A sequence of factorizable subgroups

Vahid Dabbaghian

Communicated by V. I. Sushchansky

Abstract. Let G be a non-abelian non-simple group. In this article the group G such that $G=M C_{G}(M)$ will be studied, where M is a proper maximal subgroup of G and $C_{G}(M)$ is the centralizer of M in G.

1. Introduction

Let G be a group, and let M and N be two subgroups of G. The group G is called central factorizable if G can be written as the central product of the subgroups M and N. In this case we say M and N are $C F$-subgroups of G (Central Factorizer subgroup), and we have

$$
\begin{equation*}
G / M \cap N \cong G / M \oplus G / N \tag{1}
\end{equation*}
$$

Since $M \subseteq C_{G}(N)$ and $N \subseteq C_{G}(M)$, so $G=M C_{G}(M)=N C_{G}(N)$ are the other representations of the central factorizability of G. Therefore M is a CF-subgroup of G whenever $G=M C_{G}(M)$. One notes that every CF-subgroup is normal, hence simple groups are the first example of groups without any proper CF-subgroups. Clearly every subgroup of an abelian group is a CF-subgroup.

We are interested to the case that M and $C_{G}(M)$ are proper subgroups. Thus if M is a proper maximal subgroup of G such that $Z(G) \not \subset M$, then M is a CF-subgroup (CF-maximal subgroup). Indeed, if $Z(G) \not \subset \Phi(G)$, the Frattini subgroup of G, then G contains a CF-maximal subgroup.

2000 Mathematics Subject Classification: 20E28; $20 F 14$.
Key words and phrases: central product, maximal subgroup, sequence of subgroups.

Definition 1. Let $\mathcal{S}=\left\{G_{n}\right\}$ be a sequence of subgroups of G, indexed by the non negative integers. We call \mathcal{S} a $C F$-sequence of G if

1. $G_{0}=G$,
2. $G_{n}=G_{m} Z\left(G_{n}\right)$ for all $m>n$ and
3. G_{n+1} is a proper maximal subgroup of G_{n}.

According to this definition, G_{n} is a non-abelian non-simple group for every n, and G_{m} is a CF-subgroup of G_{n} for all $m>n$.

Let n be a positive integer and $n=p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}$ be the prime decomposition of n. Define

$$
\Omega(n)=\sum_{i=1}^{t} \alpha_{i}
$$

$\Omega(1)=0$ and $\Omega(\infty)=\infty$. Let $D(G)=Z(G) \cap \Phi(G)$ and

$$
\Omega_{G}=\Omega([Z(G): D(G)])
$$

where $[Z(G): D(G)]$ denotes the index of $D(G)$ in $Z(G)$. We prove the following theorem.

Theorem 1. If G is a group and $\Phi(H) \subset \Phi(G)$ for every normal subgroup H with finite index, then G has a CF-sequence of length Ω_{G}.

In the final section we extend this work to abstract classes of groups by defining two closure operations $\boldsymbol{C}_{\mathbf{0}}$ and \boldsymbol{C}, finite central product and (infinite) central product, respectively. In particular we prove,

Theorem 2. Let \mathfrak{A} be the class of abelian groups, and \mathfrak{X} and \mathfrak{Y} two \boldsymbol{C}_{0}-closed classes of groups such that $\mathfrak{A} \leq \mathfrak{X}$. Let G be a group and M a CF-maximal subgroup of G.

1. If M is an \mathfrak{X}-group then so is G.
2. If \mathfrak{Y} is \boldsymbol{H}-closed and M is an $\mathfrak{X Y}$-group then G is an $\mathfrak{X Y}$-group.

2. Upper central series of a CF-sequence

Let $\mathcal{S}=\left\{G_{n}\right\}$ be a CF-sequence of a group G. In this section we study the upper central series of the terms of \mathcal{S} and we extend it to their lower central and derived series.

Lemma 1. Let M be a CF-subgroup of G and $C=C_{G}(M)$. Then

1. $G / Z(G) \cong M / Z(M) \oplus C / Z(C)$,
2. $G / Z(M) \cong G / M \oplus M / Z(M)$ and
3. $C=Z(G)$ if M is maximal.

Proof. Since M and C are CF-subgroups, $Z(M) \subseteq Z(G)$ and $Z(C) \subseteq$ $Z(G)$. Thus $Z(M)=M \cap Z(G)$ and $Z(C)=C \cap Z(G)=Z(G)$. Using equation (1) and $M \cap C=Z(M)$ we have

$$
\begin{gathered}
G / Z(G) \cong M Z(G) / Z(G) \oplus C / Z(G) \cong M / Z(M) \oplus C / Z(C) \\
G / Z(M) \cong M / Z(M) \oplus C / Z(M)
\end{gathered}
$$

and

$$
G / M \cong C / Z(M)
$$

Hence

$$
G / Z(M) \cong G / M \oplus M / Z(M)
$$

Since $M \subseteq C_{G}(C)$, if M is maximal then $C_{G}(C)=M$ or $C_{G}(C)=G$. If $M=C_{G}(C)$ then $Z(M)=M \cap C=C_{G}(C) \cap C=Z(C)$ and $G / M \cong$ $C / Z(C)$. This implies the index of $Z(C)$ in C is a prime and C is abelian, which is a contradiction. Hence $C_{G}(C)=G$ and $C=Z(G)$.

From the part (3) of Lemma 1 we have

$$
\begin{align*}
& G / Z(G) \cong M / Z(M) \tag{2}\\
& G / M \cong Z(G) / Z(M) \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
G / Z(M) \cong M / Z(M) \oplus Z(G) / Z(M) \tag{4}
\end{equation*}
$$

Also M is a CF-maximal subgroup of G if and only if $Z(G) \not \subset M$. Therefore, the necessary and sufficient condition for G to contain a CF-maximal subgroup is $Z(G) \not \subset \Phi(G)$. Thus when the centre of G is trivial, G has no CF-maximal subgroups.

The following proposition is a generalization of Lemma 1 for terms of the upper central series of members of a CF-sequence $\left\{G_{n}\right\}$. For simplicity we denote $Z_{n}=Z\left(G_{n}\right)$ and $Z_{\alpha, n}=Z_{\alpha}\left(G_{n}\right)$, the α-th term of the upper central series of G_{n} for each α and n.

Proposition 1. Let $\left\{G_{n}\right\}$ be a CF-sequence of G. Then for every m and n that $m>n$, and each α, we have

1. $G_{m} \cap Z_{\alpha, n}=Z_{\alpha, m}$,
2. $G_{n} / G_{m} \cong Z_{\alpha, n} / Z_{\alpha, m}$,
3. $G_{n} / Z_{\alpha, n} \cong G_{m} / Z_{\alpha, m}$ and
4. $G_{n} / Z_{\alpha, m} \cong G_{m} / Z_{\alpha, m} \oplus Z_{n} / Z_{m}$.

Proof. Let $m=n+k$. We prove it by induction on k and α. Let $\alpha=1$. If $k=1$ then G_{n+1} is a CF-maximal subgroup of G_{n} and equations (2), (3) and (4) result it. Suppose the proposition is correct for $k-1$, then $Z_{n+k-1}=G_{n+k-1} \cap Z_{n}$ and $Z_{n+k-1} \subseteq Z_{n}$. Since $Z_{n+k} \subseteq Z_{n+k-1}$ so $Z_{n+k} \subseteq G_{n+k-1} \cap Z_{n}$. By assumption $G_{n}=G_{n+k} Z_{n}$, thus $G_{n+k} \cap Z_{n} \subseteq$ $G_{n+k} \cap C_{G_{n}}\left(G_{n_{k}}\right)=Z_{n+k}$ and we get $G_{n+k} \cap Z_{n}=Z_{n+k}$, which is

$$
\begin{equation*}
G_{m} \cap Z_{n}=Z_{m} \tag{5}
\end{equation*}
$$

Hence

$$
Z_{n} / Z_{m}=Z_{n} / G_{m} \cap Z_{n} \cong G_{m} Z_{n} / G_{m}=G_{n} / G_{m}
$$

and

$$
G_{m} / Z_{m}=G_{m} / G_{m} \cap Z_{n} \cong G_{m} Z_{n} / Z_{n}=G_{n} / Z_{n}
$$

Using equations (1) and (5) we have

$$
G_{n} / Z_{m} \cong G_{m} / Z_{m} \oplus Z_{n} / Z_{m}
$$

This completes the induction on k.
Let the above conclusions be correct for $\alpha-1$ and $G_{n} / Z_{\alpha-1, n} \cong$ $G_{m} / Z_{\alpha-1, m}$. Since the groups of inner automorphisms of two isomorphic groups are isomorphic, so (3) as required.

Now we show $G_{m} \cap Z_{\alpha, n}=Z_{\alpha, m}$. Since $\left\{G_{n}\right\}$ is a CF-sequence, we have $G_{n}=G_{m} Z_{n}=G_{m} Z_{\alpha, n}$, thus

$$
G_{n} / Z_{\alpha, n} \cong G_{m} / G_{m} \cap Z_{\alpha, n}
$$

and using part (3)

$$
G_{m} / Z_{\alpha, m} \cong G_{m} / G_{m} \cap Z_{\alpha, n}
$$

Therefore, it is enough to show $G_{m} \cap Z_{\alpha, n} \subseteq Z_{\alpha, m}$ or

$$
\left(G_{m} \cap Z_{\alpha, n}\right) / Z_{\alpha-1, m} \subseteq Z\left(G_{m} / Z_{\alpha-1, m}\right)=Z_{\alpha, m} / Z_{\alpha-1, m}
$$

Let $x Z_{\alpha-1, m} \in\left(G_{m} \cap Z_{\alpha, n}\right) / Z_{\alpha-1, m}$ and $y Z_{\alpha-1, m} \in G_{m} / Z_{\alpha-1, m}$, where $x \in G_{m} \cap Z_{\alpha, n}, y \in G_{m}$ and $x, y \notin Z_{\alpha-1, m}$. Since $x \in G_{m}$ and

$$
\begin{equation*}
G_{m} \cap Z_{\alpha-1, n}=Z_{\alpha-1, m} \tag{6}
\end{equation*}
$$

we have $x \notin Z_{\alpha-1, n}$ and $x Z_{\alpha-1, n} \in Z_{\alpha, n} / Z_{\alpha-1, n}=Z\left(G_{n} / Z_{\alpha-1, n}\right)$. Also from $y \in G_{m} \subseteq G_{n}$ and equation (6) we have $y \notin Z_{\alpha-1, n}$ and $y Z_{\alpha-1, n} \in$ $G_{n} / Z_{\alpha-1, n}$. This proves

$$
x y Z_{\alpha-1, n}=y x Z_{\alpha-1, n} .
$$

If $x y Z_{\alpha-1, m} \neq y x Z_{\alpha-1, m}$ then $x y x^{-1} y^{-1} \notin Z_{\alpha-1, m}$. Since $x y x^{-1} y^{-1} \in$ G_{m} so $x y x^{-1} y^{-1} \notin Z_{\alpha-1, n}$, which is a contradiction. Thus $G_{m} \cap Z_{\alpha, n} \subseteq$ $Z_{\alpha, m}$ and (1) as required.

Using part (1)

$$
Z_{\alpha, n} / Z_{\alpha, m}=Z_{\alpha, n} / G_{m} \cap Z_{\alpha, n} \cong G_{m} Z_{\alpha, n} / G_{m}=G_{n} / G_{m}
$$

which results part (2).
Finally by equation (1) and $G_{m} \cap Z_{n} \subseteq Z_{\alpha, m}=G_{m} \cap Z_{\alpha, n}$ we get

$$
G_{n} / Z_{\alpha, m}=G_{m} / Z_{\alpha, m} \oplus Z_{n} Z_{\alpha, m} / Z_{\alpha, m} \cong G_{m} / Z_{\alpha, m} \oplus Z_{n} / Z_{m}
$$

This implies part (4).

If $G=M N$ is a central factorizable group, then it is easy to prove

$$
\begin{aligned}
& Z_{k}(G)=Z_{k}(M) Z_{k}(N), \\
& \gamma_{k}(G)=\gamma_{k}(M) \gamma_{k}(N),
\end{aligned}
$$

and

$$
G^{(k)}=M^{(k)} N^{(k)}
$$

where $Z_{k}(G), \gamma_{k}(G)$ and $G^{(k)}$ are k-th term of the upper, lower and derived series of G, respectively. Hence if $\left\{G_{n}\right\}$ is a CF-sequence of G then for each $m>n$,

1. $Z_{k}\left(G_{n}\right)=Z_{k}\left(G_{m}\right) Z(G)$ when $k \geq 1$,
2. $G_{n}^{(k)}=G_{m}^{(k)}$ when $k \geq 1$ and
3. $\gamma_{k}\left(G_{n}\right)=\gamma_{k}\left(G_{m}\right)$ when $k \geq 2$.

In particular, if G is nilpotent then $\operatorname{cl}(G)=\operatorname{cl}\left(G_{n}\right)$, and if G is soluble then $d(G)=d\left(G_{n}\right)$ for each n, where $c l(G)$ and $d(G)$ are nilpotency class and defect of a given group G, respectively.

3. Groups with a CF-sequence

Proof of Theorem 1. Case I) $\Omega_{G}=0$. In this case $Z(G) \subseteq \Phi(G)$ and G has no CF-maximal subgroup. Thus G has no CF-sequences.
Case II) $\Omega_{G}=\infty$. Let $G_{0}=G$. Then $Z\left(G_{0}\right)$ has infinite order. Since $\Omega_{G_{0}}=\infty, Z\left(G_{0}\right) \nsubseteq \Phi\left(G_{0}\right)$. In this case there exist a CF-maximal subgroup G_{1} of G_{0} such that $G_{0}=G_{1} Z\left(G_{0}\right)$ and $G_{0} / G_{1} \cong Z\left(G_{0}\right) / Z\left(G_{1}\right)$. Hence $\left[Z\left(G_{0}\right): Z\left(G_{1}\right)\right]$ is prime and $Z\left(G_{1}\right)$ has infinite order. Since G_{1} is normal in G_{0} and has a finite index, $\Phi\left(G_{1}\right) \subseteq \Phi\left(G_{0}\right)$. Thus $\Omega_{G_{1}}=\infty$ and $Z\left(G_{1}\right) \nsubseteq \Phi\left(G_{1}\right)$. So there exists a CF-maximal subgroup G_{2} of G_{1} such that $G_{1}=G_{2} Z\left(G_{1}\right),\left[G_{1}: G_{2}\right]=\left[Z\left(G_{1}\right): Z\left(G_{2}\right)\right]$ is prime, and $Z\left(G_{2}\right)$ has infinite order. If $G_{0}=G_{1} Z(G)=G_{2} Z\left(G_{1}\right) Z(G)$ then $G_{0}=G_{2} Z(G)$, G_{2} is normal in G_{0} and $\left[G_{0}: G_{2}\right]=\left[Z\left(G_{0}\right): Z\left(G_{1}\right)\right]\left[Z\left(G_{1}\right): Z\left(G_{2}\right)\right]<\infty$. Hence $\Phi\left(G_{2}\right) \subseteq \Phi\left(G_{0}\right)$ and $\Omega_{G_{2}}=\infty$. This procedure gives an infinite sequence $\left\{G_{n}\right\}$ of subgroups of G such that $G_{0}=G$ and

$$
\begin{equation*}
G_{n}=G_{n-1} Z\left(G_{n}\right) \tag{7}
\end{equation*}
$$

We show $G_{n}=G_{m} Z\left(G_{n}\right)$ for $m>n$. Let $m=n+k$. We prove it by induction on k. For $k=1$ it is (7). Let $G_{n}=G_{n+k-1} Z\left(G_{n}\right)$. Since $G_{n+k-1}=G_{n+k} Z\left(G_{n+k-1}\right), G_{n}=G_{n+k} Z\left(G_{n+k-1}\right) Z\left(G_{n}\right)$ and $Z\left(G_{n+k-1}\right) \subseteq Z\left(G_{n}\right)$. Thus $G_{n}=G_{n+k} Z\left(G_{n}\right)$ and the induction is completed. This shows $\left\{G_{n}\right\}$ is an infinite CF-sequence.
Case III) $0<\Omega_{G}<\infty$. Let $G_{0}=G$. Since $\Omega_{G}>0$, thus $Z\left(G_{0}\right) \not \subset$ $\Phi\left(G_{0}\right)$ and there exists a CF-maximal subgroup G_{1} of G_{0} such that $G_{0}=$ $G_{1} Z\left(G_{0}\right)$, and $\left[G_{0}: G_{1}\right]=\left[Z\left(G_{0}\right): Z\left(G_{1}\right)\right]$ is a prime. So $\Omega\left(\left|Z\left(G_{1}\right)\right|\right)=$ $\Omega\left(\left|Z\left(G_{0}\right)\right|\right)-1$. On the other hand G_{1} is normal in G_{0}. Therefore $\Phi\left(G_{1}\right) \subseteq$ $\Phi\left(G_{0}\right)$. If $Z\left(G_{1}\right) \subset \Phi\left(G_{0}\right)$ then $\Omega_{G_{0}}=\left[Z\left(G_{0}\right): D\left(G_{0}\right)\right]=1$ and

$$
G_{1} \leq G_{0}
$$

is a CF-sequence of G. Otherwise, $Z\left(G_{1}\right) \nsubseteq \Phi\left(G_{1}\right)$ and there is a CFmaximal subgroup G_{2} of G_{1} of prime index such that $G_{1}=G_{2} Z\left(G_{1}\right)$. Hence $G_{0}=G_{2} Z\left(G_{0}\right), G_{2} \triangleleft G_{0}, \Phi\left(G_{2}\right) \subset \Phi\left(G_{0}\right)$ and $\Omega\left(\left|Z\left(G_{2}\right)\right|\right)=$ $\Omega\left(\left|Z\left(G_{0}\right)\right|\right)-2$. Since $\Omega_{G_{0}}$ is finite, after a finite steps we obtain a CFmaximal subgroup G_{l} of G_{l-1} of prime index such that $G_{l-1}=G_{l} Z\left(G_{l-1}\right)$, $\Omega\left(\left|Z\left(G_{l}\right)\right|\right)=\Omega\left(\left|Z\left(G_{0}\right)\right|\right)-l$ and $Z\left(G_{l}\right) \subseteq \Phi\left(G_{0}\right)$. Hence $\Omega_{G}=l$ is the length of the sequence

$$
G_{l} \leq G_{l-1} \leq \cdots \leq G_{1} \leq G_{0}=G
$$

where

$$
G_{n}=G_{n+1} Z\left(G_{n}\right) \quad \text { for } \quad 1 \leq n \leq \Omega_{G}
$$

Now it is easy to see that

$$
G_{n}=G_{m} Z\left(G_{n}\right) \text { for } 1 \leq n<m \leq \Omega_{G}
$$

This completes the proof.
Recall a group G is called with max if each non-empty set of subgroups of G has a maximal element.

Corollary 1. If G is with max then G has a CF-sequence of length Ω_{G}.
Proof. If G is with max then every subgroup of G is finitely generated and $\Phi(H) \subseteq \Phi(G)$ for every normal subgroup H of G.

The most well known classes of groups with max are finitely generated nilpotent groups and polycyclic groups. Therefore, using Theorem 1 and Corollary 1, each finitely generated nilpotent group and polycyclic group has a CF-sequence of length Ω_{G}. As we showed in section 2 , when G is a finitely generated group then each term of its CF-sequence is nilpotent of class $\operatorname{cl}(G)$. Similarly, when G is a polycyclic group then each term of its CF-sequence is soluble with defect $d(G)$.

4. On abstract classes of groups

In this section we generalize some senses of pervious sections and discuss about the invariant properties by the central product. Suppose A and B are two subgroups of a group G such that $[A, B]=1$. Then the central product $A B$ is a subgroup of G. It is also correct for $\prod_{i \in I} C_{i}$ where $\left\{G_{i}\right\}_{i \in I}$ is a collection of distinct subgroups of G, such that $\left[G_{i}, G_{j}\right]=1$ for $i \neq j$. Our interest is the cases that $A B$ and $\prod_{i \in I} C_{i}$ are \mathfrak{X}-groups, whenever A, B and every C_{i} are \mathfrak{X}-groups for an abstract class of groups \mathfrak{X}.

Let \mathfrak{X} be a class of groups. We say the class \mathfrak{X} is closed under taking finite central product, or $\boldsymbol{C}_{\mathbf{0}}$-closed, if C_{1}, C_{2} are the \mathfrak{X}-subgroups of G such that $\left[G_{1}, G_{2}\right]=1$ and $C_{1} C_{2}$ is a \mathfrak{X}-subgroup of G. Similarly \mathfrak{X} is \boldsymbol{C}-closed or central product closed, if $\prod_{i \in I} C_{i}$, the (central) product of the subgroups C_{i}, is an \mathfrak{X}-group, for a collection $\left\{G_{i}\right\}_{i \in I}$ of distinct \mathfrak{X}-subgroups of G. It is easy to see that $\boldsymbol{C}_{\mathbf{0}}$ and \boldsymbol{C} are two closure operations.

By definition, the class of abelian groups is \boldsymbol{C}-closed (and so $\boldsymbol{C}_{\mathbf{0}}$-closed). It is proved that if \mathfrak{X} is a $\{\boldsymbol{S}, \boldsymbol{H}, \boldsymbol{P}\}$-closed class of groups and $G=A B$ is a group, which is the product of \mathfrak{X}-groups A and B, then G is an \mathfrak{X}-group, whenever one of them, A or B, are subnormal in $G[1]$. Since in the central product $A B$ both of A and B are normal in G, thus every abstract class of groups \mathfrak{X} which is $\{\boldsymbol{S}, \boldsymbol{H}, \boldsymbol{P}\}$-closed, is $\boldsymbol{C}_{\mathbf{0}}$-closed.

Proposition 2.

1. $D_{0} \leq C_{0} \leq N_{0}$.
2. $D \leq C \leq N$.

Proof. It is enough to prove (2) then (1) is clear. Let \mathfrak{X} be an \boldsymbol{N}-closed class of groups and $\left\{G_{i}\right\}_{i \in I}$ be a collection of distinct \mathfrak{X}-subgroups C_{i} of G such that $\left[C_{i}, C_{j}\right]=1$ for $i \neq j$. Since C_{i} is normal in $C=\prod_{i \in I} C_{i}$, thus $C \in \mathfrak{X}$ and this requires \mathfrak{X} is \boldsymbol{C}-closed. If $C_{i} \cap C_{j}=1$ for every $i, j \in I$, which $i \neq j$, then $C=D r_{i \in I} C_{i}$. This implies \mathfrak{X} is \boldsymbol{D}-closed.

As a corollary, the class of nilpotent groups is $N_{0^{-}}$closed, so is $\boldsymbol{C}_{0^{-}}$ closed. Also by [2, page 34], the class of periodic groups is \boldsymbol{N}-closed, which is \boldsymbol{C}-closed. In the following theorem we obtain some new \boldsymbol{C}-closed classes of groups.

Theorem 3. Let \mathfrak{X} and \mathfrak{Y} be two \boldsymbol{C}-closed abstract classes of groups.

1. If \mathfrak{X} is \boldsymbol{S}-closed then $\boldsymbol{L}_{\boldsymbol{\lambda}} \mathfrak{X}$ is \boldsymbol{C}-closed for every cardinal number λ.
2. If \mathfrak{Y} is \boldsymbol{H}-closed then $\mathfrak{X Y}$ is \boldsymbol{C}-closed.

The class $\boldsymbol{L}_{\boldsymbol{\lambda}} \mathfrak{X}$ is defined to consist of all groups G in which every subset of cardinality at most λ is contained in a \mathfrak{X}-subgroup of G, for a cardinal number λ. Before the proof of Theorem 3, we refer to this fact that, if H and K are two subgroups of G and $N \triangleleft G$ then

$$
\begin{equation*}
[H N / N, K N / N]=[H, K] N / N . \tag{8}
\end{equation*}
$$

Proof of Theorem 3. Let $\left\{G_{i}\right\}_{i \in I}$ be a collection of distinct subgroups of G such that $\left[C_{i}, C_{j}\right]=1$ for $i, j \in I$ and $i \neq j$. Let C_{i} be an $\boldsymbol{L}_{\boldsymbol{\lambda}} \mathfrak{X}$-group for each $i \in I$. We show the central product $C=\prod_{i \in I} C_{i}$ is also an $\boldsymbol{L}_{\boldsymbol{\lambda}} \mathfrak{X}$-group.

Suppose $X=\left\langle x_{k} \mid k \in K\right\rangle$ is a subgroup of C, generated by elements x_{k} for $k \in K$, where K is an index set with cardinal number at most λ. As $x_{k} \in C$ and $\left[C_{i}, C_{j}\right]=1$ for $i \neq j$, we can write down $x_{k}=c_{k_{1}} \cdots c_{k_{t}}$, where $c_{k_{i}} \in C_{k_{i}}$ and $k_{i} \neq k_{j}$ for $1 \leq i \neq j \leq t$. Let $C_{k_{i}}^{*}$ be the subgroup of $C_{k_{i}}$ generated by all elements $c_{k_{i}}$ of $C_{k_{i}}$ which appear in the representation of x_{k}. Then it is clear that for every $k_{i} \in I, C_{k_{i}}^{*}$ has the cardinal number at most λ and so it is an \mathfrak{X}-group. But \mathfrak{X} is \boldsymbol{C}-closed class of groups and $\left[C_{k_{i}}^{*}, C_{k_{j}}^{*}\right]=1$ for $k_{i}, k_{j} \in I$ and $k_{i} \neq k_{j}$. Hence the central product $C^{*}=\prod_{k \in I} C_{k_{i}}^{*}$ is an \mathfrak{X}-group. Since \mathfrak{X} is \boldsymbol{S}-closed, it is enough to show $X \leq C^{*}$.

Let x be an element of X. Then x is a product of some generated elements x_{k}. Since for every pair elements $c_{k_{i}}$ and $c_{k_{j}}$ that $k_{i} \neq k_{j}$,
$\left[c_{k_{i}}, c_{k_{j}}\right]=1$, thus we can write x as a product of elements $c_{k_{i}}$ such that no pair of them belongs to the same C_{i}. This implies $x \in C^{*}$.

Let $C_{i} \in \mathfrak{X Y}$ for every $i \in I$. Then there exists a normal subgroup D_{i} in C_{i} such that $D_{i} \in \mathfrak{X}$ and $C_{i} / D_{i} \in \mathfrak{Y}$. As \mathfrak{X} is \boldsymbol{C}-closed and $\left[D_{i}, D_{j}\right]=1$ for $i \neq j$, the central product $D=\prod_{i \in I} D_{i}$ is a normal subgroup of C and $D \in \mathfrak{X}$. Now it is enough to show $C / D \in \mathfrak{Y}$. We have

$$
\begin{gather*}
C / D=\left(\prod_{i \in I} C_{i}\right) / D=\prod_{i \in I}\left(C_{i} D / D\right) \cong \prod_{i \in I}\left(C_{i} /\left(C_{i} \cap D\right)\right) \tag{9}\\
C_{i} /\left(C_{i} \cap D\right) \cong\left(C_{i} / D_{i}\right) /\left(\left(C_{i} \cap D\right) / D_{i}\right)
\end{gather*}
$$

and \mathfrak{Y} is \boldsymbol{H}-closed, thus $C_{i} /\left(C_{i} \cap D\right)$, which is the homomorphic image of C_{i} / D_{i}, is a \mathfrak{Y}-group. On the other hand, by equation (8)

$$
\left[C_{i} D / D, C_{j} D / D\right]=\left[C_{i}, C_{j}\right] D / D=1 \text { for every } i, j \in I \text { and } i \neq j
$$

and \mathfrak{Y} is \boldsymbol{C}-closed. Therefore using (9) we get $C / D \in \mathfrak{Y}$. This completes the proof.

If we substitute $\boldsymbol{C}_{\mathbf{0}}$-closed instead of \boldsymbol{C}-closed in the theorem above then the proof will be correct in a similar way.

Corollary 2. If \mathfrak{X} is a $\{\boldsymbol{S}, \boldsymbol{C}\}$-closed ($\left\{\boldsymbol{S}_{\mathbf{0}}, \boldsymbol{C}_{\mathbf{0}}\right\}$-closed) class of groups then the class $\boldsymbol{L} \mathfrak{X}$ is \boldsymbol{C}-closed ($\boldsymbol{C}_{\mathbf{0}}$-closed).

Proof. As for every finite cardinal number $\lambda, \boldsymbol{L}_{\boldsymbol{\lambda}} \leq \boldsymbol{L}$ so as required.
The class of locally soluble groups is $\boldsymbol{C}_{0^{-}}$-closed, while it is not $\boldsymbol{N}_{0^{-}}$ closed [2, page 90]. It is easy to see that the classes of FC-groups and CC-groups are \boldsymbol{C}_{0}-closed but they are not \boldsymbol{N}_{0}-closed. Also the class of abelian groups which is \boldsymbol{C}-closed, is not \boldsymbol{N}-closed. The class \mathfrak{X} of groups of even powers of a prime number p is an example of \boldsymbol{D}_{0}-closed class of groups which is not \boldsymbol{C}_{0}-closed: Let G be an abelian group and $A=\langle r\rangle \oplus\langle s\rangle$, $B=\langle t\rangle \oplus\langle s\rangle$ be two \mathfrak{X}-subgroups of G such that $|r|=|s|=p^{3}$ and $|s|=p$. Then $[A, B]=1$ and $A B$ is not an \mathfrak{X}-group. Hence \mathfrak{X} is not \boldsymbol{C}_{0}-closed, while it is obviously D_{0}-closed.

Proof of Theorem 2. Since M is a CF-maximal \mathfrak{X}-subgroup of G, so $G=$ $M Z(G)$. By assumption, $Z(G)$ is an \mathfrak{X}-group and \mathfrak{X} is \boldsymbol{C}_{0}-closed, hence G is an \mathfrak{X}-group. This proves (1).

Since any given group G is an extension of itself by the trivial group, thus if $G \in \mathfrak{X}$ then $G \in \mathfrak{X Y}$ for the class of groups \mathfrak{Y}. Hence $\mathfrak{A} \leq \mathfrak{X Y}$. On the other hand, \mathfrak{Y} is \boldsymbol{H}-closed and using Theorem 3, the class $\mathfrak{X Y}$ is \boldsymbol{C}_{0}-closed. Using part (1) if M is a CF-maximal $\mathfrak{X Y}$-subgroup of G then G is an $\mathfrak{X Y}$-group.

Acknowledgment

This research was supported in part by NSERC discovery grant.

References

[1] B. Amberg, Infinite factorized groups, In Group-Korea 1988 Proceeding, Lecture Notes in Mathematics 1398, Springer, Berlin.
[2] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Vol 1 and 2, Springer-Verlag, Berlin 1972.

Contact information

V. Dabbaghian MoCSSy Program, The IRMACS Centre, Simon Fraser University, Burnaby V5A 1S6, Canada
E-Mail: vdabbagh@sfu.ca

Received by the editors: 15.12.2009
and in final form 25.02.2011.

