyiv, Ukraine, 01601 *E-Mail(s)*: zhuchok_y@mail.ru

Received by the editors: 20.04.2015 and in final form 29.11.2015.