Thin systems of generators of groups

Ievgen Lutsenko

Communicated by V. I. Sushchansky

Abstract. A subset T of a group G with the identity e is called k-thin $(k \in \mathbb{N})$ if $|A \cap g A| \leqslant k,|A \cap A g| \leqslant k$ for every $g \in G$, $g \neq e$. We show that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or a torsion group without elements of order 2 , then there exists a 1 -thin system of generators of G. For every infinite group G, there exist a 2 -thin subset X such that $G=X X^{-1} \cup X^{-1} X$, and a 4 -thin subset Y such that $G=Y Y^{-1}$.

For a group G we denote by \mathcal{F}_{G} the family of all finite subsets of G. A subset A of an infinite group G with the identity e is said to be

- left (right) large if there exists $F \in \mathcal{F}_{G}$ such that $G=F A(G=A F)$;
- large if A is left and right large;
- left (right) small if $G \backslash F A(G \backslash A F)$ is left (right) large for every $F \in \mathcal{F}_{G} ;$
- small if A is left and right small;
- left (right) P-small if there exists an injective sequence $\left(g_{n}\right)_{n \in \omega}$ in G such that the subsets $\left\{g_{n} A: n \in \omega\right\}\left(\left\{A g_{n}: n \in \omega\right\}\right)$ are pairwise disjoint;
- P-small if A is left and right P -small;
- left (right) k-thin for $k \in \mathbb{N}$ if $|g A \cap A| \leqslant k(|A g \cap A| \leqslant k)$ for every $g \in G . g \neq e ;$
- k-thin, if A is left and right k-thin.

For the relationships between these types of subsets see [3]. In particular, every k-thin subset is small, but a small subset could be much more big than every k-thin subsets. For example, every k-thin subset T is a universal zero, i.e. $\mu(T)=0$ for every Banach measure μ on G. On the other hand, for every countable amenable group G and every $\varepsilon>0$, there exist a small subset S and Banach measure μ on G such that $\mu(S)>1-\varepsilon$. We note also that a subset A is left k-thin if and only if A^{-1} is right k-thin.

Answering a question from [4], I. V. Protasov [5] (see also [6, Theorem 13.1]) proved that every infinite group G can be generated by some small subset. Moreover, there exists a small and P-small generating subset of G [2].

In this paper we show (Theorem 1) that every infinite group G can be generated by some 2-thin subset. Moreover, if G is either Abelian or torsion group with no elements of order 2 , then G can be generated by some 1-thin subset. By Theorem 2, for every infinite group G, there exists a 2-thin subset X such that $G=X X^{-1} \cup X^{-1} X$. Since every k-thin subset is small, this is an answer to the Question 13.2 from [6]. We show also that, in every infinite group G, there is a 4 -thin subset X such that $G=X X^{-1}$.

Given a subset X of a group G, we denote by $\langle X\rangle$ the subgroup of G generated by X.

Theorem 1. Every infinite group G has a 2-thin system of generators. Moreover, if G has no elements of order 2 and G is either Abelian or a torsion group, then there exists a 1-thin system of generators of G.

Proof. Let $|G|=\kappa$. We construct inductively an increasing system $\left\{G_{\alpha}\right.$: $\alpha<\kappa\}$ of subgroups of G and a subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ such that
(i) $G_{0}=\langle e\rangle, G=\bigcup_{\alpha<\kappa} G_{\alpha}$;
(ii) $G_{\alpha}=\bigcup_{\alpha<\beta} G_{\beta}$ for every limit ordinal $\beta<\kappa$;
(iii) $G_{\alpha+1}=\left\langle G_{\alpha}, x_{\alpha}\right\rangle$ for every $\alpha<\kappa$.

Clearly, $G=\langle X\rangle$. We suppose that X is not left 2-thin and choose $g \in G, g \neq e$, distinct ordinals $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $g x_{\alpha_{1}}, g x_{\alpha_{2}}, g x_{\alpha_{3}} \in X$. Let $g x_{\alpha_{1}}=x_{\beta_{1}}, g x_{\alpha_{2}}=x_{\beta_{2}}, g x_{\alpha_{3}}=x_{\beta_{3}}$. By the pigeonhole principle, there exist distinct $k, l \in\{1,2,3\}$ such that either $\alpha_{k}<\beta_{k}, \alpha_{l}<\beta_{l}$ or $\alpha_{k}>\beta_{k}, \alpha_{l}>\beta_{l}$. Let $\alpha_{k}<\beta_{k}, \alpha_{l}<\beta_{l}$. Then $x_{\beta_{k}} x_{\alpha_{k}}^{-1} \in G_{\beta_{k}+1} \backslash G_{\beta_{k}}$, $x_{\beta_{l}} x_{\alpha_{l}}^{-1} \in G_{\beta_{l}+1} \backslash G_{\beta_{l}}$ and $g=x_{\beta_{k}} x_{\alpha_{k}}^{-1}=x_{\beta_{l}} x_{\alpha_{l}}^{-1}$, which is impossible because $\left(G_{\beta_{k}+1} \backslash G_{\beta_{k}}\right) \cap\left(G_{\beta_{l}+1} \backslash G_{\beta_{l}}\right)=\varnothing$. Hence, X is left 2-thin. The same arguments show that X is right 2-thin.

To prove the second statement, we assume that the constructed above subset X is not left 1-thin. Then there exist distinct $\alpha, \beta<\kappa$ and $g \neq e$ such that $g x_{\alpha}, g x_{\beta} \in X$. Let $g x_{\alpha}=x_{\alpha^{\prime}}, g x_{\beta}=x_{\beta^{\prime}}$. We choose the minimal $\lambda<\kappa$ such that $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}<\lambda$. Clearly, $\lambda=\gamma+1$ for some $\gamma<\kappa$. Replacing g by g^{-1}, we may suppose that $\alpha=\gamma$ so $x_{\alpha} \in G_{\gamma+1} \backslash G_{\gamma}$. Since $x_{\alpha^{\prime}}=g x_{\alpha}$ and $\alpha^{\prime}<\alpha$ then $g \in G_{\alpha+1} \backslash G_{\alpha}$. It follows that $g x_{\beta}=x_{\alpha}$ and
(*) $g^{2} x_{\beta}=x_{\alpha^{\prime}}$;
$\left.{ }^{* *}\right) x_{\alpha}^{2}=x_{\alpha^{\prime}} x_{\beta}$ if G is Abelian.
Let G be a torsion group with no elements or order 2. Then $\left(^{*}\right)$ is impossible because $g \in G_{\alpha+1} \backslash G_{\alpha}$ and $g^{2} \in G_{\alpha}$. It follows that X is left 1-thin. The same arguments show that X is right 1-thin.

Let G be an Abelian group with no elements of order 2. We choose a system $\left\{G_{\alpha}: \alpha<\kappa\right\}$ of subgroups of G satisfying (i), (ii), (iii) and
(iv) $G_{\alpha+1} / G_{\alpha} \simeq \mathbb{Z}$ or $G_{\alpha+1} / G_{\alpha} \simeq \mathbb{Z}_{p}$ for some prime number p.

We construct $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ inductively by the following rule. If $G_{\alpha+1} / G_{\alpha}$ is not isomorphic to \mathbb{Z}_{2}, we choose an arbitrary element $x_{\alpha} \in$ $G_{\alpha+1} \backslash G_{\alpha}$. Let $G_{\alpha+1} / G_{\alpha} \simeq \mathbb{Z}_{2}$ and $G_{\alpha+1}=\left\langle G_{\alpha}, y_{\alpha}\right\rangle$. If $y_{\alpha}^{2} \neq x_{\alpha^{\prime}} x_{\beta}$ for all distinct $\alpha^{\prime}, \beta<\alpha$, we put $x_{\alpha}=y_{\alpha}$. If $y_{\alpha}^{2}=x_{\alpha^{\prime}} x_{\beta}$ for some distinct $\alpha^{\prime}, \beta<\alpha, \beta<\alpha^{\prime}$, we put $x_{\alpha}=y_{\alpha} x_{\beta}^{-1}$. Then $x_{\alpha}^{2}=x_{\alpha^{\prime}} x_{\beta}^{-1}$. If $x_{\alpha}^{2}=x_{\alpha^{\prime \prime}} x_{\beta^{\prime}}$ for some distinct $\alpha^{\prime \prime}, \beta^{\prime}<\alpha, \beta^{\prime}<\alpha^{\prime \prime}$ then $x_{\alpha^{\prime}} x_{\beta}^{-1}=x_{\alpha^{\prime \prime}} x_{\beta^{\prime}}$. Since $\beta<\alpha^{\prime}$ and $\beta^{\prime}<\alpha^{\prime \prime}$, we have $\alpha^{\prime}=\alpha^{\prime \prime}$. Hence, $x_{\beta}^{-1}=x_{\beta^{\prime}}$, but it is impossible, so $x_{\alpha}^{2} \neq x_{\alpha^{\prime \prime}} x_{\beta^{\prime}}$ for all distinct $\alpha^{\prime \prime}, \beta^{\prime}<\alpha$. If X is not 1-thin, by $\left({ }^{* *}\right)$, we get a contradiction with construction of X.

Question 1. Let G be an infinite group with no elements of order 2. Does there exist a 1-thin system of generators of G ?

Theorem 2. For every infinite group G, there exists a 2-thin subset X such that $G=X X^{-1} \cup X^{-1} X$.

Proof. Let $|G|=\kappa,\left\{g_{\alpha}: \alpha<\kappa\right\}$ be a numeration of G. We construct inductively a family $\left\{X_{\alpha}: \alpha<\kappa\right\}$ of 2-thin subsets of G of the form $X_{\alpha}=\left\{x_{\beta}, y_{\beta} x_{\beta}: \beta<\alpha\right\}$ so that $\left\{g_{\beta}: \beta<\alpha\right\} \subseteq X_{\alpha} X_{\alpha}^{-1}$ and put $X=\bigcup_{\alpha<\kappa} X_{\alpha}$.

We put $X_{0}=\left\{e, g_{0}\right\}$ and assume that we have chosen the 2 -thin subsets X_{α} for all $\alpha<\gamma$. Let $\gamma=\beta+1$. We find the first element g in the numeration $\left\{g_{\alpha}: \alpha<\kappa\right\}$ such that $g \notin X_{\beta} X_{\beta}^{-1} \cup X_{\beta}^{-1} X_{\beta}$ and put $y_{\beta}=g$. To choose x_{β}, we use the following observation.

Let A be a subset of $G, g \in G$. If $|A|<\kappa$ and $g \notin A$ then $\mid\{x \in$ $\left.G: x^{-1} g x \notin A\right\} \mid=\kappa$. Indeed, $\left|\left\{x^{-1} g x: x \in G\right\}\right|=\left|G: Z_{g}\right|$, where $Z_{g}=\left\{x \in G: x^{-1} g x=g\right\}$, and either $\left|Z_{g}\right|=\kappa$ or $\left|G: Z_{g}\right|=\kappa$.

We choose x_{β} to satisfy the following conditions
(i) $x_{\beta}^{-1} y_{\beta} x_{\beta} \notin X_{\beta}^{-1} X_{\beta}$;
(ii) $\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta} X_{\beta}^{-1} X_{\beta}=\varnothing$;
(iii) $\left\{y_{\beta}, y_{\beta}^{-1}\right\}\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta}=\varnothing$.

Suppose that $X_{\beta+1}=X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}$ is not left 2-thin and choose $g \in G, g \neq e$ and distinct $a, b, c \in X_{\beta+1}$ such that $g a, g b, g c \in X_{\beta+1}$. If $g \in X_{\beta} X_{\beta}^{-1}$ then, by (ii) and the choice of $y_{\beta},\{a, b, c\} \subseteq X_{\beta}$ and $\{g a, g b, g c\} \subseteq X_{\beta}$ which is impossible because X_{β} is left 2-thin. Let $g \notin X_{\beta} X_{\beta}^{-1}$. Replacing if necessary a, b, c to $g a, g b, g c$ and g to g^{-1}, we may suppose that $a=x_{\beta}, b=y_{\beta} x_{\beta}, c \in X_{\beta}$. If $g a \in X_{\beta}$ and $g b \in X_{\beta}$ then $X_{\beta} x_{\beta}^{-1} \cap X_{\beta} x_{\beta}^{-1} y_{\beta}^{-1} \neq \varnothing$ so we get a contradiction with (i). Thus, $g \in\left\{y_{\beta}, y_{\beta}^{-1}\right\}$ and $g c \in\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}$. Hence, $\left\{y_{\beta}, y_{\beta}^{-1}\right\} \cap\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} X_{\beta}^{-1} \neq \varnothing$ and we get a contradiction with (iii).

Suppose that X_{β} is not right 2-thin and choose $g \in G, g \neq e$ and distinct $a, b, c \in X_{\beta+1}$ such that $a g, b g, c g \in X_{\beta+1}$. Let $g \in X_{\beta}^{-1} X_{\beta}$. If either $a=x_{\beta}$ or $a=y_{\beta} x_{\beta}$ then, by (ii), either $g=x_{\beta}^{-1} y_{\beta} x_{\beta}$ or $g=$ $x_{\beta}^{-1} y_{\beta}^{-1} x_{\beta}$, and in both cases we get a contradiction with (i). Hence, $a, b, c \in X_{\beta}$ and $a g, b g, c g \in X_{\beta}$ so X_{β} is not right 2-thin. Let $g \notin X_{\beta}^{-1} X_{\beta}$. Replacing if necessary a, b, c to $a g, b c, c g$ and g to g^{-1}, we may suppose that $a=x_{\beta}, b=y_{\beta} x_{\beta}, c \in X_{\beta}$. If $a g \in X_{\beta}$ and $b g \in X_{\beta}$ then $y_{\beta} \in X_{\beta} X_{\beta}^{-1}$ contradicting the choice of y_{β}. Thus, we have

$$
\begin{gathered}
\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} g \cap\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \neq \varnothing \\
X_{\beta} g \cap\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \neq \varnothing
\end{gathered}
$$

It follows that

$$
\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}^{-1}\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta}^{-1}\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \neq \varnothing
$$

so $\left\{y_{\beta}, y_{\beta}^{-1}, e\right\}\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta} \neq \varnothing$ and we get a contradiction with (i) and (ii).

Corollary 1. For every infinite Abelian group G, there exists a 2-thin subset X such that $G=X X^{-1}$.

Remark 1. Let a group G be defined to have a small square roots if for any subset $A \subseteq G$ with $|A|<|G|$ the set $\sqrt{A}=\left\{x \in G: x^{2} \in A\right\}$ has cardinality $|\sqrt{A}|<|G|$. Taras Banakh proved that if an infinite group G with identity e has small square roots, then it contains a 1-thin subset X such that $G=\sqrt{\{e\}} \cup X X^{-1} \cup X^{-1} X$. By this theorem, for every Abelian group G with no elements of order 2 there exists a 1-thin subset X such that $G=X X^{-1}$.

By the Chou's lemma [1], for every infinite group G there exists a 4-thin subset X such that $|X|=|G|$.

Corollary 2. For every infinite group G, there exists a 2-thin subset X such that $|X|=|G|$.

Theorem 3. For every infinite group G, there exists a 4-thin subset X such that $G=X X^{-1}$.

Proof. Let $|G|=\kappa,\left\{g_{\alpha}: \alpha<\kappa\right\}$ be a numeration of G. We construct inductively a family $\left\{X_{\alpha}: \alpha<\kappa\right\}$ of 4 -thin subsets of G of the form $X_{\alpha}=\left\{x_{\beta}, y_{\beta} x_{\beta}: \beta<\alpha\right\}$. Also we demand the fulfilment of the condition $\left|X_{\alpha} \cap X_{\alpha} g\right| \leqslant 2$ for all $g \notin X_{\alpha} X_{\alpha}^{-1}$. Observe that $\left\{y_{\beta}: \beta<\alpha\right\} \subseteq X_{\alpha} X_{\alpha}^{-1}$ and put $X=\bigcup_{\alpha<\kappa} X_{\alpha}$.

We put $X_{0}=\left\{e, g_{0}\right\}$ and assume that we have chosen subsets X_{α} for all $\alpha<\gamma$ such that
(1) $\left|X_{\alpha} \cap g X_{\alpha}\right| \leqslant 4$ for all $g \in G \backslash\{e\}$;
(2) $\left|X_{\alpha} \cap X_{\alpha} g\right| \leqslant 2$ for $g \notin X_{\alpha} X_{\alpha}^{-1} \cup\{e\}$;
(3) $\left|X_{\alpha} \cap X_{\alpha} g\right| \leqslant 4$ for $g \in X_{\alpha} X_{\alpha}^{-1} \backslash\{e\}$.

If γ is a limit ordinal, we put $X_{\gamma}=\bigcup_{\alpha<\gamma} X_{\alpha}$. Let $\gamma=\beta+1$. We find the first element g in the numeration $\left\{g_{\alpha}: \alpha<\kappa\right\}$ such that $g \notin X_{\beta} X_{\beta}^{-1}$ and put $y_{\beta}=g$. Then we choose x_{β} to satisfy the following conditions
(i) $\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta} X_{\beta}^{-1} X_{\beta}=\varnothing$;
(ii) $\left\{e, y_{\beta}, y_{\beta}^{-1}\right\}\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}\left\{e, y_{\beta}, y_{\beta}^{-1}\right\} \cap X_{\beta}=\varnothing$;
(iii) $x_{\beta}^{-1} y_{\beta} x_{\beta} \notin\left(X_{\beta}^{-1} X_{\beta} \cup X_{\beta} X_{\beta}^{-1}\right) \backslash\left\{y_{\beta}, y_{\beta}^{-1}\right\}$.

We put $X_{\beta+1}=X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}$. Now it is necessary to show the fulfilment of (1)-(3) for $\alpha=\beta+1$. First we show that $\left|X_{\beta+1} \cap g X_{\beta+1}\right| \leqslant 4$ for all $g \in G \backslash\{e\}$. Since $X_{\beta+1}=X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}$, for every $g \in G \backslash\{e\}$, we have

$$
X_{\beta+1} \cap g X_{\beta+1}=\left(X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}\right) \cap\left(g X_{\beta} \cup g\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}\right)=
$$

$$
=\left(X_{\beta} \cap g X_{\beta}\right) \cup Y_{1} \cup Y_{2} \cup Y_{3},
$$

where $Y_{1}=X_{\beta} \cap\left\{g x_{\beta}, g y_{\beta} x_{\beta}\right\}, Y_{2}=\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap g X_{\beta}, Y_{3}=\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap$ $\left\{g x_{\beta}, g y_{\beta} x_{\beta}\right\}$. We consider two cases:

Case 1: $g \in X_{\beta} X_{\beta}^{-1}$. By (i), $Y_{1}=\varnothing$ and $Y_{2}=\varnothing$. Since $y_{\beta} \notin X_{\beta} X_{\beta}^{-1}$, $Y_{3}=\varnothing$. Then $X_{\beta+1} \cap g X_{\beta+1}=X_{\beta} \cap g X_{\beta}$ and, by the inductive assumption, $\left|X_{\beta+1} \cap g X_{\beta+1}\right| \leqslant 4$.

Case 2: $g \notin X_{\beta} X_{\beta}^{-1}$. Then $X_{\beta} \cap g X_{\beta}=\varnothing$. Since $Y_{1} \cup Y_{2} \cup Y_{3} \subseteq$ $\left\{x_{\beta}, y_{\beta} x_{\beta}, g x_{\beta}, g y_{\beta} x_{\beta}\right\}$, we have $\left|X_{\beta+1} \cap g X_{\beta+1}\right|=\left|Y_{1} \cup Y_{2} \cup Y_{3}\right| \leqslant 4$.

Now we show that $\left|X_{\beta+1} \cap X_{\beta+1} g\right| \leqslant 2$ for all $g \notin X_{\beta+1} X_{\beta+1}^{-1}$ and $\left|X_{\beta+1} \cap X_{\beta+1} g\right| \leqslant 4$ for all $g \in G \backslash\{e\}$. Since $X_{\beta+1}=X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}$, for every $g \in G \backslash\{e\}$, we have

$$
\begin{gathered}
X_{\beta+1} \cap X_{\beta+1} g=\left(X_{\beta} \cup\left\{x_{\beta}, y_{\beta} x_{\beta}\right\}\right) \cap\left(X_{\beta} g \cup\left\{x_{\beta} g, y_{\beta} x_{\beta} g\right\}\right)= \\
=\left(X_{\beta} \cap X_{\beta} g\right) \cup Z_{1} \cup Z_{2} \cup Z_{3}^{\prime} \cup Z_{3}^{\prime \prime}
\end{gathered}
$$

where $Z_{1}=\left\{x_{\beta} g, y_{\beta} x_{\beta} g\right\} \cap X_{\beta}, Z_{2}=\left\{x_{\beta}, y_{\beta} x_{\beta}\right\} \cap X_{\beta} g, Z_{3}^{\prime}=\left\{x_{\beta}\right\} \cap$ $\left\{y_{\beta} x_{\beta} g\right\}, Z_{3}^{\prime \prime}=\left\{y_{\beta} x_{\beta}\right\} \cap\left\{x_{\beta} g\right\}$. We consider three cases.

Case 1: $g \in X_{\beta} X_{\beta}^{-1}$. By (i), $Z_{1}=\varnothing$ and $Z_{2}=\varnothing$. Since $g \in X_{\beta} X_{\beta}^{-1}$ and $y_{\beta} \notin X_{\beta} X_{\beta}^{-1}$ then $g \in\left(X_{\beta}^{-1} X_{\beta} \cup X_{\beta} X_{\beta}^{-1}\right) \backslash\left\{y_{\beta}, y_{\beta}^{-1}\right\}$. So, by (iii), $Z_{3}^{\prime}=\varnothing$ and $Z_{3}^{\prime \prime}=\varnothing$. Hence, $X_{\beta+1} \cap X_{\beta+1} g=X_{\beta} \cap X_{\beta} g$ and required inequalities hold by inductive hypothesis.

Case 2: $g \in\left\{y_{\beta}, y_{\beta}^{-1}\right\}$. By (ii), $Z_{1}=\varnothing$ and $Z_{2}=\varnothing$. Hence, $X_{\beta+1} \cap$ $X_{\beta+1} g=\left(X_{\beta} \cap X_{\beta} g\right) \cup Z_{3}^{\prime} \cup Z_{3}^{\prime \prime}$. Since $g \notin X_{\beta} X_{\beta}^{-1}$ then $\left|X_{\beta} \cap X_{\beta} g\right| \leqslant 2$. Since $\left|Z_{3}^{\prime}\right| \leqslant 1$ and $\left|Z_{3}^{\prime \prime}\right| \leqslant 1$ then $\left|X_{\beta+1} \cap X_{\beta+1} g\right| \leqslant 4$. Observe that $g \in X_{\beta+1} X_{\beta+1}^{-1}$, so we do not need to check the condition (2).

Case 3: $g \notin X_{\beta} X_{\beta}^{-1} \cup\left\{y_{\beta}, y_{\beta}^{-1}\right\}$. Since $g \notin X_{\beta} X_{\beta}^{-1}$ then, by inductive hypothesis, $\left|X_{\beta} \cap X_{\beta} g\right| \leqslant 2$. Since $y_{\beta} \notin X_{\beta} X_{\beta}^{-1}$ then $\left|Z_{1}\right| \leqslant 1$ and $\left|Z_{2}\right| \leqslant 1$. We consider two subcases.

Subcase 3.1: $g \in X_{\beta}^{-1} X_{\beta}$. By (i), $Z_{1}=\varnothing$ and $Z_{2}=\varnothing$. By (iii), $Z_{3}^{\prime}=\varnothing$ and $Z_{3}^{\prime \prime}=\varnothing$. Hence, $X_{\beta+1} \cap X_{\beta+1} g=X_{\beta} \cap X_{\beta} g$ and required inequalities hold by inductive hypothesis.

Subcase 3.2: $g \notin X_{\beta}^{-1} X_{\beta}$. Then $X_{\beta} \cap X_{\beta} g=\varnothing$, so $X_{\beta+1} \cap X_{\beta+1} g=$ $Z_{1} \cup Z_{2} \cup Z_{3}^{\prime} \cup Z_{3}^{\prime \prime}$. By (ii), if $Z_{3}^{\prime} \neq \varnothing$ then $Z_{2}=\varnothing$, and if $Z_{3}^{\prime \prime} \neq \varnothing$ then $Z_{1}=\varnothing$. Taking into account the inequalities $\left|Z_{1}\right| \leqslant 1,\left|Z_{2}\right| \leqslant 1,\left|Z_{3}^{\prime}\right| \leqslant 1$ and $\left|Z_{3}^{\prime \prime}\right| \leqslant 1$ we obtain $\left|X_{\beta+1} \cap X_{\beta+1} g\right| \leqslant 2$.

So the inequalities (1)-(3) hold for $\alpha=\beta+1$. Note that $y_{\beta} \in$ $X_{\beta+1} X_{\beta+1}^{-1}$. We put $X=\bigcup_{\alpha<\kappa} X_{\alpha}$ and observe that, by the choice of y_{β}, $G=X X^{-1}$ and X is 4-thin.

Question 2. Which is a minimal number $k_{t h}$ such that, for every infinite group G, there exists a $k_{t h}$-thin subset X such that $G=X X^{-1}$?

Question 3. Which is a minimal number $k_{l t h}$ such that, for every infinite group G, there exists a left $k_{l t h}$-thin subset X such that $G=X X^{-1}$?

An infinite group G of period 2 shows that $k_{t h} \geqslant 2, k_{l t h} \geqslant 2$. By Theorem $3, k_{t h} \leqslant 4, k_{l t h} \leqslant 4$.

References

[1] Chou C., On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc., 23 (1969), 199-205.
[2] Dikranjan D., Protasov I.V., Every infinite group can be generated by P-small subset, Applied General Topology, 7 (2006), 265-268.
[3] Lutsenko Ie., Protasov I.V., Sparse, thin and other subsets of groups, International Journal of Algebra and Computation, 19 (2009), 491-510.
[4] Malykhin V.I., Moresko R., Small generated groups, Questions and Answers in General Topology, 19 (2001), 47-53.
[5] Protasov I.V., Small systems of generators of groups, Math. Notes 76 (2004), 420-426.
[6] Protasov I., Banakh T., Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL Publisher, Lviv, 2003.

Contact information

Ie. Lutsenko Dept. Cybernetics, Kyiv University, Volodymyrska 64, 01033 Kyiv, Ukraine E-Mail: ie.lutsenko@gmail.com

Received by the editors: 10.03.2010 and in final form ????.

