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Abstract. In this paper we consider rings R with a partial

action α of an infinite cyclic group G on R. We introduce the concept

of partial skew Armendariz rings and partial α-rigid rings. We show

that partial α-rigid rings are partial skew Armendariz rings and we

give necessary and sufficient conditions for R to be a partial skew

Armendariz ring. We study the transfer of Baer property, a.c.c. on

right annhilators property, right p.p. property and right zip property

between R and R[x;α].

We also show that R[x;α] and R〈x;α〉 are not necessarily asso-

ciative rings when R satisfies the concepts mentioned above.

1. Introduction

Partial actions of groups have been introduced in the theory of operator

algebras giving powerful tools of their study (see [15] and [17] and the

literature quoted therein). Also in [15] the authors introduced partial

actions on algebras in a pure algebraic context. Let G be a group and

R a unital k-algebra, where k is a commutative ring. A partial action α

of G on R is a collection of ideals Sg of R, g ∈ G, and isomorphisms of

(non-necessarily unital) k-algebras αg : Sg−1 → Sg such that:

(i) S1 = R and α1 is the identity map of R;

(ii) S(gh)−1 ⊇ α−1
h (Sh ∩ Sg−1);

(iii) αg ◦ αh(x) = αgh(x), for every x ∈ α−1
h (Sh ∩ Sg−1).
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The property (ii) easily implies that αg(Sg−1 ∩ Sh) = Sg ∩ Sgh, for all

g, h ∈ G. Also αg−1 = α−1
g , for every g ∈ G.

Given a partial action α of a group G on R, an enveloping action is

an algebra T together with a global action β = {σg | g ∈ G} of G on T ,

where σg is an automorphism of T , such that the partial action is given by

restriction of the global action ([15], Definition 4.2). From ([15], Theorem

4.5) we know that a partial action α has an enveloping action if and only

if all the ideals Sg are unital algebras, i.e., Sg is generated by a central

idempotent of R, for every g ∈ G. In this case the partial skew group

ring R ⋆α G is an associative algebra (this is not true in general, see ([15],

Example 3.5)).

When α has an enveloping action (T, β) we may consider that R is an

ideal of T and the following properties hold:

(i) the subalgebra of T generated by
⋃

g∈G σg(R) coincides with T and

we have T =
∑

g∈G σg(R);

(ii) Sg = R ∩ σg(R), for every g ∈ G;

(iii) αg(x) = σg(x), for every g ∈ G and x ∈ S−1
g .

The authors in [13] introduced the concepts of partial skew Laurent

polynomial rings and partial skew polynomial rings. In these cases, the

authors studied prime and maximal ideals with the assumption that the

partial action has an enveloping action. Moreover, the authors in [14]

studied Goldie property in partial skew polynomial rings and partial skew

Laurent polynomial rings.

Let R be an associative ring with identity element 1R, G an infinite

cyclic group generated by σ and {ασi : Sσ−i → Sσi , i ∈ Z} a partial action

of G on R. We simplify the notation by putting αi = ασi and Si = Sσi , for

every i ∈ Z. Then the partial skew group ring can be identified with the set

of all finite formal sums
∑m

i=−n aix
i, ai ∈ Si for every −n ≤ i ≤ m, where

the sum is usual and the multiplication rule is axibxj = αi(α−i(a)b)x
i+j .

We denote this ring by R〈x;α〉 and call it partial skew Laurent polynomial

ring. The partial skew polynomial ring R[x;α] is defined as the subring of

R〈x;α〉 whose elements are the polynomials
∑n

i=0 bix
i, bi ∈ Si for every

0 ≤ i ≤ n with usual sum of polynomials and multiplication rule as before.

In this paper, we assume that R is an associative ring and α is a partial

action of an infinite cyclic group G on R such that R[x;α] and R〈x;α〉

are not necessarily associative rings.

In the Section 2, we study McCoy’s result in partial skew Laurent

polynomial rings when a partial action α of an infinite cyclic group G on

R has an enveloping action (T, σ), where σ is an automorphism of T .

In the Section 3, we introduce the concept of partial skew Armendariz



W. Cortes 25

rings and we show that R is a partial skew Armendariz ring if and only

if the canonical map from the set of right annihilators of R to the set

of right annihilators of R[x;α] is bijective and with this result we study

the transfer of Baer property , p.p-property, ascending chain condition on

right annihilators property and right zip property between R and R[x;α].

We study necessary and sufficient conditions for R[x;α] to be reduced and

as a consequence of this result we introduce the concept of partial α-rigid

rings. We show that partial α-rigid rings are partial skew Armendariz

rings.

In the Section 4, we give examples to show that Baer rings, p.q. Baer

rings, p.p-rings and quasi-Baer rings do not imply the associativity of

the partial skew polynomial rings and partial skew Laurent polynomial

rings. When a partial action α of a group G on R has an enveloping

action (T, β), we study conditions to show the following equivalences: R

is Baer ⇔ T is Baer, R is p.q. Baer ⇔ T is p.q. Baer, R is quasi-Baer ⇔

T is quasi-Baer and R is p.p ⇔ T is p.p. When (R,α) has an enveloping

action (T, σ), where σ is an automorphism of T , we show that T is σ-rigid

⇒ R is partial α-rigid and T is skew Armendariz ⇒ R is partial skew

Armendariz. Moreover, we give an example to show that the converse of

each arrow is not true.

Throughout this article, for a non-empty subset Y of a ring S, we

denote rS(Y ) = {a ∈ S : Y a = 0} (lR(Y ) = {a ∈ S : aY = 0}) the right

(left) annihilator of Y in S.

2. Generalization of McCoy’s result

in partial skew Laurent polynomial rings

In [33], McCoy proved that if R is a commutative ring, then whenever

g(x) is a zero-divisor in R[x] there exists a non-zero element c ∈ R such

that cg(x) = 0, and in [26] it was proved that if rR[x](f(x)R[x]) 6= (0),

then rR[x](f(x)R[x]) ∩R 6= (0), where f(x) ∈ R[x] and rR[x](f(x)R[x]) =

{h(x) ∈ R[x] : f(x)R[x]h(x) = 0}. Moreover, the author in ([12], The-

orems 2.3 and 2.4), generalized these results for skew polynomial rings

of automorphism and derivation type. We study this situation in partial

skew Laurent polynomial rings but we are unable to prove an analogue

result for partial skew polynomial rings.

Throughout this section we assume that R is not necessarily a com-

mutative ring and α is a partial action of an infinite cyclic group G on R

with enveloping action (T, σ), where σ is an automorphism of T .
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Lemma 1. Let f(x) =
∑n

i=p bix
i and g(x) =

∑m
i=q aix

i be two elements

of R〈x;α〉. Then f(x)R
∑m

i=q αj(ai1−j)x
i+j = 0, for every j ∈ Z, if and

only if f(x)R〈x;α〉g(x) = 0.

Proof. Suppose that f(x)R
∑m

i=q αj(ai1−j)x
i+j = 0, for every j ∈ Z.

Then, we have that

f(x)rxjg(x) = f(x)r1jx
jg(x) = f(x)r

m
∑

i=q

αj(ai1−j)x
i+j = 0.

So, f(x)R〈x;α〉g(x) = 0.

The converse is trivial.

Let h(x) =
∑n

i=s aix
i ∈ R〈x;α〉. The length of h(x) is the number

len(h(x)) = n− s+ 1 and we use this number below.

Theorem 1. Let f(x) ∈ R〈x;α〉. If rR〈x;α〉(f(x)R〈x;α〉) 6= 0 then

rR〈x;α〉(f(x)R〈x;α〉) ∩ R 6= 0, where rR〈x;α〉(f(x)R〈x;α〉) = {h(x) ∈

R〈x;α〉 : f(x)R〈x;α〉h(x) = 0}.

Proof. We freely use Lemma 1 without mention. Let f(x) = apx
p + ....+

aqx
q. If either f(x) is constant or f(x) = 0 or f(x) = aqx

q, then the

assertion is clear. So, assume that q 6= 0, p < q and

rR〈x;α〉(f(x)R〈x;α〉) ∩R = (0).

Let g(x) = btx
t + ... + bmxm ∈ rR〈x;α〉(f(x)R〈x;α〉) of minimal length

with bm 6= 0. Then

f(x)R〈x;α〉g(x) = 0,

and we have that f(x)1−qx
−qR

∑m
i=t αj(bi1−j)x

i+j = 0, for every j ∈ Z.

Thus, aqRαj(1−jbm) = 0, for every j ∈ Z. Hence, aqR〈x;α〉bm = 0 and

we have that

aqR〈x;α〉g(x) = aqR〈x;α〉(btx
t + ...+ bm−1x

m−1).

So,

f(x)R〈x;α〉aqR〈x;α〉(btx
t + ...+ bm−1x

m−1)) =

= f(x)(R〈x;α〉aqR〈x;α〉)g(x) = 0,

for every j ∈ Z, and we obtain that

f(x)R〈x;α〉aqR(αj(bt1−j)x
t+j + ...+ αj(bm−11−j)x

m−1+j) = 0,
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for every j ∈ Z. Note that by choice of g(x), we have that aqR(αj(bt1−j)x
t+j+

...+ αj(bm−11−j)x
m−1+j)) = 0. Thus,

aqR〈x;α〉(αj(bt1−j)x
t+j + ...+ αj(bm−11−j)x

m−1+j) = 0

and it follows that

aq ∈ lR(R〈x;α〉(αj(bt1−j)x
t+j + ...+ αj(bm−11−j)x

m−1+j)+

+R〈x;α〉(bmxm)),

for every j ∈ Z. Hence,

(apx
p + ....+ aq−1x

q−1)R〈x;α〉g(x) = (0),

and we obtain that aq−1Rαj(1−jbm) = 0, for every j ∈ Z. Consequently,

(apx
p + ....+ aq−1x

q−1)R〈x;α〉aq−1R〈x;α〉
∑m−1

i=t bix
i =

f(x)(R〈x;α〉aq−1R〈x;α〉)g(x) = (0).

By choice of g(x), we have that

aq−1R〈x;α〉g(x) = (0)

and we get

aq−1 ∈ lR(R〈x;α〉(αj(bt1−j)x
t+j + ...+ αj(bm−11−j)x

m−1+j)+

+R〈x;α〉(bmxm))

for every j ∈ Z. Now, repeating this process we obtain that

as ∈ lR(R〈x;α〉(αj(bt1−j)x
t+j + ...+ αj(bm−11−j)x

m−1+j)+

+R〈x;α〉(bmxm))

for every p ≤ s ≤ q and j ∈ Z. Since asR〈x;α〉bmxm = (0), for every p ≤

s ≤ q, then (apx
p+....+aqx

q)R〈x;α〉bm = (0). This is a contradiction.



28 On partial skew Armendariz rings

3. On partial skew Armendariz ring

Rege and Chhawchharia introduced the notion of an Armendariz ring,

see [9]. A ring R is called Armendariz if whenever polynomials
n
∑

i=0
aix

i,

m
∑

i=0
bix

i ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0, for every 0 ≤ i ≤ n and

0 ≤ j ≤ m. The name Armendariz ring was chosen because Armendariz,

showed that a reduced ring (i.e., a ring without nonzero nilpotent elements)

satisfies this condition, see [2]. Some properties of Armendariz rings have

been studied by many authors, see [2], [1], [30] and the literature quoted

therein. The authors in [27], introduced the notion of skew Armendariz

rings, they gave examples and investigated the properties of these rings.

In this section, we assume that R is an associative ring and α is a

partial action of an infinite cyclic group G on R such that (R,α) does not

necessarily have an enveloping action, unless otherwise stated.

Let S be a ring with an automorphism τ . Following [27], S is said to

be τ -rigid if aτ(a) = 0 implies that a = 0. Suppose that a partial action α

of an infinite cyclic group G on R has an enveloping action (T, σ), where

σ is an automorphism of T . In this case, a natural generalization of the

concept mentioned above it would be aα1(a1−1) = 0 ⇒ a = 0 and this is

equivalent to aσ(a) = 0 ⇒ a = 0. The next result shows that this natural

generalization implies that the partial action is a global action.

Proposition 1. Let α be a partial action of an infinite cyclic group G on

R and (T, σ) the enveloping action of (R,α), where σ is an automorphism

of T . If for every a ∈ R, aσ(a) = 0 ⇒ a = 0, then R = T .

Proof. We claim that for each t ∈ T such that tσ(t) = 0 we have that

t = 0. In fact, we easily have that t1Rα1(t1R1−1) = 0, which implies that

t1R = 0. Note that for each i > 0 we have that

(tσi(1R))σ(tσ
i(1R)σ

i−1(1R)σ
i(1R)) = 0.

Thus, we obtain that σ−i(tσi(1R))σ(σ
−i(tσi(1R)))1Rσ(1R) = 0, which

implies that σ−i(tσi(1R))σ(σ
−i(tσi(1R))) = 0 and by assumption we have

that σ−1(tσi(1R)) = 0. Hence, tσi(1R) = 0, for every i ≥ 0.

Now, let b = tσ−i(1R), for i > 0. Then bσ(bσ−i(1R)σ
−i−1(1R)) = 0.

Proceeding with similar method as above we obtain that tσ−i(1R) = 0,

for every i > 0. So, tT = 0 and by Remark 2.5 of [16] we have that t = 0.

Let T 1 = T ⊕ Z with usual sum and multiplication defined by the

rule (a, z)(b, z1) = (ab+ az1 + bz, zz1). Note that (0, 1) is the identity of

T 1. We can extend the automorphism σ of T to T 1 by the rule: σ(a, z) =
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(σ(a), z). We claim that T 1 is a σ-rigid ring, i.e, if (a, z) ∈ T 1 such that

(a, z)σ(a, z) = 0, then we have that (a, z) = 0. In fact, for each (a, z) ∈ T 1

such that (a, z)σ(a, z) = (0, 0) we have that aσ(a) = 0. Thus, a = 0 and

we obtain that (a, z) = (0, 0). Hence, by ([27], Corollary 4) and ([24],

Lemma 4) we have that all the idempotents of T 1 are invariant by σ. Since

for any idempotent e ∈ T , the element (e, 0) is an idempotent in T 1, then

σ(e) = e. So, σ(1R) = 1R and we have that R = T .

Remark 1. Let α be a partial action of an infinite cyclic group G on R

with an enveloping action (T, σ), where σ is an automorphism of T . It is

natural to ask if R[x;α] were reduced then we would have that R = T .

This is not true in general as show the following example: Let K be a field,

{ei : i ∈ Z} a set of central orthogonal idempotents, T = ⊕i∈ZKei with

an automorphism σ defined by σ(ei) = ei+1, for every i ∈ Z and R = Ke0.

We clearly have that the automorphism σ induces a partial action of the

group G =< σ > as follows: S0 = R, Si = 0, for every i ∈ Z\{0} and the

maps α0 = idR and αi = 0, for every i ∈ Z\{0}. Note that R[x;α] = R

and R & T .

In the next proposition we give necessary and sufficient conditions for

partial skew polynomial rings to be reduced rings and this generalizes

([27], Proposition 3).

Proposition 2. R[x;α] is reduced if and only if for every an ∈ Sn with

α−n(an)an = 0, n ≥ 0 implies that an = 0.

Proof. Suppose that R[x, α] is reduced. Let aj ∈ Sj such that α−j(aj)aj =

0, for j ≥ 0. Then ajx
jajx

j = αj(α−j(aj)aj)x
2j = 0. Hence, by assump-

tion we have that axj = 0. So, aj = 0.

Conversely, let f(x) =
∑n

i=0 aix
i be a polynomial in R[x;α] such that

(f(x))2 = 0. Then, αn(α−n(an)an) = 0 and by assumption we have that

an = 0. Proceeding in a similar way we obtain that a0 = a1 = ... = an = 0.

So, f = 0.

Using the Proposition 2 we can generalize the notion of σ-rigid rings

as follows.

Definition 1. Let G be an infinite cyclic group and α a partial action of

G on R. We say that R is a partial α-rigid ring if for every a ∈ Sn with

α−n(a)a = 0, n ≥ 0, we have that a = 0.

Remark 2. Note that if R is partial α-rigid, then R is reduced.

The following definition generalizes ([27], Definition).
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Definition 2. We say that R is a partial skew Armendariz ring if given

f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i in R[x;α] such that f(x)g(x) = 0,

then α−i(ai)bj = 0, for every 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Proposition 3. Suppose that (R,α) has an enveloping action (T, σ),

where σ is an automorphism of T . If R is a partial α-rigid ring then R is

a partial skew Armendariz ring.

Proof. Let f(x) =
∑n

i=0 aixi and g(x) =
∑n

j=0 bjxj be polynomi-

als in R[x;α] such that f(x)g(x) = 0. Then a0b0 = 0. Note

that for degree 1 we have that a0b1 + a1α1(b01−1) = 0 and

we obtain that α−1(a1)b0a1α1(b01−1) = 0. Thus, we have that

α−1(a1α1(b01−1))a1α1(b01−1)) = α−1(a1)b0a1α1(b01−1) = 0. Since R

is partial α-rigid then 0 = a1α1(b01−1) = α−1(a1)b0 and consequently

a0b1 = 0. Now, for degree 2 we have that

a0b2 + a1α1(b11−1) + a2α2(b01−2) = 0 (*)

Multiplying (*) on the right side by b1 and using the equality a0b1 = a0b0 =

0 we have that b0a2α2(b01−2) = 0. Thus, α−2(a2)b0a2α2(b01−2) = 0 and

we obtain that α−2(a2α2(b01−2))a2α2(b01−2) = α−2(a2)b0a2α2(b01−2) =

0. Hence, a2α2(b01−2) = α−2(a2)b0 = 0. So, b1a1α1(b11−1) = 0. Pro-

ceeding with similar method as before we have that 0 = a1α1(b11−1) =

α−1(a1)b1 and it follows that a0b2 = 0. Now, using a standard induction

we have the desired result.

Now, we recall some information on rings of quotients of a semiprime

ring R′ that we need in the sequel. For background on this subject we

refer the reader to [34], Section 24; [38], Chap. 9.

An ideal H of a semiprime ring R′ is essential as a two sided ideal if

rR′(H) = 0. The set of all essential ideals of R′ will be denoted by E =

E(R′). Note that E is a filter of ideals which is closed under multiplication

and intersection. If I is an ideal of R′, then I ⊕AnnR′(I) ∈ E .

Denote by Q = QE the ring of right quotients of R′ with respect to

the filter E , i.e., the Martindale ring of right quotients of R′. Recall that

the elements of Q arise from right R′-homomorphisms from H ∈ E to R′:

for any H ∈ E and a right R′-homomorphism f : H → R′ there exists

q ∈ Q such that qh = f(h), for every h ∈ H, and conversely, if q ∈ Q

there exists F ∈ E such that qF ⊆ R′. Also, elements q, p ∈ Q are equal

if and only if they coincide on some essential ideal of R′ and if qH = 0,

for some q ∈ Q and H ∈ E , then q = 0.
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Given an ideal I of R′, the closure of I in R′ as defined in [22] is

[I] = {x ∈ R′ | there existsH ∈ E(R′) withxH ⊆ I} =

{x ∈ R′ | there existsH ∈ E(R′) withHx ⊆ I}.

Note that [I] = rR′(rR′(I)) and if [I] = I, then I is a closed ideal.

Let R be a partial α-rigid ring. Then R is reduced and we have that R

has a Martindale ring of right quotients Q constructed as before. Following

[21] the partial action α can be extended to a partial action α∗ of G on Q,

where the ideals S∗
i are the extension of [Si] to Q. The ideal S∗

i for every

i ∈ Z is generated by a central idempotent 1∗i . Let Qs be the Martindale’s

right symmetric ring of quotients of R, i.e, according ([31], Proposition

5.14.7) we have that Qs = {q ∈ Q : qJ ⊆ R and Jq ⊆ R for some J ∈

E}. Now, let (I∗)s = {q ∈ Q : qJ ∪ Jq ⊆ I for some J ∈ E} and using

similar methods of ([21], Proposition 2.2) we have that Q(I)s ≃ (I∗)s,

where Q(I)s is the Martindale’s right symmetric ring of quotients of I.

Moreover, if I∗ is generated by a central idempotent, then we have that

(I∗)s = I∗ ∩Qs(R) and we denote (I∗)s = I∗∗.

By ([31], Proposition 5.14.17) we have that 1∗i ∈ Z(Q) = Z(Qs) and

1∗i ∈ (I∗)s, for every i ∈ Z. Thus S∗∗
i = Qs1∗i , for every i ∈ Z. Now, using

similar methods of ([21], Proposition 2.3 and Theorem 3.1), we can extend

the partial action α to a partial action α∗∗ = {α∗∗
i : S∗∗

−i → S∗∗
i : i ∈ Z} of

G on Qs and α∗∗
g = α∗

g|S∗∗

−i
, for every i ∈ Z. Moreover, by ([15], Theorem

4.5) we have that (Qs, α∗∗) has an enveloping action (T ′′, σ′′), where σ′′

is an automorphism of T ′′. We use these facts in the next result.

Proposition 4. R is partial α-rigid if an only if Qs is partial α∗∗-rigid.

Proof. Suppose that R is partial α-rigid. Let q ∈ S∗∗
n such that α∗∗

−n(q)q =

0. Since q ∈ S∗∗
−n ⊆ S∗

n, then there exists an essential ideal L of R such

that qL ⊆ Sn. Thus, for every l ∈ L we have that α∗∗
−n(q)ql = 0. By ([31],

Exercise 14.4) Qs is reduced, since R is reduced. Hence, qlα∗∗
−n(q) = 0,

which implies that 0 = qlα∗∗
−n(q)α

∗∗
−n(l1

∗
n) = qlα∗∗

−n(ql). Since α∗∗ = α∗|S∗∗

n
,

then by ([21], Theorem 3.1) we have that α∗
−n restricted to S−n is α−n and

we obtain that α∗∗ restricted to Sn is αn. So, 0 = qlα∗∗
−n(ql) = qlα−n(ql)

and by assumption we have that ql = 0, for every l ∈ L. Consequently,

qL = 0. Therefore, q=0.

The converse is trivial.

In the next result we show that partial α-rigid rings are partial skew

Armendariz rings and it generalizes ([27], Corollary 4).



32 On partial skew Armendariz rings

Theorem 2. If R is partial α-rigid, then R is partial skew Armendariz.

Proof. By Proposition 4, Qs is partial α∗∗-rigid and by Proposition 3, Qs

is partial skew Armendariz. Since R is a subring of Qs and α∗∗
i |Si

= αi,

we have that R is partial skew Armendariz.

Remark 3. By Example 4.5 the converse of the Theorem 3.9 is not true.

In the next two results we give examples of partial skew Armendariz

rings. The next result generalizes ([27], Proposition 10) with similar proof.

Proposition 5. Let D be a domain and α a partial action of an infinite

cyclic group G on D. Then D is partial skew Armendariz.

One may ask if there exits a partial action of a group G on a domain

S. The next example shows that such partial action exists.

Example. Assume that D is a domain, that is not a division ring,

with identity element, σ is an automorphism of D such that σi 6= idD,

for any i 6= 0 and I a two-sided ideal of D. For any integer i we define

Si = I ∩ σi(I) and αi : S−i → Si as the restriction of σ−i to S−i. Then it

is easy to see that α = {αi | i ∈ Z} is a partial action of the infinite cyclic

group G =< σ > on I.

Let M be a (R,R)-bimodule. Then the trivial extension of R by M is

the ring T (R,M) = R⊕M with usual sum and the following multiplication:

(r,m)(s, n) = (rs, rn + ms). This ring is isomorphic to the ring of all

matrices

[

r m

0 r

]

, where r ∈ R and m ∈ M with usual matrix sum and

multiplication.

Let α = {αi : S−i → Si} be a partial action of an infinite cyclic group

G on R and T (R,R) the trivial extension of R. Then we can extend the

partial action α to T (R,R) as follows: S̄i = T (Si, Si) and ᾱi : S̄−i → S̄i

with ᾱi(a, b) = (αi(a), αi(b)), for every i ∈ Z. Since T (R, 0) is isomorphic

to R, we can identify the restriction of ᾱi to T (R, 0) with αi, for every

i ∈ Z. The next proposition provides examples of partial skew Armendariz

rings that are not semi-prime rings and it generalizes ([27], Proposition

15).

Proposition 6. If R is a partial α-rigid ring, then T (R,R) is a partial

skew Armendariz ring.

Proof. Let f(x) =
∑n

i=0(ai, bi)x
i and g(x) =

∑n
j=0(cj , dj)x

j be elements

in T (R,R)[x;α] such that f(x)g(x) = 0. We easily have that f(x) =

(p0, p1), g(x) = (q0, q1) and 0 = f(x)g(x) = (p0q0, p0q1 + p1q0), where

p0 =
∑n

i=0 aix
i, p1 =

∑n
i=0 bix

i, q0 =
∑n

j=0 cjx
j and q1 =

∑n
j=0 djx

j .
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Note that q0p0 = 0 and using similar ideas of ([27] Proposition 15)

we obtain that p0q1 = p1q0 = 0. Hence, by Theorem 2, α−i(ai)cj =

α−i(ai)dj = α−i(bi)cj = 0, for every 0 ≤ i ≤ n and 0 ≤ j ≤ n. So,

(α−i(ai), α−i(bi))(cj , dj) = (0, 0), for every 0 ≤ i ≤ n and 0 ≤ j ≤ n.

A right annihilator of a non-empty subset X of a not necessarily

associative ring S′ is defined by rS′(X) = {a ∈ S : Xa = 0}. Since S′ is

not necessarily associative, then rS′(X) is not necessarily a right ideal. If

we have an associative ring S1 contained in S, then for every non-empty

subset Y of S1 we have rS1
(Y ) = rS(Y ) ∩ S1. We put rAnnR(2

R) =

{rR(U) : U ⊆ R} and for a not necessarily associative ring S′ we put

analogously rAnnS′(2S
′

) = {rS′(U) : U ⊆ S′}.

Lemma 2. Let U be a non-empty subset of R. Then

rR[x;α](U) = rR(U)R[x;α].

Proof. Let f(x) =
∑n

i=0 aix
i ∈ R[x;α] such that Uf(x) = 0. Then

Uai = 0 for every 0 ≤ i ≤ n and it follows that ai ∈ rR(U) for every

0 ≤ i ≤ n. Thus, f(x) =
∑n

i=0 aix
i ∈ rR(U)R[x;α]. Hence, rR[x;α](U) ⊆

rR(U)R[x;α] and we easily have that rR(U)R[x;α] ⊆ rR[x;α](U). So,

rR[x;α](U) = rR(U)R[x;α].

From Lemma 2 we have the maps

φ : rAnnR(2
R) → rAnnR[x;α](2

R[x;α])

defined by φ(I) = IR[x;α], for every I ∈ rAnnR(2
R) and

Ψ : rAnnR[x;α](2
R[x;α]) → rAnnR(2

R)

defined by Ψ(J) = J ∩R, for every J ∈ rAnnR[x;α](2
R[x;α]). Obviously, φ

is injective and Ψ is surjective. Clearly φ is surjective if and only if Ψ is

injective, and in this case φ and Ψ are the inverses of each other.

The following result generalizes ([11], Proposition 3.2).

Lemma 3. The following conditions are equivalent:

(i) R is a partial skew Armendariz ring.

(ii) φ : rAnnR(2
R) → rAnnR[x;α](2

R[x;α]) is bijective.

Proof. Suppose that R is a partial skew Armendariz ring. It is only

necessary to show that φ is surjective. For every f(x) =
∑n

i=0 aix
i ∈

R[x;α] we define Cf(x) = {α−i(ai), 0 ≤ i ≤ n} and for a subset S of

R[x;α] we denote the set ∪
f(x)∈S

Cf(x) by CS . We claim that rR[x;α](f(x)) =
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rR[x;α](Cf(x)). In fact, let g(x) =
∑m

i=0 bix
i ∈ rR[x;α](f(x)). Then, we have

that f(x)g(x) = 0. By assumption, we have that α−i(ai)bj = 0, for every

0 ≤ i ≤ n and 0 ≤ j ≤ m. Thus, g(x) ∈ rR[x;α](Cf(x)).

On the other hand, let h(x) =
∑p

i=0 cix
i be an element in R[x;α] such

that Cf(x)h(x) = 0. Then we have that α−i(ai)ck = 0, for every 0 ≤ i ≤ n

and 0 ≤ k ≤ p, which implies that f(x)h(x) = 0.

Since R is partial skew Armendariz, then rR[x;α](S) =

rR[x;α]( ∪
f(x)∈S

Cf(x)) and by Lemma 2 we have that rR[x;α](Cf(x)) =

rR(Cf(x))R[x;α]. Hence,

rR[x;α](S) = ∩
f(x)∈S

rR[x;α](f(x)) = ∩
f(x)∈S

rR[x;α](Cf(x)) =

= ( ∩
f(x)∈S

rR(Cf(x)))R[x;α] = rR(CS)R[x;α].

So, φ is surjective.

Conversely, let f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i be ele-

ments in R[x;α] such that f(x)g(x) = 0. Then, by assumption, g(x) ∈

rR[x,α](f(x)) = BR[x;α], for some right ideal B of R. Thus, we have that,

bi ∈ B ⊂ rR[x;α](f(x)), for every 0 ≤ i ≤ m. Hence, α−i(ai)bj = 0, for

every 0 ≤ i ≤ n and 0 ≤ j ≤ m. So, R is a partial skew Armendariz

ring.

The next lemma generalizes ([27], Corollary 19) and the proof is similar.

Lemma 4. Let R be a partial skew Armendariz ring and e =
∑n

i=0 eix
i ∈

R[x;α]. If e2 = e, then e = e0.

The following definition appears in [26].

Definition 3. A ring R is called a Baer ring, if the left annihilator of

each subset of R is generated by an idempotent.

Remark 4. Note that the definition of a Baer ring is left-right symmetric.

The notion of right ideals in non-associative rings is the same as in

associative rings. Moreover, if S′ is not necessarily associative, we have

for each a ∈ S′ the set aS′ : {as : s ∈ S′}. We use these facts in the next

results.

The proofs of the next four theorems are similar with ([11], Theorem

3.6), ([11], Theorem 3.8), ([11], Proposition 3.9) and ([12], Theorem 2.8)

respectively, and we put their proofs here for the reader’s convenience.

The next theorem generalizes ([11], Theorem 3.6).
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Theorem 3. Suppose that R is a partial skew Armendariz ring. Then the

following conditions are equivalent:

(i) R is a Baer ring.

(iii) R[x;α] satisfies the following property: for every non-empty subset

U of R[x;α] we have that rR[x;α](U) = eR[x;α], for some idempotent

e ∈ R.

Proof. Suppose that R is a Baer ring. Let ∅ 6= U be a subset of R[x;α] and

f(x) =
∑n

i=0 aix
i ∈ U . We define Cf(x) = {α−i(ai), for every 0 ≤ i ≤

n}, and CU = ∪
f(x)∈U

Cf(x). By assumption, we have that rR(CU ) = eR,

with e2 = e. It is easy to see that eR[x;α] ⊂ rR[x;α](U). By Lemma 3, we

have

rR[x;α](U) = rR(CU )R[x;α] = eR[x;α].

Conversely, let ∅ 6= A be a subset of R. Then, by assumption we

have that rR[x;α](A) = eR[x;α], where e2 = e. By Lemma 4, e = e0 is a

constant polynomial. Thus,

rR[x;α](A) = eR[x;α] = e0R[x;α].

Hence, rR[x;α](A)∩R = e0R[x;α]∩R = e0R. So, R is a Baer ring.

Definition 4. A ring R is called left (right) p.p if the left (right) anni-

hilator of every element is generated by an idempotent as a left (right)

ideal.

The next theorem generalizes ([11], Theorem 3.8).

Theorem 4. Suppose that R is a partial skew Armendariz ring. Then the

following conditions are equivalent:

(i) R is a right p.p-ring.

(ii) R[x;α] satisfies the following property: for every polynomial f(x)

of R[x;α] we have rR[x;α](f(x)) = eR[x;α], for some idempotent e ∈ R.

We recall that a ring S satisfies the ascending chain condition on

right annihilator ideals if for any chain rS(Y1) ⊆ rS(Y2) ⊆ ..., there exists

i ≥ 1 such that rS(Yi) = rS(Yi+p), for all p ≥ 0, where Yj are non-empty

subsets of S for every j ≥ 0. Moreover, for a not necessarily associative

rings S′ satisfies the ascending chain conditions on right annihilators if

rS′(Y ′
1) ⊆ rS′(Y ′

2) ⊆ ..., there exists i ≥ 1 such that rS′(Y ′
i ) = rS′(Y ′

i+p),

for all p ≥ 0, where Y ′
j are non-empty subsets of S′ for every j ≥ 0. In the

next proposition, we suppose that R is a partial skew Armendariz ring
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to study the transfer of ascending chain condition on right annihilators

property between R and R[x;α] and this generalizes ([11], Proposition

3.9).

Theorem 5. Suppose that R is a partial skew Armendariz ring. Then the

following conditions are equivalent:

(i) R satisfies ascending chain condition on right annihilator ideals.

(ii) R[x;α] satisfies the ascending chain condition on right annihilators.

Proof. Suppose that R[x;α] satisfies the ascending chain condition on

right annihilators. We consider the chain, rR(U1) ⊂ rR(U2) ⊂ .., where

Ui ⊂ R, for every i ≥ 1. We claim that rR[x;α](Ui) ⊂ rR[x;α](Ui+1). In fact,

let g(x) =
∑n

i=0 cix
i be an element of R[x;α], such that Uig(x) = (0).

Then, Uicj = (0), and we obtain that Ui+1cj = (0). Hence, by assumption

there exists l ≥ 1 such that rR[x;α](Ul) = rR[x;α](Ul+p), for every p ∈ N .

So,

rR(Ul) = rR[x;α](Ul) ∩R = rR[x;α](Ul+p) ∩R = rR(Ul+p),

for every p ∈ N.

Conversely, suppose that rR[x;α](V1) ⊂ rR[x;α](V2) ⊂ .... By Lemma 3,

rR[x;α](Vi) = rR(CVi
)R[x;α], where CVi

= ∪
f(x)∈Vi

Cf(x),

Cf(x) = {α−i(ai), for every 0 ≤ i ≤ m}

and f(x) =
∑m

i=0 aix
i. We claim that rR(CVi

) ⊂ rR(CVi+1
). In fact,

let y ∈ rR(CVi
). Then we have that CVi

y = 0. Thus, f(x)y = 0, for

every f(x) ∈ Vi. Hence, CVi+1
y = 0 and by assumption, there exists

n ≥ 1 such that rR(CVn) = rR(CVn+k
), for every k ∈ N. So, rR[x;α](Vn) =

rR[x;α](Vn+k), for every k ∈ N.

In [18], Faith called a ring R right zip if the right annihilator rR(U)

of a non-empty subset U of R is zero implies that rR(Y ) = 0 for every

non-empty finite subset Y ⊆ U . Equivalently, for a left ideal L of R with

rR(L) = 0, there exists a finitely generated left ideal L1 ⊆ L such that

rR(L1) = 0. R is zip if it is right and left zip. The concept of zip rings

was initiated by Zelmanowitz [39] and appeared in various papers [3], [6],

[7], [8], [18] [19], and references therein. Zelmanowitz stated that any ring

satisfying the descending chain condition on right annihilators ideals is

a right zip ring (although not so-called at that time), but the converse

does not hold. Extensions of zip rings were studied by several authors.

Beachy and Blair [3] showed that if R is a commutative zip ring, then

the polynomial ring R[x] over R is zip. The authors in [25] proved the
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following result: suppose that R is Armendariz ring. Then R is a right

(left) zip ring if and only if R[x] is a right (left) zip ring. The next result

generalizes ([12], Theorem 2.8).

Theorem 6. Suppose that R is a partial skew Armendariz ring. Then the

following conditions are equivalent:

(i) R is a right zip ring.

(ii) R[x;α] satisfies the following property: for every non-empty subset

U of R[x;α] such that rR[x;α](U) = 0, we have that rR[x;α](Y ) = 0 for any

non-empty finite subset Y of X.

Proof. Suppose that R is a right zip ring. Let U be a non-empty subset

of R[x;α] such that rR[x;α](U) = 0. Then, by Lemma 3, rR[x;α](U) =

rR(CU )R[x;α], where CU = ∪f(x)∈UCf(x) and Cf(x) = {α−i(ai) : 0 ≤ i ≤

n} with f(x) =
∑n

i=0 aix
i ∈ U . Thus, rR(CU ) = 0 and by assumption for

any non-empty finite subset W = {α−i1(ai1), ..., α−in(ain)} of CU we have

that rR(W ) = 0. For every α−ij (aij ) ∈ W there exists gaij (x) ∈ U such

that some of the coefficients of gaij (x) are aij , for every 1 ≤ j ≤ n. Let

U0 be a minimal subset of U such that gaij (x) ∈ U0, for every 1 ≤ j ≤ n.

Then U0 is non-empty finite subset of U . We denote W0 = ∪f(x)∈U0
(Cf(x))

and note that W ⊆ W0. Hence, rR(W0) ⊆ rR(W ) = 0 and, by Lemma 3,

rR[x;α](U0) = rR(W0)R[x;α]. So, rR[x;α](U0) = 0.

Conversely, let Y be a non-empty subset of R such that rR(Y ) = 0

and f(x) =
∑n

i=0 aix
i ∈ rR[x;α](Y ). Then we have that ai ∈ rR(Y ) = 0

and it follows that f(x) = 0. Thus, by assumption for any non-empty

finite subset Y1 = {y0, ..., yn} of Y we have that rR[x;α](Y1) = 0. Hence,

rR(Y1) = rR[x;α](Y1) ∩R = (0).

4. Examples

In this section, we give an example to show that the partial skew Laurent

polynomial rings and the partial skew polynomial rings are not necessarily

associative rings if the base ring satisfy either Baer or quasi-Baer or p.q.

Baer or p.p. Moreover, for a ring R with a partial action α of a group

G with enveloping action (T, β) we study the transfer of Baer property,

quasi-Baer property, p.q. Baer property and p.p property between R

and T .

We begin with the following proposition.

Proposition 7. Let α be a partial action of an infinite cyclic group G on

R and (T, σ) its enveloping action, where σ is an automorphism of T . If

T is σ-rigid, then R is partial α-rigid.
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Proof. Let a ∈ Sn such that α−n(a)a = 0. Then σ−n(a)a = 0, which

implies that aσn(a) = 0. Thus, by ([28], Lemma 4) we have that a2 = 0.

So, a = 0, since T is reduced.

The next example shows that the converse of the proposition above is

not true.

Example 1. Let K be a field and T = ⊕i∈ZKei, where {ei, i ∈ Z} are

orthogonal central idempotents. We define an action of an infinite cyclic

group G generated by σ as follows: σ|K = idK and σ(ei) = ei+1. Assume

that R = Ke0 and we have a partial action α of G on R. Note that R

is partial α-rigid, but T is not σ-rigid, because e2σ(e2) = e2e3 = 0 and

e2 6= 0.

Let T ′ be a ring and σ′ an endomorphism of T ′. The skew polyno-

mial ring of endomorphism type T ′[x;σ′] is the set of all finite formal

sums
∑n

i=0 aix
i with usual sum and the multiplication rule is axibxj =

aσi(b)xi+j . Next, we recall the definition that appears in ([27], Definition).

Definition 5. Let T ′ be a ring and σ′ an endomorphism of T ′. The ring

T ′ is said to be skew Armendariz ring if given f(x) =
∑n

i=0 aix
i and

g(x) =
∑m

i=0 bix
i in T [x;σ′] such that f(x)g(x) = 0, then aiσ

i(bj) = 0,

for every 0 ≤ i ≤ n and 0 ≤ j ≤ m.

When a partial action α of G on R has an enveloping action (T, σ)

one may ask if R were a partial skew Armendariz ring, then T would be

a skew Armendariz ring, but the next example shows that this is not true

in general.

Example 2. Let K, T , σ, R and α as in the Example 1. We clearly have

that R is a partial skew Armendariz ring, but T is not skew Armendariz

since for f = e−1 + e−1x and g = −e−2 + e−1x in T [x;σ] we obtain that

fg = 0 and e−1e−1 6= 0.

The next example shows that the partial skew Armendariz property

does not imply the associativity of the partial skew polynomial rings and

partial skew Laurent polynomial rings. Moreover, the next example shows

that the converse of Theorem 3.9 is not true.

Example 3. Let R = K[X,Y ]/(X2, Y 2), where K is a field. Then R =

K1 +Kx+Ky +Kxy, where x and y represent the classes of X and Y

in R. Note that R is a four dimensional K-vector space. Let G =< σ >

be an infinite cyclic group generated by σ and we define the partial action

α of G on R as follows: let I = Kx + Kxy, Si = I and αi : S−i → Si
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defined by αi(x) = xy, αi(xy) = x and αi|K = idK , for every i ∈ Z \ {0}

(by definition S0 = R and α0 = idR). We claim that R is a partial skew

Armendariz ring. In fact, let f(z) = (γ0+γ1x+γ2y+γ3xy)+(a0x+b0xy)z

and g(z) = (θ0+θ1x+θ2y+θ3xy)+(a1x+b1xy)z be polynomials of degree

1 in R[z;α] such that f(z)g(z) = 0. Then (γ0 + γ1x+ γ2y + γ3xy)(θ0 +

θ1x+ θ2y+ θ3xy) = 0, which implies γ0θ0 = 0. Thus, we have the followin

g cases:

Case 1: If γ0 = 0 and θ0 6= 0, then we have that f(z) = 0.

Case 2: If γ0 6= 0 and θ0 = 0, then we have that g(z) = 0.

Case 3: If γ0 = θ0 = 0, then we have that (γ1θ2 + γ2θ1)xy = 0 and

γ2a1x = b0θ2xy = 0. Thus, γ2a1 + b0θ2 = 0, γ2a1 = 0 and b0θ2 = 0, which

implies either γ2 = 0 or a1 = 0 and either b0 = 0 or θ2 = 0. Hence, we

have the following cases:

Case 3.1: If γ2 = 0, a1 6= 0, b0 = 0 and θ2 6= 0, then we have that

[(γ1x + γ3xy) + (a0x)z][(θ1x + θ2y + θ3xy) + (a1x + b1xy)z] = 0. Thus,

(γ1x+ γ3xy)(θ1x+ θ2y + θ3xy) = 0, α1(α−1(a0x)(θ1x+ θ2y + θ3xy)) =

α1((a0xy)(θ1x+ θ2y + θ3xy)) = 0 and α1(α−1(a0x)(a1x+ b1xy)) = 0.

Case 3.2: If γ2 = 0, a1 6= 0, b0 6= 0, θ2 = 0, then we have that

[(γ1x+ γ3xy) + (a0x+ b0xy)z][(θ1x+ θ3xy) + (a1x+ b1xy)z] = 0. Thus,

α1(α−1((a0x + b0xy))(θ1x + θ3xy)) = α1((a0xy + b0x)(θ1x + θ3xy)) =

0, (γ1x + γ3xy)(a1x + b1xy) = 0, (γ1x + γ3xy)(θ1x + θ3xy) = 0 and

α1(α−1((a0x+ b0xy))(a1x+ b1xy)) = 0.

Case 3.3: If γ2 6= 0, a1 = 0, θ2 = 0, b0 6= 0, then we have that

[(γ1x + γ2y + γ3xy) + (a0x)z][(θ1x + θ2y + θ3xy) + (b1xy)z] = 0. Thus,

α1(α−1(a0x)(θ1x + θ2y + θ3xy)) = α1(a0xy(θ1x + θ2y + θ3xy)) = 0,

α1(α−1(a0x)(b1xy)) = 0, (γ1x+ γ2y + γ3xy)(b1xy) = 0 and (γ1x+ γ2y +

γ3xy)(θ1x+ θ2y + θ3xy) = 0.

Case 3.4: If γ2 6= 0, a1 = 0, θ2 6= 0, b0 = 0, then we have

that [(γ1x + γ2y + γ3xy) + a0xz][(θ1x + θ2y + θ3xy) + (b1xy)z] =

0. Thus, α1(α−1(a0x)(θ1x + θ3xy)) = α1((a0xy)(θ1x + θ3xy)) = 0,

α1(α−1(a0x)(b1xy)) = 0, (γ1x+ γ2y + γ3xy)(b1xy) = 0 and (γ1x+ γ2y +

γ3xy)(θ1x+ θ3xy) = 0.

Case 3.5: If γ2 = 0, a1 = 0, θ2 6= 0, b0 = 0, then we have that [(γ1x+

γ3xy)+(a0x)z][(θ1x+θ2+θ3xy)+(b1xy)z] = 0. Thus, α1(α−1(a0x)(θ1x+

θ2y+θ3xy)) = α1((a0xy)(θ1x+θ2y+θ3xy)) = 0, α1(α−1(a0x)(b1xy)) = 0,

(γ1x+ γ3xy)(b1xy) = 0 and (γ1x+ γ3xy)(θ1x+ θ3xy) = 0.

Case 3.6: If γ2 = 0, a1 = 0, θ2 = 0, b0 6= 0, then we have that

[(γ1x + γ3xy) + (a0x + b0xy)z][(θ1x + θ3xy) + (b1xy)z] = 0. Thus,

α1(α−1(a0x + b0xy)(θ1x + θ3xy)) = α1((a0xy + b0x)(θ1x + θ3xy)) = 0,

α1(α−1(a0x + b0xy)(b1xy)) = 0, (γ1x + γ3xy)(b1xy) = 0 and (γ1x +
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γ3xy)(θ1x+ θ3xy) = 0.

Case 3.7: If γ2 = 0, a1 6= 0, θ2 = 0, b0 = 0, then we have that [(γ1x+

γ3xy)+(a0x)z][(θ1x+θ3xy)+(a1x+b1xy)z] = 0. Thus, α1(α−1(a0x)(θ1x+

θ3xy)) = α1((a0xy)(θ1x + θ3xy)) = 0, α1(α−1(a0x)(a1x + b1xy)) = 0,

(γ1x+ γ3xy)(a1x+ b1xy) = 0 and (γ1x+ γ3xy)(θ1x+ θ3xy) = 0.

Case 3.8: If γ2 6= 0, a1 = 0, θ2 = 0, b0 = 0, then we have that [(γ1x+

γ2y+γ3xy)+(a0x)z][(θ1x+θ3xy)+(b1xy)z] = 0. Thus, α1(α−1(a0x)(θ1x+

θ3xy)) = α1((a0xy)(θ1x + θ3xy)) = 0, α1(α−1(a0x)(b1xy)) = 0, (γ1x +

γ2y + γ3xy)(b1xy) = 0 and (γ1x+ γ2y + γ3xy)(θ1x+ θ3xy) = 0.

Case 3.9: If γ2 = 0, a1 = 0, θ2 = 0, b0 = 0, then we have that [(γ1x+

γ3xy) + (a0x)z][(θ1x + θ3xy) + (b1xy)z] = 0. Thus, α1(α−1(a0x)(θ1x +

θ3xy)) = α1((a0xy)(θ1x + θ3xy)) = 0, α1(α−1(a0x)(b1xy)) = 0, (γ1x +

γ3xy)(b1xy) = 0 and (γ1x+ γ3xy)(θ1x+ θ3xy) = 0.

So, the result follows for polynomials of degree 1.

Next, let f(z) =
∑n

i=0 aiz
i and g(z) =

∑n
i=0 biz

i be polynomials of

degree n in R[z;α] such that f(z)g(z) = 0. Then a0b0 = 0. Since I2 = 0,

we have that αi(α−i(ai)bj) = 0, for every 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Thus, we have that 0 = f(z)g(z) = a0b0+(a0+α1(α−1(a1)b0))z+(a0b2+

α2(α−2(a2)b0)z
2+ ....+(a0bn+αn(α−n(an)b0))z

n. Now, we can apply the

methods used to prove the result for polynomials of degree 1 to the degree

0 and 1, degree 0 and 2, and so on. So, R is partial skew Armendariz.

Moreover, the ring R[z;α] is not associative, because ((y)(xyz))y = 0 and

(y)((xyz)y) = (y)(xz) = xyz 6= 0.

The following definition appears in [26] and [5].

Definition 6. (i) A ring R is called a left (right) quasi-Baer ring, if

the left (right) annihilator of any left (right) ideal is generated by an

idempotent as a left (right) ideal.

(ii) A ring R is called a left (right) p.q.-Baer ring if the left (right)

annihilator of any principal left (right) ideal is generated by an idempotent

as a left (right) ideal.

Remark 5. It is well-known that Baer rings ⇒ left (right) quasi-Baer

rings ⇒ left (right) p.q-Baer rings and that Baer rings ⇒ left (right)

p.p-rings. In the articles [5], [27], [28] and the literature quoted therein we

can find examples where the converse of each arrow is not true in general.

In [23] ([35]), the author defined u.p. semigroups (groups) i.e, a semi-

group (group) G′ is an u.p semigroup (group) if for any non-empty subsets

A and B of G′, there exists at least one y ∈ G′ that has an unique repre-

sentation of the form y = ab with a ∈ A and b ∈ B. It is not difficult to
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show that any cyclic group is an u.p group. The author in [23] used u.p.

groups to study groups rings that are Baer and p.p rings. It is convenient

to remark that this concept is used to the characterization of zero divisors

in group rings and semigroups rings.

One may ask if Baer, quasi-Baer, p.q-Baer and p.p-rings would imply

the associativity of the partial skew Laurent polynomial ring, but the next

example shows that this is false in general and part of the example below

is contained in ([32], Proposition 2.1).

We denote the Jacobson radical of a ring S1 by J(S1).

Example 4. Let H be a cyclic group of order 5 and F a field of characteris-

tic 5. Then, by ([23], Theorem 2) we have that that FH is a Baer ring. Since

H is cyclic it follows that J(FH)3 has dimension 2 over F and we have

that J(FH) k J(FH)3. Note that {1, (y− 1), (y− 2)2, (y− 1)3, (y− 1)4}

is an F -basis of FH. It is easy to see that J(FH)3 = FH(y − 1)3 is the

subspace generated by (y − 1)3 and (y − 1)4. Let G be an infinite cyclic

group generated by σ, I = J(FH)3 and α the partial action of G on FH

defined as follows: Si = S−i = I for every 0 6= i ∈ Z and αi : S−i → Si

given by αi((y− 1)3) = (y− 1)4 and αi((y− 1)4) = (y− 1)3 (by definition

S0 = FH and α0 is the identity automorphism of FH). In this case

FH ∗α G = FH < x;α >. We claim that FH < x;α > is not associative.

In fact, let a = (y−1)+(y−1)3x (note that (y−1) ∈ J(FH) ⊆ FH = S0

and (y−1) /∈ J(FH)3 = I). Then we obtain that a.a = (y−1)2+(y−1)4x.

Thus, we have that (aa)a = (y − 1)3 + (y − 1)3x while a(aa) = (y − 1)3.

So, (FH) < x;α > is not associative and consequently (FH)[x;α] is not

associative by the same reasons.

Let G be a group and α a partial action of G on R. Suppose that

(R,α) has enveloping action (T, β). One may ask if R is either Baer or

quasi-Baer or p.q-Baer or p.p. implies that T is either Baer or quasi-Baer

or p.q-Baer or p.p, respectively. The next example shows this is not true

in general.

Example 5. Consider T , R, σ and α as in the Example 1. We clearly

have that R is Baer but T is not Baer, quasi-Baer , right (left) p.q.Baer

and right (left) p.p. In fact, let y = e1. Then rT (e1) = ⊕i∈Z, i 6=1Kei that

is not generated by an idempotent.

The proof of the following lemma is standard an so we omit it here.

Lemma 5. Let S be a ring and I an ideal of S generated by a central

idempotent. Then the following statements hold:

(i) If S is Baer, then I is Baer.
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(ii) If S is quasi-Baer, then I is quasi-Baer.

(iii) If S is right (left) p.q.-Baer, then I is right (left) p.q.-Baer.

(iv) If S is right (left) p.p, then I is right (left) p.p.

By ([20], Proposition 1.2) a partial action α of a group G on R with

enveloping action (T, β) is of finite type if there exists g1, ..., gn ∈ G such

that T =
∑n

i=1 βgi(R). Moreover, T has a unit 1T .

In the next result we suppose that the partial action α of G on R with

enveloping action (T, β) is of finite type.

Theorem 7. (i) R is Baer if and only if T is Baer.

(ii) R is quasi-Baer if and only if T is quasi-Baer.

(iii) R is right (left) p.q.-Baer if and only if T is right (left) p.q-Baer.

(iv) R is right (left) p.p if and only if T is right (left) p.p.

Proof. We only need to prove (i) because the other ones use similar ideas.

Suppose that R is Baer and let ∅ 6= Y be any subset of T . Then by ([20],

Proposition 1.10 and Remark 1.11) we have that T = R⊕A1 ⊕ ...⊕An

and 1T = 1R+f1+f2+ ...+fn, where 1R, f1, ..., fn are orthogonal central

idempotents with fi ∈ Ai for every 1 ≤ i ≤ n. Thus, for any y ∈ Y we have

that y = y1R+yf1+...+yfn ∈ Y 1R⊕Y f1⊕...⊕Y fn. Hence, for every a ∈

rT (Y ) and y ∈ Y , we have that ya = y1Ra1R + yf1af1 + ...+ yfnafn = 0,

which implies y1Ra1R = yf1af1 = ... = yfnafn = 0. So, a1R ∈ rR(Y 1R),

afi ∈ rAi
(Y fi) for every 1 ≤ i ≤ n and since a = a1R + af1 + ...+ afn,

we obtain that a ∈ rR(Y 1R)⊕ rA1
(Y f1)⊕ ...⊕ rAn(Y fn).

On the other hand, for every z ∈ rR(Y 1R)⊕ rA1
(Y f1)⊕ ...⊕ rAn(Y fn)

we have that yz = 0 for every y ∈ Y . Thus, rT (Y ) = rR(Y 1R) ⊕

rA1
(Y f1)⊕ ...⊕ rAn(Y fn). By the fact that the Baer property is preserved

by isomorphisms and using Lemma 5, we obtain that rR(Y 1R) = eR,

rAi
(Y fi) = eiAi, for 1 ≤ i ≤ n. Hence, rT (Y ) = eR ⊕ e1A1 ⊕ ...⊕ enAn.

So, rT (Y ) = (e+ e1+ ...+ en)T and we easily have that e+ e1+ ...+ en is

an idempotent since eei = ejek = 0, for every 1 ≤ i, j, k ≤ n with j 6= k.

By Lemma 5 the converse follows.

One may ask if a partial action α of an infinite cyclic group G on R

with enveloping action (T, σ) such that α is of finite type we would have:

R is partial α-rigid ⇔ T is σ-rigid and R is partial skew Armendariz ⇔

T is skew Armendariz. The next example shows that these facts are not

true in general.

Example 6. Assume that K is a field and T = ke1 ⊕Ke2 ⊕Ke3, where

{e1, e2, e3} are orthogonal central idempotents. We define an action of

an infinite cyclic group G generated by σ as follows: σ|k = idK and
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σ(ei) = ei+1. Let R = Ke1. We easily have a partial action α of G on R.

Note that (T, σ) is the enveloping action of (R,α), α is of finite type, R is

partial α-rigid and partial skew Armendariz, but T is not σ-rigid because

e2σ(e2) = 0 and e2 6= 0. We claim that T is not skew Armendariz. In fact,

let f(x) = e1+ e1x and g(x) = −e3+ e1x be polynomials in T [x;σ]. Then,

we have that f(x)g(x) = 0 and e1e1 6= 0. So, T is not a skew Armendariz

ring.
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