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Abstract. An accurate description of the Galois group

GF (2) of the maximal Galois 2-extension of a field F may be given

for fields F admitting a 2-henselian valuation ring. In this note we

generalize this result by characterizing the fields for which GF (2)
decomposes as a free pro-2 product F ∗ H where F is a free closed

subgroup of GF (2) and H is the Galois group of a 2-henselian exten-

sion of F . The free product decomposition of GF (2) is equivalent

to the existence of a valuation ring compatible with the Kaplansky

radical of F . Fields with Kaplansky radical fulfilling prescribed

conditions are constructed, as an application.

Introduction

A field F is said to be 2-henselian in case F admits a valuation ring
A which extends uniquely to the quadratic closure F (2) of F (F (2) is
the inductive limit of the direct system of all Galois extensions of F
of finite degree a power of 2 within a fixed algebraically closed field).
Henselianity depends on A and it is more appropriate to say that the pair
(F,A) is a 2-henselian valued field. For a 2-henselian valued field (F,A)
the Galois group GF (2) = Gal(F (2);F ) is well-known, in case the residue
class field of A has characteristic 6= 2, [6, Proposition 1.1]. Additionally, if
the value group of A is not 2-divisible, then 2-henselian valued fields can
be characterized as those fields for which GF (2) has a sufficiently large
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abelian normal subgroup, [6, Theorem 4.3]. A similar statement holds for
absolute henselianity, as it is shown in [12].

This note concerns to the description of GF (2) for valued fields (F,A)
which one may consider “almost” 2-henselian as we shall describe now.
For a valued field (F,A), where A has residue class field of characteristic
6= 2, it is well-known that A is 2-henselian if and only if 1 +mA ⊂ (F×)2,
where mA is the maximal ideal of A and (F×)2 is the subgroup consisting
of non-zero squares of the multiplicative group F× = F r { 0 }. To define
a pre-2-henselian valuation ring we substitute (F×)2 by the Kaplansky
radical R(F ) of F (see Section 1). Thus we call a valuation ring A of F
pre-2-henselian if the residue class field kA of A has characteristic 6= 2
and 1 +mA ⊂ R(F ).

In the trivial case R(F ) = (F×)2, we get a 2-henselian valuation
ring. In general, take an extension A(2) of A to F (2) and write Fh for
the decomposition field of A(2) over F [5, §15]. Set Ah = A(2) ∩ Fh. It
follows from [5, 15.7] that (Fh, Ah) is a 2-henselian valued field. Moreover,
since we are assuming that kA has characteristic 6= 2, Theorem 15.7
of [5] implies that (Fh, Ah) is the smallest 2-henselian valued extension
of (F,A) for which A(2) lies over Ah. The pair (Fh, Ah) is then called
a 2-henselization of (F,A). A pre-2-henselian valued field (F,A) has
many significant properties determined by the corresponding properties
of (Fh, Ah). Notably, properties concerning quadratic forms, quaternion
algebras, Brauer groups, and orderings. The strong connection between
(F,A) and (Fh, Ah) can be characterized by the decomposition GF (2) =
F ∗GFh

(2) as a free pro-2 product of GFh
(2) and a closed free subgroup

of GF (2) (see theorems 4.2 and 4.7). Moreover, A can be chosen in a
natural way which determines uniquely GFh

(2) (up to inner automorphisms
of GF (2)). The rank of F is equal to the rank of the quotient group
(1 + mA)(F

×)2/(F×)2, which equals the rank of R(F )/(F×)2 in most
cases.

In the next section we summarize significant properties of R(F ) which
are necessary for the paper. The pre-2-henselian properties connecting
the objects GF (2), R(F ), and the valuation ring A, are the subject of
Section 2. There we also show how to construct pre-2-henselian valuation
rings. In Section 3 the connection between the Brauer groups of F and
Fh, a 2-henselization of F , is established. We derive from this result a
characterization of pre-2-henselian fields by means of its Brauer group
which will be necessary to prove, in Section 4, the main results of the
paper. In the last section, as an application of theorems 4.2 and 4.7, we
show how to produce examples of pre-2-henselian fields whose radical
satisfies prescribed conditions. For instance, for any given pair of positive
integers m and n, n > 1, there exists a pre-2-henselian field F such that
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F×/R(F ) and R(F )/(F×)2 have respectively rank m and n. Examples
constructed in this way cover previous examples constructed by Berman
[2] and Kula [13].

We finish the introduction remarking that all fields considered have
characteristic 6= 2, (char 6= 2) and all subgroups of profinite groups are
closed. For quadratic forms we use the standard terminology as is found
in [14]. For instance given a quadratic form 〈a1, . . . , an〉 over a field F
let DF 〈a1, . . . , an〉 be the set of non-zero elements of F represented by
〈a1, . . . , an〉.

1. On Kaplansky radical of a field

In a paper from 1969, Kaplansky [10] introduced the radical R(F ) = {a ∈
F× | 1 ∈ DF 〈a, b〉 for every b ∈ F×} of a field F . Cordes [3] called R(F )
Kaplansky radical of F and rewrite the definition as

R(F ) =
⋂

a∈F×

DF 〈1, a〉.

Alternatively, x ∈ R(F ) if and only if DF 〈1,−x〉 = F×. Clearly R(F ) is
a subgroup of F× containing (F×)2. Some further significant properties
of R(F ) are:

1.1. R(F ) is additively closed if and only if R(F ) = DF 〈1, 1〉 =
∑

(F×)2

is the set of all finite sums of squares of F×, [14, Corollary 6.5(2), p 452].

Fields for which R(F ) is additively closed are classified in two types:

1.2. If F is non-real, i.e., −1 ∈ ∑

(F×)2, then R(F ) = F×.

1.3. In the formally real case, R(F ) is a preordering (preorderings can be
found in [14, p 289]).

1.4. (F× : R(F )) = 2 if and only if F is formally real, uniquely ordered
by R(F ), and there exists a unique, up to isomorphism, quaternion di-
vision algebra over F , [14, Theorem 6.10, p 454]. In this case Lam [14,
Definition 6.7, p 453] called F a pre-Hilbertian field.

2. Pre-2-henselianity

Fields admitting a proper pre-2-henselian valuation ring will be obtained
by applying to the subgroup R(F ) the methods developed in [1]. To this
end, let us first define R(F )-rigid elements as being those a ∈ F×r±R(F )
for which {x + ay 6= 0 | x, y ∈ R(F ) ∪ { 0 }} = R(F ) ∪ aR(F ). If x and
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−x are both R(F )-rigid, then we say that x (and −x too) is R(F )-birigid.
Non-R(F )-birigid elements also play an important role in constructing
pre-2-henselian valuation rings. Denote B(R(F )) = {x ∈ F× | x is
non-R(F)-birigid }. The elements of B(R(F )) are called basics. A surpris-
ingly fact is that B(R(F )) is a subgroup of F×. In the next result we
formalize properties of R(F )-rigid and basic elements which will be crucial
to establish the existence of a pre-2-henselian valuation ring.

Lemma 2.1. Let F be a field and a ∈ F× r±R(F ). Then:

(1) a is R(F )-rigid if and only if DF 〈1, a〉 = R(F ) ∪ aR(F ).

(2) B(R(F )) is a subgroup of F×.

Proof. For a quadratic form 〈1, a〉 it follows from [3, Proposition 1] that
DF 〈1, a〉 = {x + ay 6= 0 | x, y ∈ R(F ) ∪ { 0 }}; the equality implies (1).
Also it implies that {x+ay 6= 0 | x, y ∈ R(F )∪{ 0 }} is a subgroup of F×.
Therefore, by [19, Proposition 2.4], B(R(F )) is a subgroup of F×.

In the trivial case R(F ) = (F×)2 we get the usual rigid elements
(or (F×)2-rigid). We know that 2-henselian valuation rings arise from
the existence of enough rigid elements (see [1] or [19]). Pre-2-henselian
valuation rings are obtained by replacing rigid elements by R(F )-rigid
elements in the usual procedures.

Theorem 2.2. Let F be a field such that B(R(F )) 6= F×. Then at least
one of the following conditions holds:

(1) F admits a proper pre-2-henselian valuation ring A with non-2-
divisible value group ΓA.

(2) F is formally real with at most two orderings and R(F ) =
∑

(F×)2.
Consequently (F× : R(F )) ≤ 4.

The proof of Theorem 2.2 is partially based on Theorem 3.9 from [1]
which requires the characterization of the “exceptional case,” according to
the designation given by Arason et al. [1, Definition 2.15].

We say that R(F ) is exceptional if B(R(F )) = R(F ) ∪ −R(F ) and
either −1 ∈ R(F ) or R(F ) is additively closed.

If R(F ) + R(F ) ⊂ R(F ) and F is formally real we know from (1.3)
that R(F ) is a preordering. If additionally R(F ) is exceptional, then R(F )
will possess a new interesting property, namely R(F ) will be a fan. See
[15, §5] for more about fans.

In the non-real case, if R(F ) is exceptional, then B(R(F )) = R(F ).
Thus assertion (1.4) implies either B(R(F )) = F× or (F× : B(R(F )) > 2.
For further reference let us remark the above two cases:
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Lemma 2.3. Assume R(F ) 6= F× is exceptional.

(1) If F is non-real, then (F× : B(R(F ))) > 2.

(2) If F is formally real, then R(F ) is a fan.

The basic connection between R(F ) and valuation rings of F is given
in the next proposition. For a valuation ring A of F , let A× = ArmA,
πA : A → kA, ΓA, and vA be respectively the group of units, the canonical
homomorphism, the value group and a valuation corresponding to A.

Proposition 2.4. For a field F with radical R(F ) 6= F× let A be a
valuation ring of F .

(1) πA(R(F ) ∩A×) ⊂ R(kA).

(2) If A is pre-2-henselian and ΓA = 2ΓA, then πA(R(F )∩A×) = R(kA).
Additionally R(kA) 6= k×A .

(3) If R(F ) 6⊂ (1 +mA)(F
×)2, then (ΓA : 2ΓA) ≤ 2. Moreover, (ΓA :

2ΓA) = 2 implies k×A = (k×A)
2.

(4) If (1 +mA)(F
×)2 & R(F ), then ΓA = 2ΓA.

Proof. (1) For u ∈ (1 +mA)(F
×)2 ∩A×, πA(u) ∈ (k×A)

2 ⊂ R(kA). Take
then u ∈ R(F ) ∩A× and u 6∈ (1 +mA)(F

×)2. For any z ∈ A× there are
a, b ∈ (F×)2 such that z = a− ub (since u ∈ R(F )). From vA(a− ub) = 0
one gets vA(a), vA(ub) ≥ 0. Otherwise, vA(a) < 0 or vA(ub) = vA(b) < 0
would imply vA(a) = vA(b) (< 0) 1. Then u = (b−1a)(1 − za−1) ∈
(1 + mA)(F

×)2 contradicting the choice of u. Hence πA(z) = πA(a) −
πA(u)πA(b) ∈ DkA〈1,−πA(u)〉. Thus k×A = DkA〈1,−πA(u)〉 which implies
πA(u) ∈ R(kA), as required.

(2) Due to the previous item (1) it remains to show the inclusion
R(kA) ⊂ πA(R(F ) ∩ A×) to prove the equality. For u ∈ A× such that
πA(u) ∈ R(kA) we have that DkA〈1,−πA(u)〉 = k×A . Therefore given
z ∈ A× there exist a, b ∈ (A×)2 such that πA(z) = πA(a)− πA(u)πA(b).
Thus z(a− ub)−1 ∈ 1 +mA ⊂ R(F ). Since R(F ) ⊂ DF 〈1,−u〉 it follows
that z ∈ DF 〈1,−u〉. Hence A× ⊂ DF 〈1,−u〉. The assumption ΓA = 2ΓA

will then imply F× = A×(F×)2 ⊂ DF 〈1,−u〉. Consequently u ∈ R(F )
and πA(u) ∈ πA(R(F ) ∩A×), as required.

Finally, R(kA) = k×A would imply πA(R(F ) ∩ A×) = πA(A
×) and so

A× ⊂ R(F ). Thus F× = A×(F×)2 = R(F ), a contradiction.
(3) Take r ∈ R(F ) r (1 + mA)(F

×)2 and a, b ∈ (F×)2. If vA(a) =
vA(rb) < vA(a−rb), then vA(1−rba−1) > 0. Consequently rba−1 ∈ 1+mA,

1vA(a) 6= vA(rb) implies vA(a− rb) = min{vA(a), vA(rb)}
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a contradiction. Thus vA(a−rb) = min{vA(a), vA(rb)}, for all a, b ∈ (F×)2.
As F× = DF 〈1,−r〉, vA(x) ∈ 2ΓA ∪ (v(r) + 2ΓA), for every x ∈ F×. Thus

ΓA ⊂ 2ΓA ∪ (v(r) + 2ΓA) (1)

and so (ΓA : 2ΓA) ≤ 2 as desired.

We next prove that (ΓA : 2ΓA) = 2 implies k×A = (k×A)
2. In fact,

for r ∈ R(F ) r (1 +mA)(F
×)2, as above, vA(r) 6∈ 2ΓA by equation (1).

Moreover, for y ∈ A× and a, b ∈ (F×)2 satisfying y = a − rb we have
seen that 0 = vA(y) = min{vA(a), vA(rb)}. The case vA(rb) = 0 cannot
occur, otherwise vA(r) = −vA(b) ∈ 2ΓA. Consequently vA(rb) > 0 and
vA(a) = 0. Hence a ∈ (A×)2 and πA(y) = πA(a) ∈ (k×A)

2, as required.

(4) Assuming ΓA 6= 2ΓA, it follows from the previous item (3) that (ΓA :
2ΓA) = 2 and k×A = (k×A)

2. The last equality implies A× = (1+mA)(A
×)2.

Thus A× ⊂ R(F ) (†).
From (ΓA : 2ΓA) = 2 and equation (1) we can write F× = A×(F×)2 ∪

rA×(F×)2 (‡), for any r ∈ R(F )r (1 +mA)(F
×)2.

Combining (†) and (‡) we get a contradiction.

Corollary 2.5. Keep the notation of Proposition 2.4 and let A be a pre-2-
henselian valuation ring of F . If ΓA 6= 2ΓA, then (1 +mA)(F

×)2 = R(F ).

We now present the proof of Theorem 2.2.

Proof of Theorem 2.2. We shall consider two cases. The first case corre-
sponds to R(F ) non-exceptional or R(F ) exceptional and F is non-real.
The other case corresponds to R(F ) exceptional and F is formally real.

In the first case, [1, Theorem 3.9] guarantees the existence of a valuation
ring A, pre-2-henselian, such that A×R(F ) = B(R(F )) if R(F ) is not
exceptional and (A×R(F ) : B(R(F ))) ≤ 2, otherwise. Particularly, if
R(F ) is exceptional and F is non-real, then (F× : A×R(F )) ≥ 2, by
Lemma 2.3 (1). Therefore, in both cases, F× 6= A×R(F ) and A is a
proper subring of F . Moreover, since A×(F×)2 ⊂ A×R(F ) we also get
F× 6= A×(F×)2 and so ΓA 6= 2ΓA.

To complete the proof in this case it remains to be seen that char kA 6=
2, i.e., the first case implies (1) of Theorem 2.2. By [1, Lemma 4.4],
char kA 6= 2 follows from (F× : R(F )) > 2. In the non-exceptional
case, as R(F ) & B(R(F )) and B(R(F )) 6= F× (by assumption), (F× :
R(F )) > 2 holds. In the non-real exceptional case, Lemma 2.3 (1) implies
(F× : R(F )) > 2 because R(F ) ⊂ B(R(F )).

Assume finally that R(F ) is exceptional and F is formally real (i.e.,
B(R(F )) = ±R(F ), −1 6∈ R(F ), and R(F ) + R(F ) ⊂ R(F )). Then
Lemma 2.3 (2) shows that R(F ) is a fan. By Bröcker’s Trivialization
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Theorem [15, Theorem 5.13], F admits a valuation ring A which is pre-
2-henselian and such that πA(R(F )) is a trivial fan, i.e., a preordering
such that (k×A : πA(R(F ))) ≤ 4. Since kA is a formally real field we get
char kA 6= 2.

If ΓA 6= 2ΓA we get again the conclusion (1) of Theorem 2.2.

Next, we assume that ΓA is 2-divisible and prove that the conclusion
(2) of Theorem 2.2 holds. For ΓA = 2ΓA, Proposition 2.4 (2) implies
R(kA) = πA(R(F )), which we know to be additively closed. Apply-
ing now assertion (1.1) to both radicals we get R(F ) =

∑

(F×)2 and
R(kA) =

∑

(k×A)
2. The last equality, R(kA) =

∑

(k×A)
2, combined with

(kA : R(kA)) ≤ 4 implies that kA has at most two orderings. On the other
hand, the equality R(F ) =

∑

(F×)2 implies that A is compatible with
every ordering of F [15, Definition 2.4]. Consequently, by [15, Corollary
3.11], the orderings of F correspond bijectively with the orderings of kA if
we keep in mind that ΓA = 2ΓA. Hence F has at most two orderings and
(F× : R(F )) ≤ 4.

In case (2) of Theorem 2.2, R(F ) =
∑

(F×)2 is a trivial fan and fields
for which

∑

(F×)2 is a trivial fan are well-know. Moreover, such a field F
may or may not admit a pre-2-henselian valuation ring with non-2-divisible
value group. For instance, if F admits an Archimedean ordering, then no
valuation ring could be pre-2-henselian. On the other hand, the existence
of a pre-2-henselian valuation ring with non-2-divisible value group can
only occur if (ΓA : 2ΓA) = 2 and kA is uniquely ordered, by [15, Corollary
3.11]. The ordering of kA is given by R(kA) and so kA is a pre-Hilbertian
field (see (1.4)).

We shall now investigate the relations between various pre-2-henselian
valuation rings of a field. Like for 2-henselian valuation rings we shall see
for a field F 6= F (2) that any two pre-2-henselian valuation rings C and
D are comparable provided that kC or kD is non-quadratically closed2.
Moreover if exactly one of them, say kD, is quadratically closed, then
D ⊂ C. In order to describe the set of all pre-2-henselian valuation rings
of F we set up some notations.

We denote by Ω1 the set of all pre-2-henselian valuation rings of F
with non-quadratically closed residue class field and by Ω2 the set of
all valuation rings having residue class field quadratically closed. Set
Ω = Ω1 ∪Ω2. Before we describe the properties of Ω1 and Ω2 let us recall,
for any two valuation rings C and D, that C is said to be coarser than D
(or D is said to be finer than C) if D ⊂ C.

2Since we are assuming char 6= 2 for every field there is no distinction between
quadratically closed and quadratic separably closed.
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Proposition 2.6. Keep notations as above and assume that R(F ) 6= F×.

(1) If a valuation ring C of F is coarser than A ∈ Ω, then C ∈ Ω.

(2) Ω1 is totally ordered (by inclusion) and closed by the coarsening
relation.

(3) If A ∈ Ω2 is coarser than a valuation ring C of F , then C ∈ Ω2.
Moreover, for C, D ∈ Ω2, their compositum C ·D lies in Ω2 as well.

(4) For any pair C ∈ Ω2 and A ∈ Ω1, A is coarser than C.

(5) If Ω2 6= ∅, then for every A ∈ Ω2, ΓA 6= 2ΓA and (1+mA)(F
×)2 =

R(F ).

We need the following two lemmas to prove the proposition.

Lemma 2.7. For a field F let T be a subgroup of F× and let A and C
be independent valuation rings of F , i.e., A · C = F . If 1 +mA ⊂ T and
1 +mC ⊂ T , then T = F×.

Proof. By the Approximation Theorem [7, Theorem 2.4.1] for every x ∈
F× there exists y ∈ F× such that vC(y − x) > vC(x) and vD(y − 1) > 0.
Thus yx−1 ∈ 1 +mC and y ∈ 1 +mD. Hence x = y(yx−1)−1 ∈ T .

Lemma 2.8. Let A and C be incomparable (by inclusion) pre-2-henselian
valuation rings of a field F . Write D = A · C, for their compositum and
assume that R(F ) 6= F×. Then A, C, D ∈ Ω2.

Proof. From A ⊂ D it follows that mD ⊂ mA. Thus D is also pre-2-
henselian. Going to residue class field of D we set R(F ) = πD(R(F ) ∩
D×), A = πD(A), and C = πD(C).

Clearly 1 + mA ⊂ R(F ) and 1 + mC ⊂ R(F ) hold. On the other
hand A and C are independent valuation rings of kD, by construction.
Applying Lemma 2.7 to them one gets R(F ) = k×D. By Proposition 2.4 (1)

R(F ) ⊂ R(kD). Therefore R(kD) = k×D.
On the other hand, under the assumption (1 + mD)(F

×)2 & R(F )
we would get from Proposition 2.4 (4) that ΓD = 2ΓD. But this would
contradict item (2) of Proposition 2.4. Therefore (1 +mD)(F×)2 = R(F ).
Applying now the conclusions of the previous paragraph we get k×D =

R(F ) = (k×D)
2. Thus D ∈ Ω2.

Finally since A and A have the same residue class field, also kA
is quadratically closed. Hence A ∈ Ω2 follows from A ⊂ D. Similarly
C ∈ Ω2.

We are now ready to prove Proposition 2.6.
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Proof of Proposition 2.6. (1) and the first part of (3) are consequences of
general valuation theory; (2), the last part of (3), and (4) follow directly
from the above Lemma 2.8. To prove (5), observe first that if A ∈ Ω2

then A× = (1 + mA)(A
×)2. Under the condition ΓA = 2ΓA, it follows

that F× = A×(F×)2 = (1 +mA)(F
×)2 ⊂ R(F ) ⊂ F×. Thus F× = R(F ),

contrary to the assumption. Hence ΓA 6= 2ΓA, for every A ∈ Ω2. Finally,
by Corollary 2.5, (1 +mA)(F

×)2 = R(F ).

Observe that F ∈ Ω is always true and so Ω 6= ∅. For F 6= F (2) we
cannot say Ω2 6= ∅, however. In Section 4 we shall see that the existence
of A ∈ Ω, A 6= F , is the main requirement to describe GF (2).

Remark 2.9. For further use, we end this section remarking that (Fh)
×

= F×(F×

h )2 and (1 +mA)(F
×)2 = (F×

h )2 ∩ F× hold for a 2-henselization
(Fh, Ah) of a valued field (F,A). They are consequence of two facts:
(Fh, Ah) is an immediate extension of (F,A) [5, Theorem 15.8], and 1 +
mAh

⊂ (F×

h )2.

3. Brauer group of pre-2-henselian valued fields

This section is dedicated to study the relative Brauer group 2Br(F ) consist-
ing of all classes of central simple F -algebras split by F (2). Setting Br(F )
for the Brauer group of F we may describe 2Br(F ) as 2Br(F ) = { z ∈
Br(F ) | 2z = 0 }. In 1981 Merkurjev [16] proved the long standing conjec-
ture that 2Br(F ) is generated by the set of quaternion algebras (F ; a, b)
defined over F . Recall that for a, b ∈ F× the quaternion algebra (F ; a, b)
is the F -algebra having generators i, j and relations i2 = a, j2 = b and
ij = −ji (see for example [14, Chapter III, p 51]). Quaternion algebras over
F are connected with the Kaplansky radical of F as follows: the correspon-
dence from F×/(F×)2×F×/(F×)2 to the Brauer group Br(F ) of F which
assigns to each pair (a(F×)2, b(F×)2) the class of the quaternion algebra
(F ; a, b) in Br(F ) is a symmetric bimultiplicative pairing. The radical of
this pairing consisting of {x ∈ F× | (F ;x, b) splits for every b ∈ F×} is
the Kaplansky radical R(F ) of F , [14, Proposition 6.1].

For a 2-henselization (Fh, Ah) of (F,A) let Res : 2Br(F ) → 2Br(Fh)
be the restriction map which assigns to the class [S] of a central simple
F -algebra S the class [S ⊗F Fh] ∈ 2Br(Fh). Observe that ker(Res) =
Br(Fh;F ) is the relative Brauer group associated with the extension Fh|F .
Our first aim is to prove Theorem 3.2 which gives a description of ker(Res)
for an arbitrary field F (charF 6= 2). The main goal in this section follows
from this result; a characterization of a pre-2-henselian valued field F by
means of 2Br(F ) (Corollary 3.4). Corollary 3.4, which has its own interest,
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provides one of the tools necessary to prove the main theorems of the
paper (results 4.2 and 4.7).

We start with a technical lemma. Recall first that 〈a1, . . . , an〉 repre-
sents the diagonal quadratic form with coefficients a1, . . . , an in a field F .
Also the n-fold Pfister form

⊗n
i=1〈1,−ai〉 will be denoted by 〈〈−a1,. . .,

−an〉〉. As usual W (F ) stands for the Witt ring of all isometric classes of
anisotropic quadratic forms over F . Following Lam [14], IF denotes the
ideal consisting of classes of even-dimensional quadratic forms and InF is
the n-power of IF . All unexplained notations can be found in [14].

Lemma 3.1. Let F be a field and a1, . . . , an ∈ F×, for some n ≥ 2. Then
there exists qn ∈ I3F such that

〈〈−a1 · · · an〉〉 =
n
∑

i=1

〈〈−ai〉〉 −
∑

1≤i<j≤n

〈〈−ai,−aj〉〉 + qn.

Proof. We argue by induction on n. For n = 2,

〈〈−a1〉〉+ 〈〈−a2〉〉 = 〈〈−a1,−a2〉〉+ 〈〈−a1a2〉〉.

Next, for n > 2,

〈〈−a1 · · · an〉〉 = 〈〈−a1 · · · an−1〉〉+ 〈〈−an〉〉 − 〈〈−an〉〉〈〈−a1 · · · an−1〉〉.

Applying the induction hypothesis to 〈〈−a1 · · · an−1〉〉 one gets qn−1 ∈ I3F
such that 〈〈−a1 · · · an〉〉 can be written as

n−1
∑

i=1

〈〈−ai〉〉−
∑

1≤i<j≤n−1

〈〈−ai,−aj〉〉−〈〈−an〉〉
(

n−1
∑

i=1

〈〈−ai〉〉−
∑

1≤i<j≤n−1

〈〈−ai,−aj〉〉
)

+

〈〈−an〉〉+ qn−1 − 〈〈−an〉〉qn−1 =

=
n
∑

i=1

〈〈−ai〉〉−
∑

1≤i<j≤n

〈〈−ai,−aj〉〉+
∑

1≤i<j≤n−1

〈〈−an,−ai,−aj〉〉+qn-1−〈〈−an〉〉qn-1

Setting qn =
∑

1≤i<j≤n−1

〈〈−an,−ai,−aj〉〉+ qn−1 − 〈〈−an〉〉qn−1, one gets the

desired decomposition for 〈〈−a1 · · · an〉〉.

For the next theorem let us recall that the map 〈〈−a,−b〉〉 7→ (F ; a, b)
extends to a group homomorphism γ : I2F/I3F → 2Br(F ) which, in
light of Merkurjev’s Theorem [16], is an isomorphism. Moreover, this is
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a functorial isomorphism. In particular, the extension Fh|F gives rise to
the following commutative diagram

I2F/I3F
r−−−−→ I2Fh/I

3Fh

γ





y

≀ ≀





y

γh

2Br(F )
Res−−−−→ 2Br(Fh)

(2)

where r is induced by F ⊂ Fh as follows: the inclusion induces naturally a
ring homomorphism r : W (F ) → W (Fh). Thus r(InF ) ⊂ InFh, for every
n ≥ 0. Actually, r(InF ) = InFh; just observe that r is a surjective map
by Remark 2.9 and IF is a maximal ideal. Therefore, r is the quotient
homomorphism constructed from r. Note that r is also a surjective map
and consequently so is Res.

Theorem 3.2. For a valued field (F,A) let (Fh, Ah) be a 2-henselization.
Then Br(Fh;F ), the kernel of Res, is generated by the set

{ (F, a, t) | a ∈ F×, t ∈ 1 +mA } .

Proof. Let us first check that ker(r) is generated by the set

{

〈b〉〈〈−a,−t〉〉+ I3F | a, b ∈ F×, and t ∈ 1 +mA

}

. (3)

We know from [11, Proposition 2.4] that ker(r) is generated by the set
{ 〈〈−t〉〉 | t ∈ 1 +mA }. Observe next that for every x+ I3F ∈ ker(r) we

may choose x ∈ ker(r) ∩ I2F .3 Hence we may write x =

n
∑

i=1

〈ai〉〈〈−ti〉〉,

for some ai ∈ F× and ti ∈ 1 +mA. The quadratic form has determinant
d(x) = (−1)nt1 · · · tn(F×)2 and dimension 2n. However, according to [14,
Corollary 2.2, p 32] d(x) = (−1)n(2n−1)(F×)2, for x ∈ I2F . Combining
both facts we obtain t1 · · · tn ∈ (F×)2. By replacing tn with t1 · · · tn−1 in
the description of x and then applying Lemma 3.1 we deduce the following

3For x ∈ I2F and y ∈ I3F such that r(x) = r(y) it follows that z = x− y ∈ ker(r).
Then z ∈ I2F and z − x = −y ∈ I3F . Hence x+ I3F = z + I3F .
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equations:

x =

n−1
∑

i=1

〈ai〉〈〈−ti〉〉+ 〈〈−t1t2 . . . tn−1〉〉〈an〉

=

n−1
∑

i=1

〈ai〉〈〈−ti〉〉+
(

n−1
∑

i=1

〈〈−ti〉〉 −
∑

1≤i<j≤n−1

〈〈−ti,−tj〉〉+ qn−1

)

〈an〉,

for some qn−1 ∈ I3F

=
n−1
∑

i=1

〈ai, an〉〈〈−ti〉〉 −
∑

1≤i<j≤n−1

〈〈−ti,−tj〉〉〈an〉+ 〈an〉qn−1,

for some qn−1 ∈ I3F.

Since each of the above summands belongs to I2F the equation below
makes sense in I2F/I3F

x+ I3F =
n−1
∑

i=1

〈ai, an〉〈〈−ti〉〉 −
∑

1≤i<j≤n−1

〈〈−ti,−tj〉〉〈an〉+ I3F.

Finally, it follows from 〈ai, an〉〈〈−ti〉〉+ I3F = −〈〈aian,−ti〉〉+ I3F that
the set displayed in (3) generates ker(r), as announced.

To finish the proof observe that the commutative diagram (2) implies
that ker(Res) = γ(ker(r)) and [14, Lemma 3.2, p 114] yields γ(〈b〉〈〈−a,
−t〉〉+ I3F ) = (F, a, t), for every a ∈ F×, and t ∈ 1 +mA.

Corollary 3.3. Let (F,A) be a valued field and fix a 2-henselization
(Fh, Ah). Then

2Br(F ) ∼=
〈

{

(F, a, t) | a ∈ F×, t ∈ 1 +mA

}

〉

⊕ 2Br(Fh),

where
〈

{· · · }
〉

stands for the subgroup (of 2Br(F )) generated by the set

{· · · }.
Proof. The surjectivity of Res implies the exactness of the sequence

0 → Br(Fh;F ) −→ 2Br(F )
Res−→ 2Br(Fh) → 0

which splits when considered as a sequence of F2-vector spaces.

A cohomological characterization of pre-2-henselian fields follows im-
mediately from Corollary 3.3.

Corollary 3.4. For a valued field (F,A) let (Fh, Ah) be a 2-henselization.
Then, (F,A) is pre-2-henselian if and only if Res : 2Br(F ) → 2Br(Fh) is
an isomorphism.
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4. Galois characterization of pre-2-henselian fields

In this section we give a characterization of a pre-2-henselian field (F,A)
by means of the Galois group GF (2). The instrument is the cohomological
characterization of free products of pro-p groups established by Neukirch
[17, Sätze 4.2, 4.3]. A convenient form of Neukirch’s criterium, translated
to the case under consideration in the paper, is as follows:

Theorem 4.1. Let F be a field and K1, K2 be two extensions of F in
F (2). Then GF (2) ∼= GK1

(2) ∗GK2
(2) if and only if

(1) the canonical map

res1 : F×/(F×)2 → K×

1 /(K×

1 )2 ×K×

2 /(K×

2 )2

induced by the inclusions is an isomorphism;

(2) the canonical map

res2 : 2Br(F ) → 2Br(K1)× 2Br(K2)

induced by Res : 2Br(F ) → 2Br(K1) and Res : 2Br(F ) → 2Br(K2)
is a monomorphism.

With the help of Corollary 3.4 and Theorem 4.1 we obtain a Galois
characterization of those fields F for which there exists A ∈ Ω such that
ΓA 6= 2ΓA.

Theorem 4.2. Let (F,A) be a pre-2-henselian valued field with ΓA 6= 2ΓA.
Then GF (2) admits a decomposition as free pro-2 product GF (2) = F ∗H
of closed subgroups F and H such that

(i) F is a free pro-2 group;

(ii) H has a non-trivial abelian normal closed subgroup.

Moreover the subgroups F , H are naturally associated with R(F ) and A:

(I) rank (F) = rank
(

R(F )/(F×)2
)

.

(II) Set µ = rank
(

ΓA/2ΓA

)

. Then H = Zµ
2 ⋊GkA(2)

4.

Conversely, let F be a field such that GF (2) = F ∗ H where

(a) F is a free pro-2 group;

4The action of GkA
(2) on the abelian component is described in [6, Proposition 1.1].
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(b) rank (H) ≥ 2, H 6∼= Z2 ⋊ Z/2Z, and H has a non-trivial abelian
normal closed subgroup.

Then F admits a pre-2-henselian valuation ring A with ΓA 6= 2ΓA.

Finally, the decomposition GF (2) = F ∗ H does not depend on the
valuation ring A and H is uniquely determined (up to inner automorphisms
of GF (2)).

The proof of Theorem 4.2 depends essentially on the next three results
which also have their own interest. We start by characterizing those fields
F such that GF (2) is a free pro-2 group by means of R(F ).

Proposition 4.3. For a field F the following conditions are equivalent:

(1) R(F ) = F×.

(2) 2Br(F ) = 0.

(3) GF (2) is a free pro-2 group.

Proof. The equivalence (1) ⇔ (2) is clear if we observe that R(F ) = F×

occurs if and only if (F ; a, b) split for all a, b ∈ F× which turns to be
equivalent to 2Br(F ) = 0, by Merkurjev’s Theorem [16]. The proof of (2)
⇔ (3) follows from [18, Corollary 3.8, p 262, and Corollary 3.2, p 255].

Proposition 4.4. For a pre-2-henselian valued field (F,A), A 6= F , fix
a 2-henselization (Fh, Ah). Then there exists an extension K ⊂ F (2)
satisfying the following conditions:

(1) R(K) = K× and the inclusion F ⊂ K induces an isomorphism

K×/(K×)2 ∼= (1 +mA)(F
×)2/(F×)2.

(2) GF (2) = GK(2) ∗GFh
(2).

Proof. Take an extension K ⊂ F (2) of F such that the natural map
F×/(F×)2 → K×/(K×)2 restricts to an injective map on group (1 +
mA)(F

×)2/(F×)2 and K is maximal with this property. We claim this
map induces an isomorphism (1+mA)(F

×)2/(F×)2 ∼= K×/(K×)2. In fact,
the map is injective by construction and what remains to be proved is the
surjectivity. Take any x ∈ K× and assume, for the sake of contradiction,
that x(K×)2 is not in the image of (1 + mA)(F

×)2/(F×)2. Form the
quadratic extension L = K(

√
x). Since (L×)2 ∩ K = (K×)2 ∪ x(K×)2

it follows that (1 +mA)(F
×)2/(F×)2 is sent injectively into L×/(L×)2,
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contradicting the maximality of K. The last argument can also be displayed
as

K× = (1 +mA)(K
×)2. (4)

Thus if 1 + mA ⊂ R(K), then K× = R(K), as desired. However, if
x ∈ 1 + mA ⊂ R(F ), then F× ⊂ DF 〈1,−x〉 ⊂ DK〈1,−x〉. Hence 1 +
mA ⊂ DK〈1,−x〉 which combined with the above equation (4) implies
K ⊂ DK〈1,−x〉. So 1 +mA ⊂ R(K) already occurs.

To finish the proof it remains to show that item (2) of Proposition 4.4
also holds. To prove the decomposition GF (2) = GK(2) ∗GFh

(2) we have
to show that the conditions (1) and (2) from Theorem 4.1 are fulfilled.

• res1 is injective. Assume x ∈ (K×)2 and x ∈ (F×

h )2 for some
x ∈ F×. According to Remark 2.9, (F×

h )2 ∩ F = (1 + mA)(F
×)2. On

the other hand, it follows from the very construction of K that (K×)2 ∩
(1 +mA)(F

×)2 = (F×)2. Consequently x ∈ (F×)2, proving that res1 is
injective.

• res1 is surjective. Let x ∈ K× and y ∈ F×

h , be arbitrarily chosen.
From Remark 2.9 there exists w ∈ F× such that w−1y ∈ (F×

h )2. Next, by
applying the above condition (4) to w−1x ∈ K× we get u ∈ (1+mA) such
that u−1w−1x ∈ (K×)2. Since 1 +mA ⊂ (F×

h )2 we also have u−1w−1y ∈
(F×

h )2. Therefore, putting the things together we get res1(wu(F×)2) =
(

x(K×)2, y(F×

h )2
)

, proving the required surjectivity.

• res2 is injective. R(K) = K× was obtained at the beginning of
the proof. Thus, according to Proposition 4.3, 2Br(K) = 0. Therefore
res2 = Res, which is an isomorphism by Corollary 3.4.

Proposition 4.5. Let F be a field with R(F ) 6= F×. Let K, H ⊂ F (2) be
two extensions of F such that GK(2) is free and H admits a 2-henselian
valuation ring C 6= H. If GF (2) = GK(2) ∗ GH(2), then A = C ∩ F is
a pre-2-henselian valuation ring of F . If ΓA is not 2-divisible, then this
decomposition implies that (H,C) is a 2-henselization of (F,A). In the
case ΓA = 2ΓA, (H,C) contain a 2-henselization (Fh, Ah) of (F,A) such
that GF (2) = GK1

(2) ∗ GFh
(2), for a 2-extension F ⊂ K1 ⊂ F (2) with

GK1
(2) free.

Proof. Let us call R = (H×)2 ∩ F×. We first prove that R ⊂ R(F ).
For r ∈ R we shall show that (F ; r, x) splits for every x ∈ F×. In fact,
given x ∈ F×, we have that (H; r, x) splits, because r ∈ (H×)2. On
the other hand, by Proposition 4.3, 2Br(K) = 0. So (K; r, x) also splits.
Consequently, in the notation of Theorem 4.1, the injectivity of res2 implies
that (F ; r, x) splits, as required. Thus R ⊂ R(F ), as claimed.

In the next step, observe that 1+mA ⊂ 1+mC ⊂ (H×)2 implies that
1 +mA ⊂ R and so (F,A) is pre-2-henselian, as required.
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Now we prove the final part of the proposition. Recall that the valued
field (H,C) must contain a 2-henselization (Fh, Ah) of (F,A), because
(H,C) is a 2-henselian extension of (F,A). Since Fh ⊂ H are two subex-
tensions of F (2), we have either Fh = H or there exists an intermediate
extension Fh ⊂ L ⊂ H such that [L : Fh] = 2. If the last case occurs, there
exists x ∈ Fh r (F×

h )2 such that x ∈ (H×)2. According to Remark 2.9, we
may take x ∈ F . By the first part of the proof we have x ∈ R(F ). Since
x 6∈ (F×

h )2 also x /∈ (1+mA)(F
×)2. Then Corollary 2.5 implies ΓA = 2ΓA.

Thus the inequality F 6= H only occurs if ΓA = 2ΓA. In this case, we
apply the Proposition 4.4 to get the desired decomposition.

Now that the connection between free products of suitable subgroups
of GF (2) and pre-2-henselian valuation rings was established the proof
of our first main result is just a matter of a proper combination of all
ingredients.

Proof of Theorem 4.2. Proposition 4.4 gives us the free product decom-
position GF (2) = GK(2) ∗ GFh

(2) for suitable extensions K, Fh ⊂ F (2)
of F . Let us check that F = GK(2) and H = GFh

(2) have the properties
announced in (i), (ii), (I) and (II).

That F = GK(2) is a free pro-2 group follows from Proposition 4.3.
From ΓA 6= 2ΓA we deduce by means of Corollary 2.5 that R(F ) = (1 +
mA)(F

×)2 6= F×. Hence K×/(K×)2 ∼= R(F )/(F×)2, by Proposition 4.4.
From [18, Proposition 6.2, Theorem 6.8] and Galois Theory we have that
rank (F) is equal to rank (K×/(K×)2). Thus (I) holds.

The existence of a non-trivial abelian normal subgroup of GFh
(2)

follows from valuation theory. In fact, a proof of it, as well as a proof of
(II), can be found in § 1 of [6] during the demonstration of Proposition 1.1.

Conversely, assume GF (2) ∼= F∗H as stated in the theorem. Let K and
H be respectively the fixed fields of F and H. We now use Proposition 4.5.
We already know that GK(2) is free. By applying [6, Theorem 4.3] to the
Galois extension F (2)|H in the case p = 2 we obtain that H carries a
2-henselian valuation ring C with value group Γ 6= 2Γ and residue class
field k such that char k 6= 2. Thus C 6= H, as desired. Then A = C ∩ F
is pre-2-henselian and ΓA 6= 2ΓA, because the same is true for Γ. Hence
(H,C) is a 2-henselization of (F,A) (Proposition 4.5).

The last statement of the theorem says that the decomposition does
not depend on A and H is unique. To prove it we write a preparatory
lemma.

For any valuation ring C of F (2) let Gh(C) stand for the decomposition
group of C over F [5, §15].
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Lemma 4.6. For a field F assume there are A, C ∈ Ω with non-2-divisible
value group. Then we can choose extensions A(2) and C(2) of A and C
to F (2), respectively, such that Gh(A(2)) = Gh(C(2)).

The lemma above enables us to finish the proof of Theorem 4.2.
We have already proved that any decomposition GF (2) = F1 ∗ H1

which satisfies the assumptions (i) and (ii) of Theorem 4.2 yields C ∈ Ω
such that ΓC 6= 2ΓC and H1 = Gh(C(2)), for some extension C(2) of C
to F (2). Consequently, Lemma 4.6 above says that H1 does not depend
on a particular choice of C ∈ Ω with non 2-divisible value group.

Set next GF (2) = F ∗ H and GF (2) = F1 ∗ H1 where H = Gh(A(2))
and H1 = Gh(C(2)) for valuation rings A(2) and C(2) of F (2) lying,
respectively, over two valuation rings A, C ∈ Ω of F , with non 2-divisible
value groups.

By Lemma 4.6 we can choose A(2)′ and C(2)′, respectively the exten-
sions of A and C to F (2) such that Gh(A(2)′) = Gh(C(2)′). By the
Conjugation Theorem [7, 3.2.15] there exist g, h ∈ GF (2) such that
A(2)′ = g(A(2)) and C(2)′ = h(C(2)). We derive from these equali-
ties Gh(A(2)′) = gGh(A(2))g−1 and Gh(C(2)′) = hGh(C(2))h−1. Thus
H = g−1hH1h

−1g, are conjugated.

Proof of Lemma 4.6. Assume first that A and C are comparable by inclu-
sion; say C is finer than A. Take an extension C(2) of C to F (2) finer than
A(2), an extension of A to F (2). We shall show that Gh(A(2)) = Gh(C(2)),
and additionally, this equality implies that C(2) is the unique extension

of C to F (2) finer than A(2). Let F h(C(2)) and F h(A(2)) be the fixed
fields of Gh(C(2)) and Gh(A(2)), respectively. From C(2) ⊂ A(2) one
gets Gh(C(2)) ⊂ Gh(A(2)) and so F h(A(2)) ⊂ F h(C(2)). To conclude
the equality F h(A(2)) = F h(C(2)) we have to prove for x ∈ F h(A(2))
and x ∈ (F h(C(2)))2 that x ∈ (F h(A(2)))2. In other words there is no
quadratic extension between F h(A(2)) and F h(C(2)). Take x which satis-
fies these conditions. From Remark 2.9 we can assume, without loss of
generality, that x ∈ F×. Then x ∈ (F h(C(2)))2 ∩ F× = (1 +mC)(F

×)2.
Since by Corollary 2.5, (1+mA)(F

×)2 = R(F ) = (1+mC)(F
×)2 it follows

that x ∈ (1 +mA)(F
×)2 ⊂ (F h(A(2)))2, proving the desired equality.

We now prove the uniqueness of such an extension C(2). According to
the Conjugation Theorem [7, 3.2.15] for two extensions C(2) and C(2)′ of
C to F (2) there exists g ∈ GF (2) such that C(2)′ = g(C(2)). If C(2) and
C(2)′ are finer than A(2), then g(A(2)) and A(2) are both coarser than
C(2)′, which implies that g(A(2)) and A(2) have to be comparable by
inclusion. Thus g(A(2)) = A(2), by [7, Lemma 3.2.8]. Hence g ∈ Gh(A(2)).
Since we know Gh(A(2)) = Gh(C(2)), g ∈ Gh(C(2)) and C(2)′ = C(2),
as claimed.
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Consider next the case where A and C are not comparable. Then
A, C ∈ Ω2, and we know by Proposition 2.6, (3) and (5), that D = A ·C ∈
Ω2 and ΓD 6= 2ΓD. Since A and D, respectively C and D, are comparable
by inclusion, by the first part of the proof there is an extension D(2) of
D to F (2) which contains uniquely determined extensions A(2) and C(2),
respectively, of A and C to F (2) for which Gh(A(2)) = Gh(D(2)) and
Gh(C(2)) = Gh(D(2)). Thus Gh(A(2)) = Gh(C(2)).

In the next result we complete the study of pre-2-henselian valued
fields (F,A) by considering the missing case ΓA = 2ΓA in Theorem 4.2.
Recall that Ω1 is totally ordered by inclusion, Proposition 2.6 (2). Hence

A(1) =
⋂

A∈Ω1

A is a valuation ring having maximal ideal m(1) =
⋃

A∈Ω1

mA.

Thus A(1) is a pre-2-henselian valuation ring of F . Observe also that A(1)

is comparable by inclusion to any other element of Ω, Proposition 2.6 (4).

Theorem 4.7. Let F be a field with R(F ) 6= F× and Ω 6= {F }, but each
C ∈ Ω has 2-divisible value group. Let k be the residue class field of the
valuation ring A(1) introduced above. Then GF (2) = F ∗Gk(2), and the
following conditions hold:

(1)F is a free pro-2 group and rank(F) = rank
(

(1 +m(1))(F
×)2/(F×)2

)

(2) k does not admit any proper pre-2-henselian valuation ring. Moreover,
k×/(k×)2 ∼= F×/(1 +m(1))(F

×)2.

Conversely, if there exists a decomposition

GF (2) = F ∗GH(2)

where F is a free pro-2 group and H has a proper 2-henselian valuation
ring C with ΓC = 2ΓC and residue class field k which does not admit any
proper pre-2-henselian valuation ring, then R(F ) 6= F×, Ω 6= {F } and
for every A ∈ Ω, ΓA = 2ΓA.

Proof. Since Ω 6= {F }, A(1) is a proper valuation ring of F . By applying
Proposition 4.4 to A(1) we get GF (2) = GK(2)∗GFh

(2), where F = GK(2)
is free and Fh is a 2-henselization of (F,A(1)). Thus (F,A(1)) and (Fh, A)
have the same value group and the same residue class field. By assumption
A(1), and consequently also A, have 2-divisible value group. Let A(2) be
the extension of A to F (2). Since GFh

(2) is a pro-2 group and A has
2-divisible value group, we can conclude that A(2) has a trivial inertia
group over Fh. Thus GFh

(2) ∼= Gk(2), where k is the residue class field of
A and also of A(1) (see [5, Theorem 19.6]). To complete the first part of the
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proof it remains to show that k does not admit any proper pre-2-henselian
valuation ring.

According to Proposition 2.6 (5), Ω2 = ∅. Hence Ω = Ω1 and therefore
A(1) ∈ Ω1 does not contain any proper pre-2-henselian valuation ring of
F . Denote by π the canonical map corresponding to A(1) and k and recall
from Proposition 2.4 (2) that π(R(F )) = R(k). Since π induces a bijection
between the set of all valuation rings of k and the set of all valuation
rings of F finer than A(1) ([5, Theorem 8.7]), we can conclude that k
does not admit any proper pre-2-henselian valuation ring, as claimed
in (2). The isomorphism k×/(k×)2 ∼= F×/(1 +m(1))(F

×)2 follows from

F× = A×

(1)(F
×)2, because ΓC is 2-divisible.

Conversely, given a decomposition GF (2) = F ∗GH(2) we can apply
Proposition 4.5 to H and to the fixed field K of F . Then A = C ∩ F is
a proper pre-2-henselian valuation ring of F and we may assume that
(H,C) is a 2-henselization of (F,A). Since ΓC is a 2-divisible group and
(H,C) is an immediate extension of (F,A), also ΓA = 2ΓA. Moreover
kA = kC does not admit any pre-2-henselian valuation ring. In particular
kA is not quadratically closed and so A ∈ Ω1. Moreover, the bijective
correspondence between the set of valuation rings of kA and the set of
valuation rings of F finer than A implies that A = A(1) and Ω2 = ∅. Hence
any element of Ω, being coarser than A(1) which has a 2-divisible value
group, also has a 2-divisible value group. Finally, R(F ) 6= F× follows from
the properties of A combined with (1) of Proposition 2.4.

5. Examples and comments

The simplest possible description of GF (2) for a pre-2-henselian valued
field (F,A) occurs for A ∈ Ω2. Then GF (2) = F ∗ Zµ

2 where µ =
rank(F×/R(F )). Indeed, observe that R(F ) = (1 +mA)(F

×)2 (Proposi-
tion 2.6 (5)) and A× ⊂ (1+mA)(F

×)2 (A ∈ Ω2). Thus A×(F×)2 = R(F ).
Finally ΓA/2ΓA

∼= F×/A×(F×)2.

Theorems 4.2 and 4.7 can be seen as tools to produce fields with
Kaplansky radical having some prescribed conditions. By [9, Theorem 3.6]
given two pro-2 groups F and H which can be realized as Galois groups
GK(2) and GH(2), for some fields K and H, there exists a field F such
that GF (2) ∼= F ∗ H. Thus, all we need to construct fields with a pre-2-
henselian valuation ring is to choose fields K and H having convenient
properties. Examples of fields K for which GK(2) is a free pro-2 group
are well-known. Let us fix that K has characteristic 6= 2 and GK(2) is a
free pro-2 group. To get suitable examples of 2-henselian valued fields it is
enough to take H = k((X))Γ, the field of generalized formal power series
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over a field k of characteristic 6= 2 and with respect to a totally ordered
abelian group Γ. H has a henselian valuation ring AH = k[[X]]Γ which
is a fortiori 2-henselian. Moreover k and Γ are, respectively, residue class
field and value group of AH .

Therefore if we choose k a pre-Hilbertian (as in 1.4) field with an
Archimedean ordering and Γ a 2-divisible group, then we get a field
F for which GF (2) = GK(2) ∗ GH(2) exemplifies Theorem 4.7. Here
A(1) = AH ∩ F .

Similarly, the choice of k quadratically closed and Γ 6= 2Γ will give
us examples of pre-2-henselian valued fields F with Ω2 6= ∅. In this case
GF (2) = F ∗ Zµ

2 , as described in the first paragraph.
Adding to K the property −1 6∈ (K×)2 while −1 ∈ (k×)2 we get a pre-

2-henselian valued field F with −1 ∈ R(F )r(F×)2. Hence F× = DF 〈1, 1〉
and so F has level s = 2 (the least integer n ≥ 1 such that −1 can be
expressed as a sum of n squares in F ). Now, if we impose Γ 6= 2Γ it follows
that F has R(F )-rigid elements. A fact that cannot happen with the
usual rigid elements: by [4, Lemma 3.6], if every x ∈ F× is a sum of s(F )
squares in F , then no element of F is (F×)2-rigid. Therefore we cannot
just translate to R(F )-rigid elements the properties of rigid elements.

More generally, choose K and H as above and also satisfying
rank (K×/(K×)2) = m and rank (H×/(H×)2) = n, for some integers
m > 0 and n > 1 and Γ 6= 2Γ. Then we get a pre-2-henselian valued field
F such that rank (R(F )/(F×)2) = m and rank (F×/R(F )) = n.

The last statement is nearly the content of [2, Corollary 3.13]. The field
presented in [2, Theorem 2.3] satisfies −1 ∈ (F×)2 and (F× : R(F )) =
4. An easy calculation shows that B(R(F )) = R(F ) and consequently
there is a pre-2-henselian valuation ring A such that ΓA 6= 2ΓA. The
same is true for fields constructed using the recipe of [2, Theorem 3.12].
Some other examples of fields with non-trivial Kaplansky radical, i.e.,
R(F ) 6= (F×)2, F×, like the one due to Gross-Fischer [8, Examples, p
306-307] or the examples [13, (A), (C), and (D)] constructed by Kula, are
all pre-2-henselian valued fields. Therefore, our method described above
gives a large family of examples, many of them have been construct before
using different particular methods.

For the next application let us recall that XF usually stands for the
space of orderings of a field F and it has naturally the structure of a
Boolean topological space (see for example [14, Chapter VIII, §6]). If F is
formally real, then R(F ) ⊂ DF 〈1, 1〉 ⊂

∑

(F×)2 and so a pre-2-henselian
valuation ring A of F is compatible with all orderings of F . This is a
property which (F,A) shares with any of its henselizations (Fh, Ah), as one
deduces from [15, Theorem 3.16]. Moreover, by applying [15, Theorem 3.10]
to (F,A) and (Fh, Ah) we get that the map P 7→ P ∩ F from XFh to
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XF is bijective. Since this map is always continuous, compactness implies
that the map is an homeomorphism. The above comments show that we
can also prescribe the space of orderings XF in constructing examples of
pre-2-henselian valued fields. It suffices to choose H having the desired
XH .

A final word, theorems 4.2 and 4.7 have a corresponding formulation
in Witt ring language.
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