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Abstract. Let G be a non-abelian non-simple group. In

this article the group G such that G = MCG(M) will be studied,

where M is a proper maximal subgroup of G and CG(M) is the

centralizer of M in G.

1. Introduction

Let G be a group, and let M and N be two subgroups of G. The group G
is called central factorizable if G can be written as the central product of
the subgroups M and N . In this case we say M and N are CF-subgroups

of G (Central Factorizer subgroup), and we have

G/M ∩N ∼= G/M ⊕G/N. (1)

Since M ⊆ CG(N) and N ⊆ CG(M), so G = MCG(M) = NCG(N)
are the other representations of the central factorizability of G. Therefore
M is a CF-subgroup of G whenever G = MCG(M). One notes that every
CF-subgroup is normal, hence simple groups are the first example of
groups without any proper CF-subgroups. Clearly every subgroup of an
abelian group is a CF-subgroup.

We are interested to the case that M and CG(M) are proper subgroups.
Thus if M is a proper maximal subgroup of G such that Z(G) 6⊂ M , then
M is a CF-subgroup (CF-maximal subgroup). Indeed, if Z(G) 6⊂ Φ(G),
the Frattini subgroup of G, then G contains a CF-maximal subgroup.
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Definition 1. Let S = {Gn} be a sequence of subgroups of G, indexed
by the non negative integers. We call S a CF-sequence of G if

1. G0 = G,

2. Gn = GmZ(Gn) for all m > n and

3. Gn+1 is a proper maximal subgroup of Gn.

According to this definition, Gn is a non-abelian non-simple group for
every n, and Gm is a CF-subgroup of Gn for all m > n.

Let n be a positive integer and n = pα1

1 . . . pαt
t be the prime decompo-

sition of n. Define

Ω(n) =

t∑

i=1

αi,

Ω(1) = 0 and Ω(∞) = ∞. Let D(G) = Z(G) ∩ Φ(G) and

ΩG = Ω([Z(G) : D(G)]),

where [Z(G) : D(G)] denotes the index of D(G) in Z(G). We prove the
following theorem.

Theorem 1. If G is a group and Φ(H) ⊂ Φ(G) for every normal subgroup
H with finite index, then G has a CF-sequence of length ΩG.

In the final section we extend this work to abstract classes of groups
by defining two closure operations C0 and C, finite central product and
(infinite) central product, respectively. In particular we prove,

Theorem 2. Let A be the class of abelian groups, and X and Y two
C0-closed classes of groups such that A ≤ X. Let G be a group and M a
CF-maximal subgroup of G.

1. If M is an X-group then so is G.

2. If Y is H-closed and M is an XY-group then G is an XY-group.

2. Upper central series of a CF-sequence

Let S = {Gn} be a CF-sequence of a group G. In this section we study
the upper central series of the terms of S and we extend it to their lower
central and derived series.

Lemma 1. Let M be a CF-subgroup of G and C = CG(M). Then

1. G/Z(G) ∼= M/Z(M)⊕ C/Z(C),
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2. G/Z(M) ∼= G/M ⊕M/Z(M) and

3. C = Z(G) if M is maximal.

Proof. Since M and C are CF-subgroups, Z(M) ⊆ Z(G) and Z(C) ⊆
Z(G). Thus Z(M) = M ∩ Z(G) and Z(C) = C ∩ Z(G) = Z(G). Using
equation (1) and M ∩ C = Z(M) we have

G/Z(G) ∼= MZ(G)/Z(G)⊕ C/Z(G) ∼= M/Z(M)⊕ C/Z(C),

G/Z(M) ∼= M/Z(M)⊕ C/Z(M)

and

G/M ∼= C/Z(M).

Hence

G/Z(M) ∼= G/M ⊕M/Z(M).

Since M ⊆ CG(C), if M is maximal then CG(C) = M or CG(C) = G.
If M = CG(C) then Z(M) = M ∩ C = CG(C) ∩ C = Z(C) and G/M ∼=
C/Z(C). This implies the index of Z(C) in C is a prime and C is abelian,
which is a contradiction. Hence CG(C) = G and C = Z(G).

From the part (3) of Lemma 1 we have

G/Z(G) ∼= M/Z(M), (2)

G/M ∼= Z(G)/Z(M) (3)

and

G/Z(M) ∼= M/Z(M)⊕ Z(G)/Z(M). (4)

Also M is a CF-maximal subgroup of G if and only if Z(G) 6⊂ M . Therefore,
the necessary and sufficient condition for G to contain a CF-maximal
subgroup is Z(G) 6⊂ Φ(G). Thus when the centre of G is trivial, G has no
CF-maximal subgroups.

The following proposition is a generalization of Lemma 1 for terms of
the upper central series of members of a CF-sequence {Gn}. For simplicity
we denote Zn = Z(Gn) and Zα,n = Zα(Gn), the α-th term of the upper
central series of Gn for each α and n.

Proposition 1. Let {Gn} be a CF-sequence of G. Then for every m and
n that m > n, and each α, we have

1. Gm ∩ Zα,n = Zα,m,

2. Gn/Gm
∼= Zα,n/Zα,m,
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3. Gn/Zα,n
∼= Gm/Zα,m and

4. Gn/Zα,m
∼= Gm/Zα,m ⊕ Zn/Zm.

Proof. Let m = n+ k. We prove it by induction on k and α. Let α = 1.
If k = 1 then Gn+1 is a CF-maximal subgroup of Gn and equations (2),
(3) and (4) result it. Suppose the proposition is correct for k − 1, then
Zn+k−1 = Gn+k−1 ∩ Zn and Zn+k−1 ⊆ Zn. Since Zn+k ⊆ Zn+k−1 so
Zn+k ⊆ Gn+k−1 ∩ Zn. By assumption Gn = Gn+kZn, thus Gn+k ∩ Zn ⊆
Gn+k ∩ CGn(Gnk

) = Zn+k and we get Gn+k ∩ Zn = Zn+k, which is

Gm ∩ Zn = Zm. (5)

Hence

Zn/Zm = Zn/Gm ∩ Zn
∼= GmZn/Gm = Gn/Gm,

and

Gm/Zm = Gm/Gm ∩ Zn
∼= GmZn/Zn = Gn/Zn.

Using equations (1) and (5) we have

Gn/Zm
∼= Gm/Zm ⊕ Zn/Zm.

This completes the induction on k.

Let the above conclusions be correct for α − 1 and Gn/Zα−1,n
∼=

Gm/Zα−1,m. Since the groups of inner automorphisms of two isomorphic
groups are isomorphic, so (3) as required.

Now we show Gm ∩ Zα,n = Zα,m. Since {Gn} is a CF-sequence, we
have Gn = GmZn = GmZα,n, thus

Gn/Zα,n
∼= Gm/Gm ∩ Zα,n,

and using part (3)

Gm/Zα,m
∼= Gm/Gm ∩ Zα,n.

Therefore, it is enough to show Gm ∩ Zα,n ⊆ Zα,m or

(Gm ∩ Zα,n)/Zα−1,m ⊆ Z(Gm/Zα−1,m) = Zα,m/Zα−1,m.

Let xZα−1,m ∈ (Gm ∩ Zα,n)/Zα−1,m and yZα−1,m ∈ Gm/Zα−1,m, where
x ∈ Gm ∩ Zα,n, y ∈ Gm and x, y /∈ Zα−1,m. Since x ∈ Gm and

Gm ∩ Zα−1,n = Zα−1,m, (6)
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we have x /∈ Zα−1,n and xZα−1,n ∈ Zα,n/Zα−1,n = Z(Gn/Zα−1,n). Also
from y ∈ Gm ⊆ Gn and equation (6) we have y /∈ Zα−1,n and yZα−1,n ∈
Gn/Zα−1,n. This proves

xyZα−1,n = yxZα−1,n.

If xyZα−1,m 6= yxZα−1,m then xyx−1y−1 /∈ Zα−1,m. Since xyx−1y−1 ∈
Gm so xyx−1y−1 /∈ Zα−1,n, which is a contradiction. Thus Gm ∩ Zα,n ⊆
Zα,m and (1) as required.

Using part (1)

Zα,n/Zα,m = Zα,n/Gm ∩ Zα,n
∼= GmZα,n/Gm = Gn/Gm,

which results part (2).

Finally by equation (1) and Gm ∩ Zn ⊆ Zα,m = Gm ∩ Zα,n we get

Gn/Zα,m = Gm/Zα,m ⊕ ZnZα,m/Zα,m
∼= Gm/Zα,m ⊕ Zn/Zm.

This implies part (4).

If G = MN is a central factorizable group, then it is easy to prove

Zk(G) = Zk(M)Zk(N),

γk(G) = γk(M)γk(N),

and

G(k) = M (k)N (k),

where Zk(G), γk(G) and G(k) are k-th term of the upper, lower and derived
series of G, respectively. Hence if {Gn} is a CF-sequence of G then for
each m > n,

1. Zk(Gn) = Zk(Gm)Z(G) when k ≥ 1,

2. G
(k)
n = G

(k)
m when k ≥ 1 and

3. γk(Gn) = γk(Gm) when k ≥ 2.

In particular, if G is nilpotent then cl(G) = cl(Gn), and if G is soluble
then d(G) = d(Gn) for each n, where cl(G) and d(G) are nilpotency class
and defect of a given group G, respectively.
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3. Groups with a CF-sequence

Proof of Theorem 1. Case I) ΩG = 0. In this case Z(G) ⊆ Φ(G) and G
has no CF-maximal subgroup. Thus G has no CF-sequences.

Case II) ΩG = ∞. Let G0 = G. Then Z(G0) has infinite order. Since
ΩG0

= ∞,Z(G0) 6⊆ Φ(G0). In this case there exist a CF-maximal subgroup
G1 of G0 such that G0 = G1Z(G0) and G0/G1

∼= Z(G0)/Z(G1). Hence
[Z(G0) : Z(G1)] is prime and Z(G1) has infinite order. Since G1 is normal
in G0 and has a finite index, Φ(G1) ⊆ Φ(G0). Thus ΩG1

= ∞ and
Z(G1) 6⊆ Φ(G1). So there exists a CF-maximal subgroup G2 of G1 such
that G1 = G2Z(G1), [G1 : G2] = [Z(G1) : Z(G2)] is prime, and Z(G2)
has infinite order. If G0 = G1Z(G) = G2Z(G1)Z(G) then G0 = G2Z(G),
G2 is normal in G0 and [G0 : G2] = [Z(G0) : Z(G1)][Z(G1) : Z(G2)] < ∞.
Hence Φ(G2) ⊆ Φ(G0) and ΩG2

= ∞. This procedure gives an infinite
sequence {Gn} of subgroups of G such that G0 = G and

Gn = Gn−1Z(Gn). (7)

We show Gn = GmZ(Gn) for m > n. Let m = n + k. We prove
it by induction on k. For k = 1 it is (7). Let Gn = Gn+k−1Z(Gn).
Since Gn+k−1 = Gn+kZ(Gn+k−1), Gn = Gn+kZ(Gn+k−1)Z(Gn) and
Z(Gn+k−1) ⊆ Z(Gn). Thus Gn = Gn+kZ(Gn) and the induction is com-
pleted. This shows {Gn} is an infinite CF-sequence.

Case III) 0 < ΩG < ∞. Let G0 = G. Since ΩG > 0, thus Z(G0) 6⊂
Φ(G0) and there exists a CF-maximal subgroup G1 of G0 such that G0 =
G1Z(G0), and [G0 : G1] = [Z(G0) : Z(G1)] is a prime. So Ω(|Z(G1)|) =
Ω(|Z(G0)|)−1. On the other hand G1 is normal in G0. Therefore Φ(G1) ⊆
Φ(G0). If Z(G1) ⊂ Φ(G0) then ΩG0

= [Z(G0) : D(G0)] = 1 and

G1 ≤ G0

is a CF-sequence of G. Otherwise, Z(G1) 6⊆ Φ(G1) and there is a CF-
maximal subgroup G2 of G1 of prime index such that G1 = G2Z(G1).
Hence G0 = G2Z(G0), G2 ⊳ G0, Φ(G2) ⊂ Φ(G0) and Ω(|Z(G2)|) =
Ω(|Z(G0)|) − 2. Since ΩG0

is finite, after a finite steps we obtain a CF-
maximal subgroup Gl of Gl−1 of prime index such that Gl−1 = GlZ(Gl−1),
Ω(|Z(Gl)|) = Ω(|Z(G0)|) − l and Z(Gl) ⊆ Φ(G0). Hence ΩG = l is the
length of the sequence

Gl ≤ Gl−1 ≤ · · · ≤ G1 ≤ G0 = G,

where
Gn = Gn+1Z(Gn) for 1 ≤ n ≤ ΩG.
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Now it is easy to see that

Gn = GmZ(Gn) for 1 ≤ n < m ≤ ΩG.

This completes the proof.

Recall a group G is called with max if each non-empty set of subgroups
of G has a maximal element.

Corollary 1. If G is with max then G has a CF-sequence of length ΩG.

Proof. If G is with max then every subgroup of G is finitely generated
and Φ(H) ⊆ Φ(G) for every normal subgroup H of G.

The most well known classes of groups with max are finitely generated
nilpotent groups and polycyclic groups. Therefore, using Theorem 1 and
Corollary 1, each finitely generated nilpotent group and polycyclic group
has a CF-sequence of length ΩG. As we showed in section 2, when G is a
finitely generated group then each term of its CF-sequence is nilpotent of
class cl(G). Similarly, when G is a polycyclic group then each term of its
CF-sequence is soluble with defect d(G).

4. On abstract classes of groups

In this section we generalize some senses of pervious sections and discuss
about the invariant properties by the central product. Suppose A and B
are two subgroups of a group G such that [A,B] = 1. Then the central
product AB is a subgroup of G. It is also correct for

∏
i∈I Ci where {Gi}i∈I

is a collection of distinct subgroups of G, such that [Gi, Gj ] = 1 for i 6= j.
Our interest is the cases that AB and

∏
i∈I Ci are X-groups, whenever A,

B and every Ci are X-groups for an abstract class of groups X.

Let X be a class of groups. We say the class X is closed under taking
finite central product, or C0-closed, if C1,C2 are the X-subgroups of G such
that [G1, G2] = 1 and C1C2 is a X-subgroup of G. Similarly X is C-closed
or central product closed, if

∏
i∈I Ci, the (central) product of the subgroups

Ci, is an X-group, for a collection {Gi}i∈I of distinct X-subgroups of G.
It is easy to see that C0 and C are two closure operations.

By definition, the class of abelian groups is C-closed (and so C0-closed).
It is proved that if X is a {S,H, P }-closed class of groups and G = AB is
a group, which is the product of X-groups A and B, then G is an X-group,
whenever one of them, A or B, are subnormal in G [1]. Since in the central
product AB both of A and B are normal in G, thus every abstract class
of groups X which is {S,H, P }-closed, is C0-closed.
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Proposition 2.

1. D0 ≤ C0 ≤ N0.

2. D ≤ C ≤ N .

Proof. It is enough to prove (2) then (1) is clear. Let X be an N -closed
class of groups and {Gi}i∈I be a collection of distinct X-subgroups Ci of G
such that [Ci, Cj ] = 1 for i 6= j. Since Ci is normal in C =

∏
i∈I Ci, thus

C ∈ X and this requires X is C-closed. If Ci ∩ Cj = 1 for every i, j ∈ I,
which i 6= j, then C = Dri∈ICi. This implies X is D-closed.

As a corollary, the class of nilpotent groups is N0-closed, so is C0-
closed. Also by [2, page 34], the class of periodic groups is N -closed, which
is C-closed. In the following theorem we obtain some new C-closed classes
of groups.

Theorem 3. Let X and Y be two C-closed abstract classes of groups.

1. If X is S-closed then LλX is C-closed for every cardinal number λ.

2. If Y is H-closed then XY is C-closed.

The class LλX is defined to consist of all groups G in which every
subset of cardinality at most λ is contained in a X-subgroup of G, for a
cardinal number λ. Before the proof of Theorem 3, we refer to this fact
that, if H and K are two subgroups of G and N ⊳ G then

[HN/N,KN/N ] = [H,K]N/N. (8)

Proof of Theorem 3. Let {Gi}i∈I be a collection of distinct subgroups of
G such that [Ci, Cj ] = 1 for i, j ∈ I and i 6= j. Let Ci be an LλX-group
for each i ∈ I. We show the central product C =

∏
i∈I Ci is also an

LλX-group.
Suppose X = 〈xk|k ∈ K〉 is a subgroup of C, generated by elements

xk for k ∈ K, where K is an index set with cardinal number at most λ.
As xk ∈ C and [Ci, Cj ] = 1 for i 6= j, we can write down xk = ck1 · · · ckt ,
where cki ∈ Cki and ki 6= kj for 1 ≤ i 6= j ≤ t. Let C∗

ki
be the subgroup of

Cki generated by all elements cki of Cki which appear in the representation
of xk. Then it is clear that for every ki ∈ I, C∗

ki
has the cardinal number

at most λ and so it is an X-group. But X is C-closed class of groups
and [C∗

ki
, C∗

kj
] = 1 for ki, kj ∈ I and ki 6= kj . Hence the central product

C∗ =
∏

k∈I C
∗

ki
is an X-group. Since X is S-closed, it is enough to show

X ≤ C∗.
Let x be an element of X. Then x is a product of some generated

elements xk. Since for every pair elements cki and ckj that ki 6= kj ,
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[cki , ckj ] = 1, thus we can write x as a product of elements cki such that
no pair of them belongs to the same Ci. This implies x ∈ C∗.

Let Ci ∈ XY for every i ∈ I. Then there exists a normal subgroup Di

in Ci such that Di ∈ X and Ci/Di ∈ Y. As X is C-closed and [Di, Dj ] = 1
for i 6= j, the central product D =

∏
i∈I Di is a normal subgroup of C

and D ∈ X. Now it is enough to show C/D ∈ Y. We have

C/D = (
∏

i∈I

Ci)/D =
∏

i∈I

(CiD/D) ∼=
∏

i∈I

(Ci/(Ci ∩D)), (9)

Ci/(Ci ∩D) ∼= (Ci/Di)/((Ci ∩D)/Di)

and Y is H-closed, thus Ci/(Ci ∩D), which is the homomorphic image
of Ci/Di, is a Y-group. On the other hand, by equation (8)

[CiD/D,CjD/D] = [Ci, Cj ]D/D = 1 for every i, j ∈ I and i 6= j

and Y is C-closed. Therefore using (9) we get C/D ∈ Y. This completes
the proof.

If we substitute C0-closed instead of C-closed in the theorem above
then the proof will be correct in a similar way.

Corollary 2. If X is a {S,C}-closed ({S0, C0}-closed) class of groups
then the class LX is C-closed (C0-closed).

Proof. As for every finite cardinal number λ, Lλ ≤ L so as required.

The class of locally soluble groups is C0-closed, while it is not N0-
closed [2, page 90]. It is easy to see that the classes of FC-groups and
CC-groups are C0-closed but they are not N0-closed. Also the class of
abelian groups which is C-closed, is not N -closed. The class X of groups of
even powers of a prime number p is an example of D0-closed class of groups
which is not C0-closed: Let G be an abelian group and A = 〈r〉 ⊕ 〈s〉,
B = 〈t〉⊕〈s〉 be two X-subgroups of G such that |r| = |s| = p3 and |s| = p.
Then [A,B] = 1 and AB is not an X-group. Hence X is not C0-closed,
while it is obviously D0-closed.

Proof of Theorem 2. Since M is a CF-maximal X-subgroup of G, so G =
MZ(G). By assumption, Z(G) is an X-group and X is C0-closed, hence
G is an X-group. This proves (1).

Since any given group G is an extension of itself by the trivial group,
thus if G ∈ X then G ∈ XY for the class of groups Y. Hence A ≤ XY.
On the other hand, Y is H-closed and using Theorem 3, the class XY is
C0-closed. Using part (1) if M is a CF-maximal XY-subgroup of G then
G is an XY-group.
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