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Oscillation of solutions of second order nonlinear functional
differential equations of neutral type

Koxebremocry pemenmii HearmaeinbIx
GyErmEonanbHO-u(epeHuanbHbIX YPaBHeH il
BTOPOro HOPsJKA HEHTPAIBHOrO THIIA

The oscillation condition of solutions to nonlinear differential equations of the second ordet

of neutral type on the semiaxis > 0 and the properties of nonoscillatory solutions are inva-
stigated.

Hcemenosans  ye/IOBHA OCHHJISIHH peleHdl HenuHefHBX nuddepeHnHaNbHEIX ypaBHeHHH
BTOPOTrO NOPANKAa HeHTpaNbHOTO THNA HA moJayoch [ = 0, a Tak:Ke CBOHCTBA HEOCHHJLIHP YIOUIHX
peIneH i,

Jocnimkeni yMoBR ocuinauii poss'saskis menimifinux mHpepeHmiaJBHHX PiBHAHE APYroro mo-
PANKY HeliTpaJbHOrO THNY Ha miBoci £ > 0, a Tako BJACTHBOCTI HEOCIINIOIOUHX pO3B’A3KiB,

1. Introduction. The equation to be considered in this paper is
Lix (¢ + (v (@) + /¢ x(@@)) =0, (1)
where L is the differential operator

_d 1 duf()
L) = 7 (5 )

With regard to (1) the following conditions are assumed to hold without further
mention-

a) p:la, oo) — (0, oo) ts continuous and satisfies

X p(f)dl == oox )

a

b) A is a constant with |A|<C 1,
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¢) T:[a, o©)—>R is continuous and strictly increasing, v (f) <<t for
t=a and lim< (f) = oo;

{00

d) g : la, o) = R is continuous and }im g (t) = oo;

e) f:la, ) X R—R is continuous and nondecreasing in the second
variable, and yf (¢, y) = 0, = 0for y 5= 0 and { = a.

We are interested in the oscillatory and nonoscillatory behavior of solu-
tions of equation (1). By a solution of (1) we mean a continuous function x :
: [¢, 00) — R such that x (f) 4+ Ax (v (#)) € D and satisfies (1) for all suffici-
ently large ¢. Here @ denotes the domain of L, i. e. the set of continuous func-
tions w:l#,, o0) =R such that u () and (1/p () (du (f)/df) are continuously
differentiable for £ > #,. A solution of (1) is said to be oscillatory if it has a se-
quence of zeros tending to infinity; otherwise it is said to be nonoscillatory.

It is shown that a nonoscillatory solution x () of (1) eventually satisfies
either x () [x (§) + Ax (v (9))] << 0, in which case x (f) tends to zero as ¢ — oo,
or x () [x (/) + Ax (v ()] = 0, in which case one of the following cases holds:

x| xOL
) bl == Sl =y

o x@®] - R
D) I.flﬁlo 0 =0 and }LTo]x(t)i_oo,
III) 0 << liminf|x (¢ | =limsup|x ()| << oo;

; [=»oo o0
where P () = Sp('s) ds. Our first task (pt 2) is to obtain conditions under

which (1) has nonoscillatory solutions of the above types I, II and III. This is
accomplished by solving, with the aid of fixed point techniques, approp-
riate nonlinear Volterra-like integral equations. Our second task (pt 3) is
to present oscillation criteria for equation (1) with strong nonlinear structure.
Some of the methods used in the study of oscillation of «ordinary» (or nonneut-
ral) functional differential equations are shown to be also applicable to the «ne-
utral» equation under consideration. Combining the oscillation criteria obta-
ined with nonoscillation results of pt 2, we are able to exhibit certain classes of
equations of the form (1) for which the situation of oscillation of all (or almost
all) solutions can be completely characterized.

Since the appearance of the paper [1], there has been a growing interest in
oscillation theory of neutral functional differential equations; see e. g. 12— 14}
and the references cited therein. Most of the literature, however, is concerned
with linear equations with constant coefficients and constant deviations, for
which oscillation criteria are given in terms of the associated characteristic
equations, and very little is known about genuinely nonlinear equations with
general deviating arguments. This paper could be regarded as an attempt at a
systematic investigation of oscillatory behavior of general neutral equations
to which the theory of characteristic equations fails to apply.

- 2. Existence of nonoscillatory solutions.

A) Classification ofl nonoscillatory solutions.

We introduce the notation:

P (t, s).—_jp sydr. s, t€la, o), P =P, a), (3)

@)=t D=, T H = GG, f=1, 2, (4)

where T (£) 1s the inverse function ot © (#).
Let N denote the set of all nonoscillatory solutions of equation (1). If x €

€ N, then (1) implies that the function x (£) 4+ Ax (v (f)) is eventually of con-
stant sign, so that either :

L

x@)[x@) 4+ e (v ()N =0 for all large ¢ (5)
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or
x (&) [x () + Ax (v (£))) << 0 for all large ¢. 6y
Note that (6) holds only when A << 0. We denote by N+ and N— the sets of alk

x € N satisfying (6) and (6), respectively. Thus, N = Nt if A=0and N =
=Nt N Uif A < 0.

All the members of N~ tend.to zero as {—oco. In fact, from (6) we
have[x(f)lé[?\.”x (T (®)|, and hence | x (v™" (f))l<|M | x (f)] for ¢ large enough,

=1, 2, ..., which implies limx (¢) =
oo
Now consider a member x (f) of NT. Put
g (@) = x () + hx (v (2)). ™)

Then, from (1),
1 dy ()
vO g1 ( 0@ df

and so it can be proved routinely that y (¢) (dy (f)/df) = 0 eventually and one-
of the following cases holds for y (£):

I) lim |y (£)/P ()] = const 5= 0;

)50 for all large ¢,

1) 11_1)12 (y@/P ) =0 and }_i)rgy{t) — 00 Or — o9; ®)

III) limy (f) = const == 0.
Rewriting (7) as e
' x@)=y@®)—M(v(), 9)

x (8) =y (&) — My (v (1)) + Mx (v (2)),
from which, in view of the nondecreasing property of |y (f)|, it follows that
[x@l=1—|A]) ]|y @ (10):

for all large ¢, say ¢t = ¢,. Let ¢, = ¢, be such that v () = ¢, for { = £,. Repe-
ated application of (9) yields

we find

n(t)—1

xt)= Y Wy @) +— W@ @), t>1,

=0

where n (f) denotes the least positive integer such that # << ™9 (f) = 4,. It
then follows that

2] =LY+, tor ez, (1)

where £, > 0 is a constant. Combining (8) with (10) and (11), we conclude that
x (f) satisfies one of the following relations:

I) 0 <<liminf lz@] = lim sup _l;‘f_ﬂ__{ oo;
rp00 ( =00 P._f.}
ity A2 et el ) e 65 (12)
t>e P o

IIT) 0 <<liminf| x (£)] = lim sup | x (¢)] << oo,
t300 ‘300

This is a classification of nonoscillatory solutions of class N+,

B) Existence of nonoscillatory solutions. We
are now concerned with the problem of finding conditions for the existence of
nonoscillatory solutions of equation (1). Because of the difficulty in construc-
ting SOI_EthIlS of class N—, our attentmn will be restricted to the study of the
class N
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Theorem 1. Equation (1) has a nonoscillatory solution of type 1 if
and only if

L=l

[I17¢ rPE@Nd <o (13)

Jor some nonzero constant k. )
Proof. (The «only if» part.) Let x () be a nonoscillatory solution of
type I of (1). It is clear that
.o |x(g (@)
lim inf —=——2—2—
>0 P (g ()

Combining this with the inequality

> 0.

(176 xe@ld <o,
T

T > a being sufficiently large, which follows from (1), we obtain the desired
inequality (13).

(The «if» part.) Assume that (13) holds for some £ > 0. The case & << 0 can
ibe treated similarly. Take a constant ¢>0 such thate/ |[A| (1 — [A]|) =k and
«choose T' > a large enough so that

= mi i =
Lymin{E), igg, g} =a (14)
-and

T I1—|A
|7 (o mrrr=ray e @) e ER2 (15)

Let X denote the set of all continuous functions x:[Ty, oo)—R such that

P, T)=x®)=(/|\P(¢ T) for t=T,
(16)
x{) =0 for T, =t=T,;
X is a closed convex subset of the Frechet space C [T, o) of continuous func-
tions on [T, o). Following Ruan [11], we associate to each x € X the function
x: [T,, o) — R defined by
~ n(t)—1 . .
x®) = Y (—Nx (v (¢) for ¢t>T and x(f) =0 for T,=<t=<T,(17)

j=1
‘where n (f) denotes the least positive integer such that T, <<® (f) = T.
It can be shown that v € X implies that x ({) = 0 for { = T%,
*)=—Fr"— PG T), i=T*, 18
- =R —pyt® B e (
-and
X() 4 M) =x(®), t=T. (19)

In fact, (18) and (19) follow readily from (17), and the positivity of x (f) from
«(17) rewritten as

m—1
2@ = ¥ (=0 x (@ 1) + (— W @ @) 4 (— W @)
=0 -
for n(t) =2m+1, m=0, 1, ...,
x® = ¥ (=02 @ @) + (— e @ @) for n() =2m,
j=0

m=1, 2, ..,
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combined with the observation that, in view of (16), x € X implies for each §
(=M% @ @) + (— A & (t) = 27 (2 07 (1) — 2 P @)1 =
=17 [eP (¢ (), T)— |2 (/| A DP ™ (8), T)) =
= [P¥ (), T)— P @™ (1), T=0, t=T.
Let us now define the map F:X—C|[T,, o)by

1 oo

Fx®)=cPt, T+ (p@ (f0, % (g (r)) drds for t=T,
. v 8

. (20)
Fx(#)=0 for T, <t<T.

If x¢X, then since by (18) and (15)

t

(PO [Fo. 2@ dras=
' 5

{ oo
= (r@as (1(r prrsmyreo)e=Chriren
T T

for ¢ = T, we see that Fx € X, showing that F maps X into itself. Furthermore
it can easily be proved that F is continuous and F (X) is relatively compact
in the C [T,., oo)-topology. Therefore, by the Schauder-Tychonoff fixed point
theorem, there exists an element x* € X such that Fx* = x*,1 e.,

L

X*@) =cp(t,T)+ Sp(s) Sf(r,;* (g (r) drds, t=<T.
T ]
Since by (19) x* () + Ax* (v () = x* (f), t=T, this can be written as

PO A @) =cP ¢ T)+ (e (F@,x* @) drds, t=<T,
T

5

when ce by differentiation it follows that the function x* (f) is a solution of equ-
ation (1). That x* (¢) is of type 1 follows from (20). This completes the proof
of the «if» part.

Theorem 2. Equation (1) has a nonoscillatory solution of type IIT if
and only if

(PO, Bld<o @Y
i

or some nonzero constant k.
P r o o i. The «only if» part follows from the observation that a nonoscil-

latory solution x (£) of type 111 nesessarily satisfies
dgp @ (176 x@E)ldsdt= [P, Tt x(g@)ldt <o
H T

provided T = a is large enough.
To prove the «if» part, assume that (21) holds for some £ = 0. Let ¢ >0
be such that 2¢/ [A| (1 — [A]) = k. Take T > a so that (14) holds and
- % (1 —Ir)e
Pt e | =, 22
RCL =) 7| =
7
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- and define X < C [T,, o) and F : X - C [T, o) by
x={x€C[Ty, oo):x(f) is nondecreasing and c=x(t)=c/|A| for t=T"}
. @il (23)

Fx(t) = ‘,50 off(r, X (g () drds, t=T,
] H (24)

Fx(t) = —T S Sf(r x(g(r)))drds P iSiaT,

where /f(t) is given by

n(t)—1 n(t)
i =M x(T)
()= ;ﬂ W@ O+ ——F5 - t>T
(25)
& x(T)
tO) =75 Tast=T,

n (f) being the least positive integer such that T, <<1"® (f) = T. Exactly
- as in the proof of Theorem 1, one can show that if x € X, thenx () = Ofor { =
= T*, (19) holds and

= :

[AJ(T—[A])

From (22), (24) and (26) if follows that F maps X into itself. Since the conti-
nuity of F and the relative compactness of F (X) are proved without difficulty,
F has a fixed element x* in X : x* = Fx*. The associated function x* (f) then
" gives a positive solution of (1) which is clearly of type III. If the constant %
' in (21) is negative, then a parallel argument assures the existence of a negative
solution of type III of equation (1). This completes the proof of Theorem 2.
Unlike the solutions of types I and III, a characterization of type II solu-
tions (1) seems to be difficult to establish. Here we have to content oneselves
with the following theorem which covers a limited class of equations of the
- form (1).
Theorem 3. Suppose that —1 << h << 0. Equation (1) has a nonosci-
- llatory solution of type 11 if

oflf(f, kP (g ()] di < oo 27)

t=T*. (26)

for some nonzero k=0 and

Tp(r)[ F&, 0 dt = oo (28)

for all nonzero 15=0.
Proof. We may suppose that 2>=0. Let ¢>0 be such thatj
2¢/(1 — | A |) << k and let T > a be such that (14) holds and

00

5 f(t. TP E®+ 1]) dt=e. (29)

Define X to be the set of all x€C[T,, oo) which are nondecreasing and
satisfy

c=xB=clPO+1), t=T; x@® =x(T), T,=t=T, (30)
and consider the map ;
Fx(t)=c+§p(s) (10, X@@ndrds, t=T, @31)

Fx()=c, T,=t=T,
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where x (#) is defined by (25). Note that x€ X implies

0=F0= oG PO+, =T (32)

the first inequality being a trivial consequence of the assumption A << 0. Now
it is easy to verify that F (X) — X, and this together with the continuity of F

and the relative compactness of F (X) guarantees the existence of a fixed
point x* € X of F, which satisfies the equation

S~ f i o~
@)+t @) =c+ [p@© [F@r, x* (@) drds, t=T.  (33)
T H
Obviously, x* (f) is a solution of (1). We find from (33)

(@) + A (t () =c + jp(s)ff(r, c)drdsgc+§(§p(s)ds)f(r, ¢)dr=
i s T =P

4
ga+5p(r, T)f(r, ¢)dr, t=T,
T

which, because of (28), implies lim [x* () + Ax* (v (£))] = co. From (30) we
l—+oo

also have
1

p(@)
implying that f]-i-m i 6 + Roc* (v ({)I/P () = 0. This shows that the solu- .

tion x* (5) is of rJ"Eype II. Thus the proof is complete.
Example 1. Consider the equation

() + 2 (v (0] + 0 (0] £ (¢ ) sgn x (g () = O, (34)

L RO+ EO) = [10, e,
t

where X, © (f) and g (f) are as before, v = 0 is a constant and ¢ (f) = 0, =20 is
a continuous function on [a, o). This equation is a special case of (1) in which

p=1landf(t y) =o () |y|?sgny. ) ) )
There are three types of asymptotic behavior for nonoscillatory solutions

x () such that x (£) [x (£) + Ax (v (£))] = O for large ¢, namely:
) 0<<liminf[|x (@)t = lil;ﬂ sup [| x (O)|/t] << co: (35)
I ] 00
II) lim [x (/)/f] = 0 and lim|x (f)] = oo;
{00 {300
III) 0 << lim inf|x (¢)] = lim sup | x (f)] << co.
{300 x fseo

Condition (13) and (21) for (34) become

[ledlo@di<o (36)
and

050 to(t)dt < oo, 37)

respectively. Condition (36) [resp. (37)], therefore, is necessary and sufficient
for (34) to possess a nonoscillatory solution of type I [resp. type III]. On the
other hand, (34) possesses a nonoscillatory solution of type I if — 1 <<A <<
and

[ Oro@dt<oo and [to@dt— . (39
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The two integral conditions in (38) are consistent only when [g (£)]¥ grows less’
rapidly than ¢ as { — oco. For example, if g (/) = ¢8, 8 > 0, then 6y must be
less than unity. .

Example 2. Consider the equation

L2 () + ux (0 ON +F ¢, %A E) =0 (39)

subject to the conditions:

i) p is a constant with p > 1;

ii) o : [a, o) — R is continuously differentiable and strictly increasing,
and o (f) > tfor t = q;

iii) A : [a, c©) — R is continuous and lim A (f) = oo;

-]

iv) f: [la, o) X R — R is continuous and nondecreasing in the second
variable, and yf (£, y) = 0, 20 for y 5= 0 and ¢ = a.

Let © (s) denote the inverse function of o (). The change of the independent
variable s = o (f) (or ¢ = 7 (s)) transforms (39) into

2 o' GO 2 1x ) + 5 (5 @) }+uw'(r MTF(w(s), % (xE)) =0,

(40)
which is exactly of the type of equations to which the above theory is appli-
cable.

Applying Theorems 1 and 2 to (40) and then returning to the orginal vari-
able ¢, we have the following results:
a) equation (39) has a nonoscillatory solution x (#) such that

0< litm inf[| x @) /= () = limsup [| x @) |/v ()] << o0
—00 o0

if and only if
S | f(t, kv (kb)) df << oo for some k=~0; 41)

b) equation (39) has a nonoscillatory solution x(f) such that
0 <<liminf|x (f)] = lim sup | () | << oo
lo0 {300

if and only if
S‘t;f(t, k)| dt << co for some & =%0. (42)

3. Oscillation of all solutions. [t is natural to ask if
. one can characterize the situation in which all solutions of equation (1) are
oscillatory, or equivalently, there is no nonoscillatory solution of (1). Our pur-
pose here is to give a partial answer to this question by restricting ourselves to
the case where (1) is strongly superlinear or strongly sublinear in fhe sense
defined below.

Definition. Equation (1) is said to be strongly superlinear if there is
a constant o > 1 such that |y |~*|f(t, y)| is nondecreasing in |y| for each fixed
t = a : equation (1) is said to be strongly sublinear if there is a constant p, 0 <<
< B << 1, such that [y| | f (¢, y) | is nonincreasing in |y | for each fixed t = a.

Theorem 4. Suppose that either (1) is strongly superlinear and

fp(g* ) F ¢, K| dt= oo for ali k=0, (43)
of (1) is strongly sublinear and
5 |F(t, kP (g, (1)) dt = oo for all k0 (44)

where g, (f) = min {¢, g ()}, t = a.
Then, if 0°<< A << 1, every solution of (1) is oscillatoryp while if —1 << A <T
< 0, every solution of (1) is either oscillatory or tends to zero as t — oo.

1678 . ISSN 0041-6053. Yxp. mar. scypu. 1991. T. 43. M I2.



Proof. Note that the conclusion of the theorem is equivalent to saying
that, regardless of the sign of A, the class N+ is empty for (1), that is, (1) has
?0 nonoscillatory solution x (f) such that x () [x (9) + Ax (v (£))] > 0 for all

arge t. -

Let x € N+ be a solution of (1). We may suppose without loss of generality
that x (f) is eventurally positive. Put y (f) = x (£) + Ax (v (£)). From the ob-
servations in pt 2, A we see that there exist positive constants {, > a, &
and ¢, such that y (7) is positive and nondecreasing for f = £,

" a=yO)=clP @), t=1, - (49
an
I—=[rMy@O)==x0@), =t (46)

Let ¢, > ¢, be such that min {t (), inf g, (9)} = %,. Form (1) and (46) it follows
[
that z () = (1 — |A]) y (9) satisfies

d (1 dz(b)
- (p T ) FA—MDFC 2@ @) =0, t=t. @]
i) Let (1) be strongly superlinear. Since, by (45), z (g, (9)) = (1 — {M)c,_ =
= k, for t = 4, the strongly superlinearity (with exponent o > 1) implies
| (2 (g OV ¢, 2(gu ON =TT, ko), t=ty. (48)
Using (48) in the inequality
L0 D[ Fes 2l G ds, =t
p() dt — ; : i ¥R

which follows readily form (47), we obtain

d _ [==]
20 = (1~ 1M EP O [ [2(ex T (s, k) ds, 12ty
: f

Let £, be such that g, () = ¢, for ¢ = ¢,. Integrating the above inequality di-
vided by [z ()= over [#, ], #; > t,, we obtain

S 10) —_p® | @ -
ifz(l‘)] —- dt = (1 —| Mk 5W S[z(g*(s}))] f(s, ky) dsdt =

—a (" (g« (s) |*
= (1—[A)Dk t_g fg ‘D(t)['—z_('ﬁ“_] [ (s, ky) dlds=

s Eag.(s) o
=a—npa=( | p(f)[—i-(i%?”*] Fis, kydids=
L

= (1 — M)A [ Pgu(®), )T (s k) ds,

where use was made of the fact that z (g,(s)) = z (f) for g, (s) = ¢. Letting
t, — oo in the above, we have

oo

kl 1—a
SP(g*(s), DF 6 k) ds S iy G T <,

which contradicts (43).

ii) Let (1) be strongly sublinear. Since, by (45), z (g (f)) = ksP (g« (9)
for { = ¢, where k; = (1 — [A]) ¢y, the sublinearity (with exponent B << 1)
implies

[2® P
i 2@ = [T e wr e tzh @)
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(é)n the other hand, using the nonincreasing property of (1/p (¥)) (dz (¢)/d?), we
ave

. 1 dz(s P(t, t,) dz(f)
2@%{5 P(S)T(s)— Tdsé T(L‘)L_d_t_ , =14
and hence
1 dz (t) 2 (g4 (9)
P & = PO = (0)

where £, > £, is chosen so that g, (f) > ¢, for { = #,. From (47), (49) and (50)
it follows that

- o I R T G

_ AT M):_f_ﬁ_)a 51
20100 —pat( L&D Fro wp@on 6D
for ¢t=1¢, Integrating (51) over lf,, o) and noting that P (g, (9),
#)/P (g4 (1)) > 1 as £ — oo, we see that

(765 £aq (g () P (gu (5))) ds < o0,

which contradicts (44). This completes the proof.
Let us consider the strongly superlinear equation (1) and compare (43)
with the condition

oo

§P @ |f, (¢, k)| dt =oo for all k%0 (52)

which, by Theorem 2, is necessary for all solutions of (1) to be oscillatory. These
conditions are in general different, but they may become equivalent, in which
case (43) or (52) gives a necessary and sufficient condition for the oscillation of
all solutions of (1) in the sense of the conclusion of Theorem 4. Thus we have
the following result.

Theorem 5. Let (1) be strongly superlinear. Suppose that

. PO _
I >

Then, (52) is a necessary and sufficient condition in order that, for 0 << A <1,
every solution of (1) be oscillatory, and, for —1<< A << 0, every solution of (1) be
either oscillatory or tend to zero as t — co.

Likewise, by comparing (44) with the condition

T{f(t, EP (g ()| df = oo for all k=0, (54)

we are able to obtain a characterization of oscillation of all solutions for the
strongly sublinear equation (1).
Theorem 6. Let (1) be strongly sublinear. Suppose that

: Pg®)
Hrm Sup 5 T )

Then, (54) is a necessary and sufficient condition in order that, for 0 << A << 1
every solution of (1) be oscillatory, and, for —1 << h << 0, every solution be either
oscillatory or tend to zero as t — co.

Example 3. We take up equation (34) again:

< oo. (55)

dz '
v @ +dx@@O)+o@|x@®)" sgnx(g@) =0, (56)
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where A, © () and g (f)-are as in (1), > 0 is a constant and ¢ (£) = 0, 520 is
o a continuous function on la, o).

Conditions (52) and (54) for this equation take the forms

Stcp(t)dt: oo i (57)
and '
Slg O17¢ (f) dt = oo, (88)
respectively, and conditions (53) and (55) reduce to _ -
lim sup [#/g, (6)] < oo (59)
and i
1irrr_1; sup (g (£)/ g4 (£)] < oo, (60)

respectively. Therefore, we have the following results form Theorems 5 and 6.
i) Lety > 1 and suppose that (59) holds. Then, the oscillation of solutions
of (66) (in the sense of the theorems) takes place if and only if (57) is satisfied.
if) Let 0 <<y << 1 and suppose that (60) holds. Then, the oscillation of
solutions of (56) takes place if and only if (58) is satisfied. :
We observe that both (59) and (60) hold if g (¢) satisfies

0<< 1i{1_13£nf Lg &)/ éliﬂiup [g (/1] << oo,
in which case (58) is_equivalent to the condition
T Yo (1) df = oo.
Example 4. Consider the following particular case of equation (56): ‘
@ —Ax(—+o@lxt—o)  senx(t—0)=0, (6]

where ¢ (f) = (het — 1) e—voev—1% We assume that A, t, o and y are con-
stants such that 0 <<A << 1, t>0, y>1 and Mle*> L Then the function
o (1) satisfies (57), so that, by Theorem 4, every solution of (61) is either oscil-
latory or tends to zero as {— co. As is easlly checked, (61) has a nonoscillatory
solution x (f) = e—* tending to zero as t — co. This example shows that, in
case the constant X is negative, condition (44) is not sufficient to preclude the
possibility N—s&@ for the superlinear equation (1). An interesting problem is
to obtain sharp conditions garanteeing the oscillation of all solutions (i. e.
N+ = N— = ¢) for both superlinear and sublinear cases of (1) with A << 0.
Example 5. Consider the equation (39) again:

L)+ wr (o O+ 1, x(.G) =0 6 ;

under the same assumptions as in Example 2; in particular, p > 1 and o (f) > .

> i. As is-known, (82; is equivelent to the neutral equation

%|o ) ()~ (2 (9) + W @ O] + (w0’ GO, 2R EEN =0,
(63

where 7 (s) is the inverse function of o (Z).
According to Theorem 4, the oscillation of the strongly superlinear equa-
tion (B63) is guaranteed by the condition

-

Sw((hw)* (N F (T (s), k)|ds = co for all k==0,
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and that of the strongly sublinear equation is guaranteed by the condition

c‘flf(-l:r (), kv ((ho), (9)))ds = oo for all £==0.

Eince (ho7), (S) = (s o) (s), the above conditions are implied, respectively,
y

St({h*n’c) S (v (s), k) ds= oo for all k=0
and

Slf('r (8), kv (hyo)(s) dt = co for all k=40,

which can be rewritten as

DS?T (he O F(t, R)|dt = co for all k=0 (64)
and
(17, kv (hy @) dt = oo for all k0. (65)
Comparing (64) and (65) with the conditions
Ttlf(t, k)| dt = oo for all k=<0 (66)
and
S |[f@t, kv (h®))|dt = oo for all k=0 (67)

whieh are necessary comditions for oscillation of (62) (cf. Example 2), we con-
clude that i) under the hypothesis

0< Iim inf [ ha O = lim D stip [7 (B (E))/t] << 00 (68)
all solutions of the strongly superlinear equation (62) are oscillatory if and only
if (66) holds, and ii) under the hypothesis '
1H§_1g_§lp (v (h ()7 (hye E))] << 00
all solutions of the straongly sublinear equation (62) are oscillatory if and only -
if (67) holds. E

~ Note that (67) holds if A (f) = h, (¢), that is, & (f) is a retarded argument.
Both (68) and (67) are satisfied if, for example,

lim sup [0 (£)/¢] << o0
oo

and
0< li:;n inf [A (£)/1] élir}n sup [k (£)/t] << co.
] 300

Remarks. i) We note that existence theorems analogous to the «if»
parts of Theorems 1 and 3 can be established even for the case where the nonk-
near term f (¢, y) in (1) does not satisfy the sign condition yf (¢, y) = 0. In fact,
under the supposition that there exists a continuous function f"‘ : [a, o) X
X [0, o0) — [0), which is nondecreasing in the second variable and such that

[F@& DI<F*E |y for ¢ y)€la, o) XR,

it can be proved without difficulty that (1) possesses a nonoscillatory solution
x (?) satistying (12), I) or (12), III) if

Sf* (¢, kP (g (f)))dt << co for some £2=>0
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(PO < oo for some k> 0.

ii) The results of this paper can be extended to equations of the form
Lix@+M@@+7E x @ @), ..., x(gy @) =0, (69)

where f (¢, y1, ..., yw) is continuous on [a, o) X R¥ and nondecreasing in f
each y;, ]| =i = N, and satisfies

Yf ¢, Yo -y yy) =0 for all @, gy, .., yy) with g1, =0, 1 <IN,

There is no difficulty in formulating and proving analogues of Theorems 1 —
3 for equation (69). To obtain oscillation criteria for (69) it suffices to define
strong superlinearity and subhnearlty in terms of f (¢, y, .., 4) and use the

function ge O =min{¢, g (8, ..., gv O}

1. Zahariev A., Bainov D. Oscillating Ero erties of the solutions of a class of neutral type
:iatggctional differential equations// qu Austral. Math. Soc.— 1980.— 22.— P. 365—

2. Grace S., Lalli B. Oscillations of nonlinear second order neutral delay differential equa-
tions // Radovi Math.— 1987.— 3.— P. 77—84.

3. Grammatikopoulos M., Ladas G., Meimardiou A. Oscillation of second order neutral delay

differential equatlons /! 1bid.— 1985.— 1.— P. 267—274. ’

. Grammatikopoulos M., Ladas G., Sficas Y. Oscillation and asymptotic behavior of nentral

equations with variable coefficients // Ibid.— 1986.— 2.— P. 279—303.

. Grove E., Kulenovic M., Ladas G. Sufficient conditions for oscillation and nonoscillation

of neutral equations // J. Different. Equat.— 1987.— 68.— P. 373—382.

. lvanov A. F. On oscillation of solutions of first order differential — difference equatlons

of neutral type.— Kiev, 1983.— 17 p.— (Preprint / Ukr. Acad. Sci. Inst. Math.; 83.16).

. fvanov A. Kusano T. On oscillation of solutions of a class of functional differential

equations // Ukr. Math. J.— 1987.— 39, N 6.— P. 717—721 (Russian).

ITvanov A. F., Kusano T. Oscillation of selutions of a class of first order functional diffe-

rential equatlons of neutral type // Ibid.— (to appear).

. Ladas G., Sficas E. Oscillation of neutral delay differential equations // Canad. Math.

Bull.— 1986.— 29.— P. 435—445.

10. Ladas G., Sficas Y. Oscillations of higher-order neutral equations //J. Austral. Math.
Soc. Ser. B.— 1986.— 27.— P. 502—517.

11. Ruan J. Oscillations of neutral differential difference equations with several re-
tarded arguments // Scientia Sinica Ser. A.— 1986.— 19.— P. 1132—1144.

12. Ruan J. Types and criteria of nonoscillatory solutions for second order linear neutral
d12fferent1a1 difference equations. // Chinese Ann. Math. Ser. A.— 1987.— 8.— P. 117—
124

13. Sficas Y., Stavroulakis I. Necessary and sufficient conditions for oscillations of neutral
differential equations // J. Math. Anal. Appl.— 1987.— 123.— P: 494—507.

14, Zahariev A., Bainov D. On some oscillation criteria for a class of neutral tylgae functional
differential equatmns // J. Austral. Math. Soc. Ser. B.— 1986.— 28.— 229—239.

Rec.e ived 22,11.90.

© @ N o G

ISSN 0041-6053. Vkp. mar. oscypn. 1991. T. 43. M 12, 1683



	0085-2
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097-k

