A sequence of factorizable subgroups

Vahid Dabbaghian

Communicated by V. I. Sushchansky

ABSTRACT. Let G be a non-abelian non-simple group. In this article the group G such that $G = MC_G(M)$ will be studied, where M is a proper maximal subgroup of G and $C_G(M)$ is the centralizer of M in G.

1. Introduction

Let G be a group, and let M and N be two subgroups of G. The group G is called *central factorizable* if G can be written as the central product of the subgroups M and N. In this case we say M and N are CF-subgroups of G (Central Factorizer subgroup), and we have

$$G/M \cap N \cong G/M \oplus G/N. \tag{1}$$

Since $M \subseteq C_G(N)$ and $N \subseteq C_G(M)$, so $G = MC_G(M) = NC_G(N)$ are the other representations of the central factorizability of G. Therefore M is a CF-subgroup of G whenever $G = MC_G(M)$. One notes that every CF-subgroup is normal, hence simple groups are the first example of groups without any proper CF-subgroups. Clearly every subgroup of an abelian group is a CF-subgroup.

We are interested to the case that M and $C_G(M)$ are proper subgroups. Thus if M is a proper maximal subgroup of G such that $Z(G) \not\subset M$, then M is a CF-subgroup (*CF-maximal subgroup*). Indeed, if $Z(G) \not\subset \Phi(G)$, the Frattini subgroup of G, then G contains a CF-maximal subgroup.

²⁰⁰⁰ Mathematics Subject Classification: 20E28; 20F14.

Key words and phrases: central product, maximal subgroup, sequence of subgroups.

Definition 1. Let $S = \{G_n\}$ be a sequence of subgroups of G, indexed by the non negative integers. We call S a *CF-sequence* of G if

- 1. $G_0 = G$,
- 2. $G_n = G_m Z(G_n)$ for all m > n and
- 3. G_{n+1} is a proper maximal subgroup of G_n .

According to this definition, G_n is a non-abelian non-simple group for every n, and G_m is a CF-subgroup of G_n for all m > n.

Let n be a positive integer and $n = p_1^{\alpha_1} \dots p_t^{\alpha_t}$ be the prime decomposition of n. Define

$$\Omega(n) = \sum_{i=1}^{t} \alpha_i,$$

 $\Omega(1) = 0$ and $\Omega(\infty) = \infty$. Let $D(G) = Z(G) \cap \Phi(G)$ and

$$\Omega_G = \Omega([Z(G) : D(G)]),$$

where [Z(G) : D(G)] denotes the index of D(G) in Z(G). We prove the following theorem.

Theorem 1. If G is a group and $\Phi(H) \subset \Phi(G)$ for every normal subgroup H with finite index, then G has a CF-sequence of length Ω_G .

In the final section we extend this work to abstract classes of groups by defining two closure operations C_0 and C, finite central product and (infinite) central product, respectively. In particular we prove,

Theorem 2. Let \mathfrak{A} be the class of abelian groups, and \mathfrak{X} and \mathfrak{Y} two C_0 -closed classes of groups such that $\mathfrak{A} \leq \mathfrak{X}$. Let G be a group and M a CF-maximal subgroup of G.

- 1. If M is an \mathfrak{X} -group then so is G.
- 2. If \mathfrak{Y} is **H**-closed and M is an \mathfrak{XY} -group then G is an \mathfrak{XY} -group.

2. Upper central series of a CF-sequence

Let $S = \{G_n\}$ be a CF-sequence of a group G. In this section we study the upper central series of the terms of S and we extend it to their lower central and derived series.

Lemma 1. Let M be a CF-subgroup of G and $C = C_G(M)$. Then

1. $G/Z(G) \cong M/Z(M) \oplus C/Z(C)$,

- 2. $G/Z(M) \cong G/M \oplus M/Z(M)$ and
- 3. C = Z(G) if M is maximal.

Proof. Since M and C are CF-subgroups, $Z(M) \subseteq Z(G)$ and $Z(C) \subseteq Z(G)$. Thus $Z(M) = M \cap Z(G)$ and $Z(C) = C \cap Z(G) = Z(G)$. Using equation (1) and $M \cap C = Z(M)$ we have

$$\begin{split} G/Z(G) &\cong MZ(G)/Z(G) \oplus C/Z(G) \cong M/Z(M) \oplus C/Z(C), \\ G/Z(M) &\cong M/Z(M) \oplus C/Z(M) \end{split}$$

and

$$G/M \cong C/Z(M).$$

Hence

$$G/Z(M) \cong G/M \oplus M/Z(M).$$

Since $M \subseteq C_G(C)$, if M is maximal then $C_G(C) = M$ or $C_G(C) = G$. If $M = C_G(C)$ then $Z(M) = M \cap C = C_G(C) \cap C = Z(C)$ and $G/M \cong C/Z(C)$. This implies the index of Z(C) in C is a prime and C is abelian, which is a contradiction. Hence $C_G(C) = G$ and C = Z(G). \Box

From the part (3) of Lemma 1 we have

$$G/Z(G) \cong M/Z(M), \tag{2}$$

$$G/M \cong Z(G)/Z(M) \tag{3}$$

and

$$G/Z(M) \cong M/Z(M) \oplus Z(G)/Z(M).$$
 (4)

Also M is a CF-maximal subgroup of G if and only if $Z(G) \not\subset M$. Therefore, the necessary and sufficient condition for G to contain a CF-maximal subgroup is $Z(G) \not\subset \Phi(G)$. Thus when the centre of G is trivial, G has no CF-maximal subgroups.

The following proposition is a generalization of Lemma 1 for terms of the upper central series of members of a CF-sequence $\{G_n\}$. For simplicity we denote $Z_n = Z(G_n)$ and $Z_{\alpha,n} = Z_\alpha(G_n)$, the α -th term of the upper central series of G_n for each α and n.

Proposition 1. Let $\{G_n\}$ be a CF-sequence of G. Then for every m and n that m > n, and each α , we have

- 1. $G_m \cap Z_{\alpha,n} = Z_{\alpha,m}$,
- 2. $G_n/G_m \cong Z_{\alpha,n}/Z_{\alpha,m}$,

- 3. $G_n/Z_{\alpha,n} \cong G_m/Z_{\alpha,m}$ and
- 4. $G_n/Z_{\alpha,m} \cong G_m/Z_{\alpha,m} \oplus Z_n/Z_m$.

Proof. Let m = n + k. We prove it by induction on k and α . Let $\alpha = 1$. If k = 1 then G_{n+1} is a CF-maximal subgroup of G_n and equations (2), (3) and (4) result it. Suppose the proposition is correct for k - 1, then $Z_{n+k-1} = G_{n+k-1} \cap Z_n$ and $Z_{n+k-1} \subseteq Z_n$. Since $Z_{n+k} \subseteq Z_{n+k-1}$ so $Z_{n+k} \subseteq G_{n+k-1} \cap Z_n$. By assumption $G_n = G_{n+k}Z_n$, thus $G_{n+k} \cap Z_n \subseteq$ $G_{n+k} \cap C_{G_n}(G_{n_k}) = Z_{n+k}$ and we get $G_{n+k} \cap Z_n = Z_{n+k}$, which is

$$G_m \cap Z_n = Z_m. \tag{5}$$

Hence

$$Z_n/Z_m = Z_n/G_m \cap Z_n \cong G_m Z_n/G_m = G_n/G_m$$

and

$$G_m/Z_m = G_m/G_m \cap Z_n \cong G_mZ_n/Z_n = G_n/Z_n$$

Using equations (1) and (5) we have

$$G_n/Z_m \cong G_m/Z_m \oplus Z_n/Z_m.$$

This completes the induction on k.

Let the above conclusions be correct for $\alpha - 1$ and $G_n/Z_{\alpha-1,n} \cong G_m/Z_{\alpha-1,m}$. Since the groups of inner automorphisms of two isomorphic groups are isomorphic, so (3) as required.

Now we show $G_m \cap Z_{\alpha,n} = Z_{\alpha,m}$. Since $\{G_n\}$ is a CF-sequence, we have $G_n = G_m Z_n = G_m Z_{\alpha,n}$, thus

$$G_n/Z_{\alpha,n} \cong G_m/G_m \cap Z_{\alpha,n},$$

and using part (3)

$$G_m/Z_{\alpha,m} \cong G_m/G_m \cap Z_{\alpha,n}.$$

Therefore, it is enough to show $G_m \cap Z_{\alpha,n} \subseteq Z_{\alpha,m}$ or

$$(G_m \cap Z_{\alpha,n})/Z_{\alpha-1,m} \subseteq Z(G_m/Z_{\alpha-1,m}) = Z_{\alpha,m}/Z_{\alpha-1,m}.$$

Let $xZ_{\alpha-1,m} \in (G_m \cap Z_{\alpha,n})/Z_{\alpha-1,m}$ and $yZ_{\alpha-1,m} \in G_m/Z_{\alpha-1,m}$, where $x \in G_m \cap Z_{\alpha,n}, y \in G_m$ and $x, y \notin Z_{\alpha-1,m}$. Since $x \in G_m$ and

$$G_m \cap Z_{\alpha-1,n} = Z_{\alpha-1,m},\tag{6}$$

we have $x \notin Z_{\alpha-1,n}$ and $xZ_{\alpha-1,n} \in Z_{\alpha,n}/Z_{\alpha-1,n} = Z(G_n/Z_{\alpha-1,n})$. Also from $y \in G_m \subseteq G_n$ and equation (6) we have $y \notin Z_{\alpha-1,n}$ and $yZ_{\alpha-1,n} \in G_n/Z_{\alpha-1,n}$. This proves

$$xyZ_{\alpha-1,n} = yxZ_{\alpha-1,n}$$

If $xyZ_{\alpha-1,m} \neq yxZ_{\alpha-1,m}$ then $xyx^{-1}y^{-1} \notin Z_{\alpha-1,m}$. Since $xyx^{-1}y^{-1} \in G_m$ so $xyx^{-1}y^{-1} \notin Z_{\alpha-1,n}$, which is a contradiction. Thus $G_m \cap Z_{\alpha,n} \subseteq Z_{\alpha,m}$ and (1) as required.

Using part (1)

$$Z_{\alpha,n}/Z_{\alpha,m} = Z_{\alpha,n}/G_m \cap Z_{\alpha,n} \cong G_m Z_{\alpha,n}/G_m = G_n/G_m,$$

which results part (2).

Finally by equation (1) and $G_m \cap Z_n \subseteq Z_{\alpha,m} = G_m \cap Z_{\alpha,n}$ we get

$$G_n/Z_{\alpha,m} = G_m/Z_{\alpha,m} \oplus Z_nZ_{\alpha,m}/Z_{\alpha,m} \cong G_m/Z_{\alpha,m} \oplus Z_n/Z_m.$$

This implies part (4).

If G = MN is a central factorizable group, then it is easy to prove

$$Z_k(G) = Z_k(M)Z_k(N),$$

$$\gamma_k(G) = \gamma_k(M)\gamma_k(N),$$

and

$$G^{(k)} = M^{(k)} N^{(k)},$$

where $Z_k(G)$, $\gamma_k(G)$ and $G^{(k)}$ are k-th term of the upper, lower and derived series of G, respectively. Hence if $\{G_n\}$ is a CF-sequence of G then for each m > n,

- 1. $Z_k(G_n) = Z_k(G_m)Z(G)$ when $k \ge 1$,
- 2. $G_n^{(k)} = G_m^{(k)}$ when $k \ge 1$ and
- 3. $\gamma_k(G_n) = \gamma_k(G_m)$ when $k \ge 2$.

In particular, if G is nilpotent then $cl(G) = cl(G_n)$, and if G is soluble then $d(G) = d(G_n)$ for each n, where cl(G) and d(G) are nilpotency class and defect of a given group G, respectively.

3. Groups with a CF-sequence

Proof of Theorem 1. Case I) $\Omega_G = 0$. In this case $Z(G) \subseteq \Phi(G)$ and G has no CF-maximal subgroup. Thus G has no CF-sequences.

Case II) $\Omega_G = \infty$. Let $G_0 = G$. Then $Z(G_0)$ has infinite order. Since $\Omega_{G_0} = \infty, Z(G_0) \not\subseteq \Phi(G_0)$. In this case there exist a CF-maximal subgroup G_1 of G_0 such that $G_0 = G_1Z(G_0)$ and $G_0/G_1 \cong Z(G_0)/Z(G_1)$. Hence $[Z(G_0): Z(G_1)]$ is prime and $Z(G_1)$ has infinite order. Since G_1 is normal in G_0 and has a finite index, $\Phi(G_1) \subseteq \Phi(G_0)$. Thus $\Omega_{G_1} = \infty$ and $Z(G_1) \not\subseteq \Phi(G_1)$. So there exists a CF-maximal subgroup G_2 of G_1 such that $G_1 = G_2Z(G_1), [G_1:G_2] = [Z(G_1): Z(G_2)]$ is prime, and $Z(G_2)$ has infinite order. If $G_0 = G_1Z(G) = G_2Z(G_1)Z(G)$ then $G_0 = G_2Z(G)$, G_2 is normal in G_0 and $[G_0:G_2] = [Z(G_0):Z(G_1)][Z(G_1):Z(G_2)] < \infty$. Hence $\Phi(G_2) \subseteq \Phi(G_0)$ and $\Omega_{G_2} = \infty$. This procedure gives an infinite sequence $\{G_n\}$ of subgroups of G such that $G_0 = G$ and

$$G_n = G_{n-1}Z(G_n). (7)$$

We show $G_n = G_m Z(G_n)$ for m > n. Let m = n + k. We prove it by induction on k. For k = 1 it is (7). Let $G_n = G_{n+k-1}Z(G_n)$. Since $G_{n+k-1} = G_{n+k}Z(G_{n+k-1})$, $G_n = G_{n+k}Z(G_{n+k-1})Z(G_n)$ and $Z(G_{n+k-1}) \subseteq Z(G_n)$. Thus $G_n = G_{n+k}Z(G_n)$ and the induction is completed. This shows $\{G_n\}$ is an infinite CF-sequence.

Case III) $0 < \Omega_G < \infty$. Let $G_0 = G$. Since $\Omega_G > 0$, thus $Z(G_0) \not\subset \Phi(G_0)$ and there exists a CF-maximal subgroup G_1 of G_0 such that $G_0 = G_1Z(G_0)$, and $[G_0:G_1] = [Z(G_0):Z(G_1)]$ is a prime. So $\Omega(|Z(G_1)|) = \Omega(|Z(G_0)|) - 1$. On the other hand G_1 is normal in G_0 . Therefore $\Phi(G_1) \subseteq \Phi(G_0)$. If $Z(G_1) \subset \Phi(G_0)$ then $\Omega_{G_0} = [Z(G_0):D(G_0)] = 1$ and

 $G_1 \leq G_0$

is a CF-sequence of G. Otherwise, $Z(G_1) \not\subseteq \Phi(G_1)$ and there is a CFmaximal subgroup G_2 of G_1 of prime index such that $G_1 = G_2 Z(G_1)$. Hence $G_0 = G_2 Z(G_0)$, $G_2 \triangleleft G_0$, $\Phi(G_2) \subset \Phi(G_0)$ and $\Omega(|Z(G_2)|) =$ $\Omega(|Z(G_0)|) - 2$. Since Ω_{G_0} is finite, after a finite steps we obtain a CFmaximal subgroup G_l of G_{l-1} of prime index such that $G_{l-1} = G_l Z(G_{l-1})$, $\Omega(|Z(G_l)|) = \Omega(|Z(G_0)|) - l$ and $Z(G_l) \subseteq \Phi(G_0)$. Hence $\Omega_G = l$ is the length of the sequence

$$G_l \le G_{l-1} \le \dots \le G_1 \le G_0 = G,$$

where

$$G_n = G_{n+1}Z(G_n)$$
 for $1 \le n \le \Omega_G$.

Now it is easy to see that

$$G_n = G_m Z(G_n)$$
 for $1 \le n < m \le \Omega_G$

This completes the proof.

Recall a group G is called with max if each non-empty set of subgroups of G has a maximal element.

Corollary 1. If G is with max then G has a CF-sequence of length Ω_G .

Proof. If G is with max then every subgroup of G is finitely generated and $\Phi(H) \subseteq \Phi(G)$ for every normal subgroup H of G.

The most well known classes of groups with max are finitely generated nilpotent groups and polycyclic groups. Therefore, using Theorem 1 and Corollary 1, each finitely generated nilpotent group and polycyclic group has a CF-sequence of length Ω_G . As we showed in section 2, when G is a finitely generated group then each term of its CF-sequence is nilpotent of class cl(G). Similarly, when G is a polycyclic group then each term of its CF-sequence is soluble with defect d(G).

4. On abstract classes of groups

In this section we generalize some senses of pervious sections and discuss about the invariant properties by the central product. Suppose A and Bare two subgroups of a group G such that [A, B] = 1. Then the central product AB is a subgroup of G. It is also correct for $\prod_{i \in I} C_i$ where $\{G_i\}_{i \in I}$ is a collection of distinct subgroups of G, such that $[G_i, G_j] = 1$ for $i \neq j$. Our interest is the cases that AB and $\prod_{i \in I} C_i$ are \mathfrak{X} -groups, whenever A, B and every C_i are \mathfrak{X} -groups for an abstract class of groups \mathfrak{X} .

Let \mathfrak{X} be a class of groups. We say the class \mathfrak{X} is closed under taking finite central product, or C_0 -closed, if C_1, C_2 are the \mathfrak{X} -subgroups of G such that $[G_1, G_2] = 1$ and C_1C_2 is a \mathfrak{X} -subgroup of G. Similarly \mathfrak{X} is C-closed or central product closed, if $\prod_{i \in I} C_i$, the (central) product of the subgroups C_i , is an \mathfrak{X} -group, for a collection $\{G_i\}_{i \in I}$ of distinct \mathfrak{X} -subgroups of G. It is easy to see that C_0 and C are two closure operations.

By definition, the class of abelian groups is C-closed (and so C_0 -closed). It is proved that if \mathfrak{X} is a $\{S, H, P\}$ -closed class of groups and G = AB is a group, which is the product of \mathfrak{X} -groups A and B, then G is an \mathfrak{X} -group, whenever one of them, A or B, are subnormal in G [1]. Since in the central product AB both of A and B are normal in G, thus every abstract class of groups \mathfrak{X} which is $\{S, H, P\}$ -closed, is C_0 -closed.

Proposition 2.

- 1. $D_0 \leq C_0 \leq N_0$.
- 2. $D \leq C \leq N$.

Proof. It is enough to prove (2) then (1) is clear. Let \mathfrak{X} be an N-closed class of groups and $\{G_i\}_{i\in I}$ be a collection of distinct \mathfrak{X} -subgroups C_i of G such that $[C_i, C_j] = 1$ for $i \neq j$. Since C_i is normal in $C = \prod_{i\in I} C_i$, thus $C \in \mathfrak{X}$ and this requires \mathfrak{X} is C-closed. If $C_i \cap C_j = 1$ for every $i, j \in I$, which $i \neq j$, then $C = Dr_{i\in I}C_i$. This implies \mathfrak{X} is D-closed. \Box

As a corollary, the class of nilpotent groups is N_0 -closed, so is C_0 closed. Also by [2, page 34], the class of periodic groups is N-closed, which is C-closed. In the following theorem we obtain some new C-closed classes of groups.

Theorem 3. Let \mathfrak{X} and \mathfrak{Y} be two *C*-closed abstract classes of groups.

- 1. If \mathfrak{X} is S-closed then $L_{\lambda}\mathfrak{X}$ is C-closed for every cardinal number λ .
- 2. If \mathfrak{Y} is **H**-closed then \mathfrak{XY} is **C**-closed.

The class $L_{\lambda}\mathfrak{X}$ is defined to consist of all groups G in which every subset of cardinality at most λ is contained in a \mathfrak{X} -subgroup of G, for a cardinal number λ . Before the proof of Theorem 3, we refer to this fact that, if H and K are two subgroups of G and $N \triangleleft G$ then

$$[HN/N, KN/N] = [H, K]N/N.$$
(8)

Proof of Theorem 3. Let $\{G_i\}_{i\in I}$ be a collection of distinct subgroups of G such that $[C_i, C_j] = 1$ for $i, j \in I$ and $i \neq j$. Let C_i be an $L_{\lambda}\mathfrak{X}$ -group for each $i \in I$. We show the central product $C = \prod_{i \in I} C_i$ is also an $L_{\lambda}\mathfrak{X}$ -group.

Suppose $X = \langle x_k | k \in K \rangle$ is a subgroup of C, generated by elements x_k for $k \in K$, where K is an index set with cardinal number at most λ . As $x_k \in C$ and $[C_i, C_j] = 1$ for $i \neq j$, we can write down $x_k = c_{k_1} \cdots c_{k_t}$, where $c_{k_i} \in C_{k_i}$ and $k_i \neq k_j$ for $1 \leq i \neq j \leq t$. Let $C_{k_i}^*$ be the subgroup of C_{k_i} generated by all elements c_{k_i} of C_{k_i} which appear in the representation of x_k . Then it is clear that for every $k_i \in I$, $C_{k_i}^*$ has the cardinal number at most λ and so it is an \mathfrak{X} -group. But \mathfrak{X} is C-closed class of groups and $[C_{k_i}^*, C_{k_j}^*] = 1$ for $k_i, k_j \in I$ and $k_i \neq k_j$. Hence the central product $C^* = \prod_{k \in I} C_{k_i}^*$ is an \mathfrak{X} -group. Since \mathfrak{X} is S-closed, it is enough to show $X \leq C^*$.

Let x be an element of X. Then x is a product of some generated elements x_k . Since for every pair elements c_{k_i} and c_{k_i} that $k_i \neq k_j$, $[c_{k_i}, c_{k_j}] = 1$, thus we can write x as a product of elements c_{k_i} such that no pair of them belongs to the same C_i . This implies $x \in C^*$.

Let $C_i \in \mathfrak{XY}$ for every $i \in I$. Then there exists a normal subgroup D_i in C_i such that $D_i \in \mathfrak{X}$ and $C_i/D_i \in \mathfrak{Y}$. As \mathfrak{X} is C-closed and $[D_i, D_j] = 1$ for $i \neq j$, the central product $D = \prod_{i \in I} D_i$ is a normal subgroup of Cand $D \in \mathfrak{X}$. Now it is enough to show $C/D \in \mathfrak{Y}$. We have

$$C/D = (\prod_{i \in I} C_i)/D = \prod_{i \in I} (C_i D/D) \cong \prod_{i \in I} (C_i/(C_i \cap D)), \qquad (9)$$
$$C_i/(C_i \cap D) \cong (C_i/D_i)/((C_i \cap D)/D_i)$$

and \mathfrak{Y} is **H**-closed, thus $C_i/(C_i \cap D)$, which is the homomorphic image of C_i/D_i , is a \mathfrak{Y} -group. On the other hand, by equation (8)

$$[C_iD/D, C_jD/D] = [C_i, C_j]D/D = 1$$
 for every $i, j \in I$ and $i \neq j$

and \mathfrak{Y} is **C**-closed. Therefore using (9) we get $C/D \in \mathfrak{Y}$. This completes the proof.

If we substitute C_0 -closed instead of C-closed in the theorem above then the proof will be correct in a similar way.

Corollary 2. If \mathfrak{X} is a $\{S, C\}$ -closed ($\{S_0, C_0\}$ -closed) class of groups then the class $L\mathfrak{X}$ is C-closed (C_0 -closed).

Proof. As for every finite cardinal number $\lambda, L_{\lambda} \leq L$ so as required. \Box

The class of locally soluble groups is C_0 -closed, while it is not N_0 closed [2, page 90]. It is easy to see that the classes of FC-groups and CC-groups are C_0 -closed but they are not N_0 -closed. Also the class of abelian groups which is C-closed, is not N-closed. The class \mathfrak{X} of groups of even powers of a prime number p is an example of D_0 -closed class of groups which is not C_0 -closed: Let G be an abelian group and $A = \langle r \rangle \oplus \langle s \rangle$, $B = \langle t \rangle \oplus \langle s \rangle$ be two \mathfrak{X} -subgroups of G such that $|r| = |s| = p^3$ and |s| = p. Then [A, B] = 1 and AB is not an \mathfrak{X} -group. Hence \mathfrak{X} is not C_0 -closed, while it is obviously D_0 -closed.

Proof of Theorem 2. Since M is a CF-maximal \mathfrak{X} -subgroup of G, so G = MZ(G). By assumption, Z(G) is an \mathfrak{X} -group and \mathfrak{X} is C_0 -closed, hence G is an \mathfrak{X} -group. This proves (1).

Since any given group G is an extension of itself by the trivial group, thus if $G \in \mathfrak{X}$ then $G \in \mathfrak{XP}$ for the class of groups \mathfrak{Y} . Hence $\mathfrak{A} \leq \mathfrak{XP}$. On the other hand, \mathfrak{Y} is H-closed and using Theorem 3, the class \mathfrak{XP} is C_0 -closed. Using part (1) if M is a CF-maximal \mathfrak{XP} -subgroup of G then G is an \mathfrak{XP} -group.

Acknowledgment

This research was supported in part by NSERC discovery grant.

References

- [1] B. Amberg, *Infinite factorized groups*, In Group-Korea 1988 Proceeding, Lecture Notes in Mathematics 1398, Springer, Berlin.
- [2] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Vol 1 and 2, Springer-Verlag, Berlin 1972.

CONTACT INFORMATION

V. Dabbaghian	MoCSSy Program, The IRMACS Centre, Si-
	mon Fraser University, Burnaby V5A 1S6,
	Canada
	E-Mail: vdabbagh@sfu.ca

Received by the editors: 15.12.2009 and in final form 25.02.2011.