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Abstract. A subset T of a group G with the identity e is
called k-thin (k ∈ N) if |A ∩ gA| 6 k, |A ∩Ag| 6 k for every g ∈ G,
g 6= e. We show that every infinite group G can be generated by
some 2-thin subset. Moreover, if G is either Abelian or a torsion
group without elements of order 2, then there exists a 1-thin system
of generators of G. For every infinite group G, there exist a 2-thin
subset X such that G = XX−1 ∪ X−1X, and a 4-thin subset Y
such that G = Y Y −1.

For a group G we denote by FG the family of all finite subsets of G.
A subset A of an infinite group G with the identity e is said to be

• left (right) large if there exists F ∈ FG such that G = FA (G = AF );

• large if A is left and right large;

• left (right) small if G \ FA (G \AF ) is left (right) large for every
F ∈ FG;

• small if A is left and right small;

• left (right) P -small if there exists an injective sequence (gn)n∈ω in
G such that the subsets {gnA : n ∈ ω} ({Agn : n ∈ ω}) are pairwise
disjoint;

• P-small if A is left and right P-small;

• left (right) k-thin for k ∈ N if |gA∩A| 6 k (|Ag∩A| 6 k) for every
g ∈ G. g 6= e;

• k-thin, if A is left and right k-thin.
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For the relationships between these types of subsets see [3]. In par-
ticular, every k-thin subset is small, but a small subset could be much
more big than every k-thin subsets. For example, every k-thin subset T is
a universal zero, i.e. µ(T ) = 0 for every Banach measure µ on G. On the
other hand, for every countable amenable group G and every ε > 0, there
exist a small subset S and Banach measure µ on G such that µ(S) > 1−ε.
We note also that a subset A is left k-thin if and only if A−1 is right
k-thin.

Answering a question from [4], I. V. Protasov [5] (see also [6, Theorem
13.1]) proved that every infinite group G can be generated by some small
subset. Moreover, there exists a small and P-small generating subset of G
[2].

In this paper we show (Theorem 1) that every infinite group G can
be generated by some 2-thin subset. Moreover, if G is either Abelian or
torsion group with no elements of order 2, then G can be generated by
some 1-thin subset. By Theorem 2, for every infinite group G, there exists
a 2-thin subset X such that G = XX−1 ∪ X−1X. Since every k-thin
subset is small, this is an answer to the Question 13.2 from [6]. We show
also that, in every infinite group G, there is a 4-thin subset X such that
G = XX−1.

Given a subset X of a group G, we denote by 〈X〉 the subgroup of G
generated by X.

Theorem 1. Every infinite group G has a 2-thin system of generators.
Moreover, if G has no elements of order 2 and G is either Abelian or a
torsion group, then there exists a 1-thin system of generators of G.

Proof. Let |G| = κ. We construct inductively an increasing system {Gα :
α < κ} of subgroups of G and a subset X = {xα : α < κ} such that

(i) G0 = 〈e〉, G =
⋃

α<κGα;

(ii) Gα =
⋃

α<β Gβ for every limit ordinal β < κ;

(iii) Gα+1 = 〈Gα, xα〉 for every α < κ.

Clearly, G = 〈X〉. We suppose that X is not left 2-thin and choose
g ∈ G, g 6= e, distinct ordinals α1, α2, α3 such that gxα1

, gxα2
, gxα3

∈ X.
Let gxα1

= xβ1
, gxα2

= xβ2
, gxα3

= xβ3
. By the pigeonhole principle,

there exist distinct k, l ∈ {1, 2, 3} such that either αk < βk, αl < βl or
αk > βk, αl > βl. Let αk < βk, αl < βl. Then xβk

x−1
αk

∈ Gβk+1 \ Gβk
,

xβl
x−1
αl

∈ Gβl+1 \ Gβl
and g = xβk

x−1
ακ

= xβl
x−1
αl

, which is impossible
because (Gβk+1 \Gβk

) ∩ (Gβl+1 \Gβl
) = ∅. Hence, X is left 2-thin. The

same arguments show that X is right 2-thin.
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To prove the second statement, we assume that the constructed above
subset X is not left 1-thin. Then there exist distinct α, β < κ and g 6= e
such that gxα, gxβ ∈ X. Let gxα = xα′ , gxβ = xβ′ . We choose the
minimal λ < κ such that α, β, α′, β′ < λ. Clearly, λ = γ + 1 for some
γ < κ. Replacing g by g−1, we may suppose that α = γ so xα ∈ Gγ+1 \Gγ .
Since xα′ = gxα and α′ < α then g ∈ Gα+1 \Gα. It follows that gxβ = xα
and

(*) g2xβ = xα′ ;

(**) x2α = xα′xβ if G is Abelian.

Let G be a torsion group with no elements or order 2. Then (*) is
impossible because g ∈ Gα+1 \Gα and g2 ∈ Gα. It follows that X is left
1-thin. The same arguments show that X is right 1-thin.

Let G be an Abelian group with no elements of order 2. We choose a
system {Gα : α < κ} of subgroups of G satisfying (i), (ii), (iii) and

(iv) Gα+1/Gα ≃ Z or Gα+1/Gα ≃ Zp for some prime number p.

We construct X = {xα : α < κ} inductively by the following rule. If
Gα+1/Gα is not isomorphic to Z2, we choose an arbitrary element xα ∈
Gα+1 \Gα. Let Gα+1/Gα ≃ Z2 and Gα+1 = 〈Gα, yα〉. If y2α 6= xα′xβ for
all distinct α′, β < α, we put xα = yα. If y2α = xα′xβ for some distinct
α′, β < α, β < α′, we put xα = yαx

−1

β . Then x2α = xα′x−1

β . If x2α = xα′′xβ′

for some distinct α′′, β′ < α, β′ < α′′ then xα′x−1

β = xα′′xβ′ . Since β < α′

and β′ < α′′, we have α′ = α′′. Hence, x−1

β = xβ′ , but it is impossible, so

x2α 6= xα′′xβ′ for all distinct α′′, β′ < α. If X is not 1-thin, by (**), we get
a contradiction with construction of X.

Question 1. Let G be an infinite group with no elements of order 2. Does
there exist a 1-thin system of generators of G?

Theorem 2. For every infinite group G, there exists a 2-thin subset X
such that G = XX−1 ∪X−1X.

Proof. Let |G| = κ, {gα : α < κ} be a numeration of G. We construct
inductively a family {Xα : α < κ} of 2-thin subsets of G of the form
Xα = {xβ , yβxβ : β < α} so that {gβ : β < α} ⊆ XαX

−1
α and put

X =
⋃

α<κXα.

We put X0 = {e, g0} and assume that we have chosen the 2-thin
subsets Xα for all α < γ. Let γ = β+1. We find the first element g in the
numeration {gα : α < κ} such that g /∈ XβX

−1

β ∪X−1

β Xβ and put yβ = g.
To choose xβ , we use the following observation.
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Let A be a subset of G, g ∈ G. If |A| < κ and g /∈ A then |{x ∈
G : x−1gx /∈ A}| = κ. Indeed, |{x−1gx : x ∈ G}| = |G : Zg|, where
Zg = {x ∈ G : x−1gx = g}, and either |Zg| = κ or |G : Zg| = κ.

We choose xβ to satisfy the following conditions

(i) x−1

β yβxβ /∈ X−1

β Xβ ;

(ii) {xβ , yβxβ} ∩XβX
−1

β Xβ = ∅;

(iii) {yβ , y−1

β }{xβ , yβxβ} ∩Xβ = ∅.

Suppose that Xβ+1 = Xβ ∪ {xβ , yβxβ} is not left 2-thin and choose
g ∈ G, g 6= e and distinct a, b, c ∈ Xβ+1 such that ga, gb, gc ∈ Xβ+1.
If g ∈ XβX

−1

β then, by (ii) and the choice of yβ, {a, b, c} ⊆ Xβ and
{ga, gb, gc} ⊆ Xβ which is impossible because Xβ is left 2-thin. Let
g /∈ XβX

−1

β . Replacing if necessary a, b, c to ga, gb, gc and g to g−1, we
may suppose that a = xβ, b = yβxβ, c ∈ Xβ. If ga ∈ Xβ and gb ∈ Xβ

then Xβx
−1

β ∩Xβx
−1

β y−1

β 6= ∅ so we get a contradiction with (i). Thus,

g ∈ {yβ , y−1

β } and gc ∈ {xβ , yβxβ}. Hence, {yβ , y−1

β }∩{xβ , yβxβ}X−1

β 6= ∅

and we get a contradiction with (iii).

Suppose that Xβ is not right 2-thin and choose g ∈ G, g 6= e and
distinct a, b, c ∈ Xβ+1 such that ag, bg, cg ∈ Xβ+1. Let g ∈ X−1

β Xβ. If

either a = xβ or a = yβxβ then, by (ii), either g = x−1

β yβxβ or g =

x−1

β y−1

β xβ, and in both cases we get a contradiction with (i). Hence,

a, b, c ∈ Xβ and ag, bg, cg ∈ Xβ so Xβ is not right 2-thin. Let g /∈ X−1

β Xβ .

Replacing if necessary a, b, c to ag, bc, cg and g to g−1, we may suppose
that a = xβ , b = yβxβ , c ∈ Xβ . If ag ∈ Xβ and bg ∈ Xβ then yβ ∈ XβX

−1

β

contradicting the choice of yβ . Thus, we have

{xβ , yβxβ}g ∩ {xβ , yβxβ} 6= ∅,

Xβg ∩ {xβ , yβxβ} 6= ∅.

It follows that

{xβ , yβxβ}−1{xβ , yβxβ} ∩X−1

β {xβ , yβxβ} 6= ∅,

so {yβ , y−1

β , e}{xβ , yβxβ} ∩Xβ 6= ∅ and we get a contradiction with (i)
and (ii).

Corollary 1. For every infinite Abelian group G, there exists a 2-thin
subset X such that G = XX−1.
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Remark 1. Let a group G be defined to have a small square roots if for
any subset A ⊆ G with |A| < |G| the set

√
A = {x ∈ G : x2 ∈ A} has

cardinality |
√
A| < |G|. Taras Banakh proved that if an infinite group G

with identity e has small square roots, then it contains a 1-thin subset X
such that G =

√

{e}∪XX−1∪X−1X. By this theorem, for every Abelian
group G with no elements of order 2 there exists a 1-thin subset X such
that G = XX−1.

By the Chou’s lemma [1], for every infinite group G there exists a
4-thin subset X such that |X| = |G|.

Corollary 2. For every infinite group G, there exists a 2-thin subset X
such that |X| = |G|.

Theorem 3. For every infinite group G, there exists a 4-thin subset X
such that G = XX−1.

Proof. Let |G| = κ, {gα : α < κ} be a numeration of G. We construct
inductively a family {Xα : α < κ} of 4-thin subsets of G of the form
Xα = {xβ , yβxβ : β < α}. Also we demand the fulfilment of the condition
|Xα ∩Xαg| 6 2 for all g /∈ XαX

−1
α . Observe that {yβ : β < α} ⊆ XαX

−1
α

and put X =
⋃

α<κXα.
We put X0 = {e, g0} and assume that we have chosen subsets Xα for

all α < γ such that

(1) |Xα ∩ gXα| 6 4 for all g ∈ G \ {e};

(2) |Xα ∩Xαg| 6 2 for g /∈ XαX
−1
α ∪ {e};

(3) |Xα ∩Xαg| 6 4 for g ∈ XαX
−1
α \ {e}.

If γ is a limit ordinal, we put Xγ =
⋃

α<γ Xα. Let γ = β + 1. We find the

first element g in the numeration {gα : α < κ} such that g /∈ XβX
−1

β and
put yβ = g. Then we choose xβ to satisfy the following conditions

(i) {xβ , yβxβ} ∩XβX
−1

β Xβ = ∅;

(ii) {e, yβ , y−1

β }{xβ , yβxβ}{e, yβ , y−1

β } ∩Xβ = ∅;

(iii) x−1

β yβxβ /∈ (X−1

β Xβ ∪XβX
−1

β ) \ {yβ , y−1

β }.

We put Xβ+1 = Xβ ∪ {xβ , yβxβ}. Now it is necessary to show the
fulfilment of (1)–(3) for α = β+1. First we show that |Xβ+1∩gXβ+1| 6 4
for all g ∈ G \ {e}. Since Xβ+1 = Xβ ∪ {xβ , yβxβ}, for every g ∈ G \ {e},
we have

Xβ+1 ∩ gXβ+1 = (Xβ ∪ {xβ , yβxβ}) ∩ (gXβ ∪ g{xβ , yβxβ}) =
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= (Xβ ∩ gXβ) ∪ Y1 ∪ Y2 ∪ Y3,

where Y1 = Xβ∩{gxβ , gyβxβ}, Y2 = {xβ , yβxβ}∩gXβ , Y3 = {xβ , yβxβ}∩
{gxβ , gyβxβ}. We consider two cases:

Case 1: g ∈ XβX
−1

β . By (i), Y1 = ∅ and Y2 = ∅. Since yβ /∈ XβX
−1

β ,
Y3 = ∅. Then Xβ+1∩gXβ+1 = Xβ∩gXβ and, by the inductive assumption,
|Xβ+1 ∩ gXβ+1| 6 4.

Case 2: g /∈ XβX
−1

β . Then Xβ ∩ gXβ = ∅. Since Y1 ∪ Y2 ∪ Y3 ⊆
{xβ , yβxβ , gxβ , gyβxβ}, we have |Xβ+1 ∩ gXβ+1| = |Y1 ∪ Y2 ∪ Y3| 6 4.

Now we show that |Xβ+1 ∩ Xβ+1g| 6 2 for all g /∈ Xβ+1X
−1

β+1
and

|Xβ+1 ∩Xβ+1g| 6 4 for all g ∈ G \ {e}. Since Xβ+1 = Xβ ∪ {xβ , yβxβ},
for every g ∈ G \ {e}, we have

Xβ+1 ∩Xβ+1g = (Xβ ∪ {xβ , yβxβ}) ∩ (Xβg ∪ {xβg, yβxβg}) =
= (Xβ ∩Xβg) ∪ Z1 ∪ Z2 ∪ Z ′

3 ∪ Z ′′

3 ,

where Z1 = {xβg, yβxβg} ∩Xβ , Z2 = {xβ , yβxβ} ∩Xβg, Z
′

3 = {xβ} ∩
{yβxβg}, Z ′′

3 = {yβxβ} ∩ {xβg}. We consider three cases.
Case 1: g ∈ XβX

−1

β . By (i), Z1 = ∅ and Z2 = ∅. Since g ∈ XβX
−1

β

and yβ /∈ XβX
−1

β then g ∈ (X−1

β Xβ ∪ XβX
−1

β ) \ {yβ , y−1

β }. So, by (iii),
Z ′

3 = ∅ and Z ′′

3 = ∅. Hence, Xβ+1 ∩ Xβ+1g = Xβ ∩ Xβg and required
inequalities hold by inductive hypothesis.

Case 2: g ∈ {yβ , y−1

β }. By (ii), Z1 = ∅ and Z2 = ∅. Hence, Xβ+1 ∩
Xβ+1g = (Xβ ∩Xβg) ∪ Z ′

3 ∪ Z ′′

3 . Since g /∈ XβX
−1

β then |Xβ ∩Xβg| 6 2.
Since |Z ′

3| 6 1 and |Z ′′

3 | 6 1 then |Xβ+1 ∩ Xβ+1g| 6 4. Observe that
g ∈ Xβ+1X

−1

β+1
, so we do not need to check the condition (2).

Case 3: g /∈ XβX
−1

β ∪ {yβ , y−1

β }. Since g /∈ XβX
−1

β then, by inductive

hypothesis, |Xβ∩Xβg| 6 2. Since yβ /∈ XβX
−1

β then |Z1| 6 1 and |Z2| 6 1.
We consider two subcases.

Subcase 3.1: g ∈ X−1

β Xβ . By (i), Z1 = ∅ and Z2 = ∅. By (iii), Z ′

3 = ∅

and Z ′′

3 = ∅. Hence, Xβ+1 ∩Xβ+1g = Xβ ∩Xβg and required inequalities
hold by inductive hypothesis.

Subcase 3.2: g /∈ X−1

β Xβ. Then Xβ ∩Xβg = ∅, so Xβ+1 ∩Xβ+1g =
Z1 ∪ Z2 ∪ Z ′

3 ∪ Z ′′

3 . By (ii), if Z ′

3 6= ∅ then Z2 = ∅, and if Z ′′

3 6= ∅ then
Z1 = ∅. Taking into account the inequalities |Z1| 6 1, |Z2| 6 1, |Z ′

3| 6 1
and |Z ′′

3 | 6 1 we obtain |Xβ+1 ∩Xβ+1g| 6 2.
So the inequalities (1)–(3) hold for α = β + 1. Note that yβ ∈

Xβ+1X
−1

β+1
. We put X =

⋃

α<κXα and observe that, by the choice of yβ ,

G = XX−1 and X is 4-thin.

Question 2. Which is a minimal number kth such that, for every infinite
group G, there exists a kth-thin subset X such that G = XX−1?
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Question 3. Which is a minimal number klth such that, for every infinite
group G, there exists a left klth-thin subset X such that G = XX−1?

An infinite group G of period 2 shows that kth > 2, klth > 2. By
Theorem 3, kth 6 4, klth 6 4.
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