# On commutative nilalgebras of low dimension 

Juan C. Gutierrez Fernandez

Communicated by Efin Zelmanov


#### Abstract

We prove that every commutative non-associative nilalgebra of dimension $\leq 7$, over a field of characteristic zero or sufficiently large is solvable.


## Introduction

Throughout this paper the term algebra is understood to be a commutative not necessarily associative algebra. We will use the notations and terminology of [6] and [7]. Let $\mathfrak{A}$ be an (commutative nonassociative) algebra over a field $F$. We define inductively the following powers, $\mathfrak{A}^{1}=\mathfrak{A}$ and $\mathfrak{A}^{s}=\sum_{i+j=s} \mathfrak{A}^{i} \mathfrak{A}^{j}$ for all positive integers $s \geq 2$. We shall say that $\mathfrak{A}$ is nilpotent if there is a positive integer $s$ such that $\mathfrak{A}^{s}=(0)$. The least such number is called the index of nilpotency of the algebra $\mathfrak{A}$. The algebra $\mathfrak{A}$ is called nilalgebra if given $a \in \mathfrak{A}$ we have that $\operatorname{alg}(a)$, the subalgebra of $\mathfrak{A}$ generated by $a$, is nilpontent. The (principal) powers of an element $a$ in $\mathfrak{A}$ are defined recursively by $a^{1}=a$ and $a^{i+1}=a a^{i}$ for all integers $i \geq 1$. The algebra $\mathfrak{A}$ is called left-nilalgebra if for every $a$ in $\mathfrak{A}$ there exists an integer $k=k(a)$ such that $a^{k}=0$. The smallest positive integer $k$ which this property is the index. Obviously, every nilalgebra is left-nilalgebra. For any element $a$ in $\mathfrak{A}$, the linear mapping $L_{a}$ of $\mathfrak{A}$ defined by $x \rightarrow a x$ is called multiplication operator of $\mathfrak{A}$. An Engel algebra is an algebra in which every multiplication operator is nilpotent in the sense that for every $a \in \mathfrak{A}$ there exists a positive integer $j$ such that $L_{a}^{j}=0$.

An important question is that of the existence of simple nilalgebras in the class of finite-dimensional algebras. We have the following Shestakov's Conjecture: there exists an example of commutative finite-dimensional simple nilalgebras. In [6] we proved that every nilagebra $\mathfrak{A}$ of dimension $\leq 6$ over a field of characteristic $\neq 2,3,5$ is solvable and hence $\mathfrak{A}^{2} \varsubsetneqq$ $\mathfrak{A}$. For power-associative nilalgebras of dimension $\leq 8$ over a field of characteristic $\neq 2,3,5$, we have shown in [8] that they are solvable, and hence there is no simple algebra in this subclass. See also [4] and [6] for power-associative nilalgebras of dimension $\leq 7$.

We show now the process of linearization of identities, which is an important tool in the theory of varieties of algebras. See [9], [12] and [13] for more information. Let $P$ be the free commutative nonassociative polynomial ring in two generators $x$ and $y$ over a field $F$. For every $\alpha_{1}, \ldots, \alpha_{r} \in P$, the operator linearization $\delta\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ can be defined as follows: if $p(x, y)$ is a monomial in $P$, then $\delta\left[\alpha_{1}, \ldots, \alpha_{r}\right] p(x, y)$ is obtained by making all the possible replacements of $r$ of the $k$ identical arguments $x$ by $\alpha_{1}, \ldots, \alpha_{r}$ and summing the resulting terms if $x$-degree of $p(x, y)$ is $\geq$ $r$, and is equal to zero in other cases. Some examples of this operator are $\delta[y]\left(x^{2}(x y)\right)=2(x y)^{2}+x^{2} y^{2}, \delta\left[x^{2}, y\right]\left(x^{2}\right)=2 x^{2} y$ and $\delta\left[y, x y^{2}, x\right]\left(x^{2}\right)=0$. For simplicity, $\delta[\alpha: r]$ will denote $\delta\left[\alpha_{1}, \ldots, \alpha_{r}\right]$, where $\alpha_{1}=\cdots=\alpha_{r}=\alpha$. We observe that if $p(x)$ is a polynomial in $P$, then $p(x+y)=p(x)+$ $\sum_{j=1}^{\infty} \delta[y: j] p(x)$, where $\delta[y: j] p(x)$ is the sum of all the terms of $p(x+y)$ which have degree $j$ with respect to $y$.

The following known results are a basic tool in our investigation. See [2], [3] and [7].

Lemma 1. Let $\mathfrak{A}$ be a commutative left-nilalgebra of index $\leq 4$ over a field $F$ of characteristic different form 2 or 3. Then $\mathfrak{A}$ satisfies the identities

$$
\begin{gather*}
x^{2} x^{3}=-x\left(x^{2} x^{2}\right), \quad x^{3} x^{3}=\left(x^{2}\right)^{3}=x\left(x\left(x^{2} x^{2}\right)\right),  \tag{1}\\
x^{3} y=-x\left(x^{2} y\right)-2 x(x(x y)), \tag{2}
\end{gather*}
$$

$\mathfrak{A}$ is a nilalgebra of index $\leq 7$ and every monomial in $P$ of $x$-degree $\geq 10$ and $y$-degree 1 is an identity in $\mathfrak{A}$. Furthermore, for every $a \in \mathfrak{A}$ the associative algebra $\mathfrak{A}_{a}$ generated by all $L_{c}$ with $c \in \operatorname{alg}(a)$ is in fact generated by $L_{a}$ and $L_{a^{2}}$.

For simplicity, we will denote by $L$ and $U$ the multiplication operators, $L_{x}$ and $L_{x^{2}}$ respectively, where $x$ is an element in $\mathfrak{A}$.

Lemma 2. [7] Let $\mathfrak{A}$ be a commutative algebra over a field of characteristic $\neq 2$ or 3 satisfying the identities $x^{4}=0$ and $x\left(x^{2} x^{2}\right)=0$. Then $\mathfrak{A}$
satisfies the following multiplication identities:

$$
\begin{equation*}
L_{x^{2} x^{2}}=-4 L U L, \quad U U=-2 U L L+2 L U L+4 L^{4} \tag{3}
\end{equation*}
$$

Table i, Multiplication identities of degree 5,

|  | $U L U$ | $L U L^{2}$ | $L^{3} U$ | $L^{5}$ |
| :--- | ---: | ---: | ---: | ---: |
| $U U L$ | 0 | 2 | 0 | 0 |
| $L U U$ | 0 | -2 | -2 | -4 |
| $L^{2} U L$ | 0 | 0 | -1 | -4 |
| $U L^{3}$ | 0 | 0 | 0 | 2 |

Table ii, Multiplication identities of degree 6,

|  | $U L L U$ | $L^{4} U$ | $L^{6}$ |
| :--- | ---: | ---: | ---: |
| $U U U$ | -2 | 4 | 8 |
| $U U L L$ | 0 | 0 | 4 |
| $U L U L$ | -1 | 2 | 4 |
| $L U U L$ | 0 | 2 | 0 |
| $L U L U$ | 0 | 0 | 4 |


|  | $U L L U$ | $L^{4} U$ | $L^{6}$ |
| :--- | ---: | ---: | ---: |
| $L L U U$ | 0 | -4 | -4 |
| $U L^{4}$ | 0 | 0 | 2 |
| $L U L^{3}$ | 0 | 0 | 2 |
| $L^{2} U L^{2}$ | 0 | 1 | 0 |
| $L^{3} U L$ | 0 | -1 | -4 |

Furthermore, every monomial in $P$ of $x$-degree $\geq 7$ and $y$-degree 1 is an identity in $\mathfrak{A}$ and the algebra generated by $L_{x}$ and $L_{x^{2}}$ is spanned, as vector space, by $L, U, L^{2}, U L, L U, L^{3}, U L^{2}, L U L, L^{2} U, L^{4}, U L U, L U L^{2}$, $L^{3} U, L^{5}, U L^{2} U, L^{4} U, L^{6}$.

Lemma 3. [7] Let $\mathfrak{A}$ be a commutative algebra over a field of characteristic $\neq 2,3$ or 5 , satisfying the identities $x^{4}=0$ and $x\left(x\left(x^{2} x^{2}\right)\right)=0$. Then $\mathfrak{A}$ satisfies the following multiplication identities:

$$
\begin{align*}
L U U & =-2 L U L^{2}-2 L^{3} U-4 L^{5},  \tag{4}\\
L U L^{3} & =-\frac{1}{2}\left(L^{2} U L^{2}+L^{3} U L\right),  \tag{5}\\
L^{4} U L & =-3 L^{5} U-16 L^{7},  \tag{6}\\
L^{2} U L U & =-L^{3} U L^{2}+5 L^{5} U+28 L^{7},  \tag{7}\\
U L^{4} U & =-\frac{1}{2} L^{2} U L^{2} U+24 L^{6} U+62 L^{8},  \tag{8}\\
L^{2} U L^{2} U & =48 L^{6} U+156 L^{8},  \tag{9}\\
L^{6} U & =-2 L^{8} . \tag{10}
\end{align*}
$$

Furthermore, every monomial in $P$ of $x$-degree $\geq 9$ and $y$-degree 1 is an identity in $\mathfrak{A}$.

We now study (commutative nonassociative) nilalgebras of dimension $\leq 7$, over a field $F$ of characteristic zero or sufficiently large. We will show that nilalgebras over $F$ with dimension $\leq 7$, are solvable. An algebra $\mathfrak{A}$ is called solvable if there exists a positive integer $t$ such that $\mathfrak{A}^{[t]}=(0)$,
where we define inductively $\mathfrak{A}^{[1]}=\mathfrak{A}$ and $\mathfrak{A}^{[j+1]}=\mathfrak{A}^{[j]} \mathfrak{A}^{[j]}$ for all positive integers $j$.

Let $\mathfrak{A}$ be a finite-dimensional nilgalgebra over $F$. We will denote by $\operatorname{deg}(\mathfrak{A})$, the degree of $\mathfrak{A}$, the smallest number $m$ such that for every $a \in \mathfrak{A}$, the subalgebra $\operatorname{alg}(a)$ of $\mathfrak{A}$ generated by $a$ has $\operatorname{dim}(\operatorname{alg}(a)) \leq m$. If $\operatorname{deg}(\mathfrak{A}) \leq 2$, then $\mathfrak{A}$ satisfies the identity $x^{3}=0$ and hence this algebra is Jordan. It is well-known that any finite-dimensional Jordan nilalgebra is nilpotent. Therefore $\mathfrak{A}$ is nilpotent if $\operatorname{deg}(\mathfrak{A}) \leq 2$. Because any nilpotent algebra is solvable, we have that $\mathfrak{A}$ is solvable if $\operatorname{deg}(\mathfrak{A}) \leq 2$.

The following lemma, proved in [6], is an immediate consequence of a result of [10] and [11] for linear spaces of nilpotent matrices.

Lemma 4. Let $\mathfrak{A}$ be a nilalgebra over the field $F$. Then $\mathfrak{A}^{2} \mathfrak{A}^{2} \subset \mathfrak{B}$ for every subalgebra $\mathfrak{B}$ of codimension $\leq 2$.

By above lemma, if $\operatorname{deg}(\mathfrak{A}) \geq \operatorname{dim}(\mathfrak{A})-2$, then $\mathfrak{A}^{2} \mathfrak{A}^{2}$ is nilpotent and hence $\mathfrak{A}$ is solvable. Summarizing, $\mathfrak{A}$ is solvable in the following cases: (i) $\operatorname{dim}(\mathfrak{A}) \leq 5$; (ii) $\operatorname{dim}(\mathfrak{A})=6$ and $\operatorname{deg}(\mathfrak{A}) \neq 3$; (iii) $\operatorname{dim}(\mathfrak{A})=7$ and $\operatorname{deg}(\mathfrak{A}) \neq 3$ or 4 . Thus, for $\operatorname{dim}(\mathfrak{A}) \leq 7$, it remains to be shows that $\mathfrak{A}$ is solvable if $\operatorname{deg}(\mathfrak{A})=3$ or 4 .

The following lemma is clear from Lemma 1. For any subset $S$ of $\mathfrak{A}$ we denote by $\langle S\rangle$ the vector space spanned by $S$.

Lemma 5. Let $\mathfrak{A}$ be an algebra over $F$ satisfying the identity $x^{4}=0$. Consider an element $a$ in $\mathfrak{A}$. (i) If $a\left(a\left(a^{2} a^{2}\right)\right) \neq 0$, then $\operatorname{dim}(\operatorname{alg}(a))=6$; (ii) If $a\left(a\left(a^{2} a^{2}\right)\right)=0$ and $a\left(a^{2} a^{2}\right) \neq 0$, then $\operatorname{dim}(\operatorname{alg}(a))=5$.

Proof. By Lemma 1 we observe that $\mathfrak{A}$ is a nilalgebra of nilindex $\leq 7$ and $\operatorname{alg}(a)=\left\langle a, a^{2}, a^{3}, a^{2} a^{2}, a\left(a^{2} a^{2}\right), a\left(a\left(a^{2} a^{2}\right)\right)\right\rangle$. Assume $a\left(a\left(a^{2} a^{2}\right)\right) \neq 0$. We will prove that $a, a^{2}, a^{3}, a^{2} a^{2}, a\left(a^{2} a^{2}\right), a\left(a\left(a^{2} a^{2}\right)\right)$ are linearly independent. Let $\lambda_{1} a+\lambda_{2} a^{2}+\lambda_{3} a^{3}+\lambda_{4} a^{2} a^{2}+\lambda_{5} a\left(a^{2} a^{2}\right)+\lambda_{6} a\left(a\left(a^{2} a^{2}\right)\right)=$ 0. Then $0=L_{a}^{2} L_{a^{2}} L_{a}(0)=L_{a}^{2} L_{a^{2}} L_{a}\left(\lambda_{1} a+\lambda_{2} a^{2}+\lambda_{3} a^{3}+\lambda_{4} a^{2} a^{2}+\right.$ $\left.\lambda_{5} a\left(a^{2} a^{2}\right)+\lambda_{6} a\left(a\left(a^{2} a^{2}\right)\right)\right)=\lambda_{1} a\left(a\left(a^{2} a^{2}\right)\right)$ and hence $\lambda_{1}=0$. Analogously, $0=L_{a}^{2} L_{a^{2}}(0)=L_{a}^{2} L_{a^{2}}\left(\lambda_{2} a^{2}+\lambda_{3} a^{3}+\lambda_{4} a^{2} a^{2}+\lambda_{5} a\left(a^{2} a^{2}\right)+\right.$ $\left.\lambda_{6} a\left(a\left(a^{2} a^{2}\right)\right)\right)=\lambda_{2} a\left(a\left(a^{2} a^{2}\right)\right)$ so that $\lambda_{2}=0$. Next, $0=L_{a} L_{a^{2}}(0)=$ $L_{a} L_{a^{2}}\left(\lambda_{3} a^{3}+\lambda_{4} a^{2} a^{2}+\lambda_{5} a\left(a^{2} a^{2}\right)+\lambda_{6} a\left(a\left(a^{2} a^{2}\right)\right)\right)=-\lambda_{3} a\left(a\left(a^{2} a^{2}\right)\right)$ so that $\lambda_{3}=0$. And analogously we can prove that $\lambda_{4}=\lambda_{5}=\lambda_{6}=0$. The case (ii) is similar.

Corollary 1. Let $\mathfrak{A}$ be an algebra over $F$ satisfying the identity $x^{4}=0$. Assume $\operatorname{deg}(\mathfrak{A})=3$ or 4 and let $a$ be an element in $\mathfrak{A}$. Then $\operatorname{alg}(a)=$ $\left\langle a, a^{2}, a^{3}, a^{2} a^{2}\right\rangle$ and $\left\langle a^{3}, a^{2} a^{2}\right\rangle \cdot \operatorname{alg}(a)=0$.

## 1. The case degree $(\mathrm{A})=3$

Now we will study nilalgebras of degree 3 . In this section $\mathfrak{A}$ will be a nilalgebra of degree 3 and dimension $\leq 7$ over the field $F$. Consider $a$ an element in $\mathfrak{A}$. Because $\mathfrak{A}$ is nilalgebra, there exists a positive integer $t$ such that $a^{t}=0$. We can assume that $a^{t}=0$ and $a^{t-1} \neq 0$. Clearly, the elements $a, a^{2}, \ldots, a^{t-1}$ are linearly independent, and hence $t \leq 4$, since $\operatorname{deg}(\mathfrak{A})=3$. Consequently, the algebra $\mathfrak{A}$ satisfies the identity $x^{4}=0$. By Corollary 1 , the sequence $a^{3}, a^{2} a^{2}$ is linearly dependent and $\mathfrak{A}$ satisfies the identities $x\left(x^{2} x^{2}\right)=0, \quad x^{2} x^{3}=0$. Consequently, $\mathfrak{A}$ satisfies multiplication identities (3), Tables i and ii and Lemma 2.

Lemma 6. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then $L^{6}=0$ is a multiplication identity in $\mathfrak{A}$.

Proof. Assume that there exist $a, b \in \mathfrak{A}$ such that $L_{a}^{6}(b) \neq 0$. Then the sequence $\Psi=\left\{L_{a}^{i}(b): i=0,1, \ldots, 6\right\}$ is a basis of $\mathfrak{A}$. On the other hand, we note that from Table ii and (3) we have

$$
L_{a}^{6}(b)=\frac{1}{2} a\left(a^{2}(a(a(a b)))\right)=-\frac{1}{8}\left(a^{2} a^{2}\right)(a(a b)),
$$

so that $a^{2} a^{2} \neq 0$. Because $\Psi$ is a basis and $a\left(a^{2} a^{2}\right)=0$, we get that

$$
a^{2} a^{2}=\lambda L_{a}^{6}(b)
$$

for any $0 \neq \lambda \in F$. Combining above relations we get that

$$
a^{2} a^{2}=\left(a^{2} a^{2}\right)[(-\lambda / 8) a(a b)]
$$

but this is impossible because $\mathfrak{A}$ is an Engel algebra. Therefore $L_{a}^{6}=0$ for all $a \in \mathfrak{A}$.

We may use (2) combined with (3) to yield

$$
\begin{equation*}
L_{x^{2} x^{2}} L-4 L_{x^{3}} L^{2}=8 L^{5} . \tag{11}
\end{equation*}
$$

We shall use this formula now.
Lemma 7. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then $L^{5}=0$ is a multiplication identity in $\mathfrak{A}$.

Proof. Assume that there exist $a, b \in \mathfrak{A}$ such that $L_{a}^{5}(b) \neq 0$. By identity (11) we have that either $a^{3} \neq 0$ or $a^{2} a^{2} \neq 0$. The proof now splits into two cases.

Case 1. If $a^{2} a^{2} \neq 0$, then $a^{3}=\beta a^{2} a^{2}$ for any $\beta \in F$ and using (11) we obtain $8 L_{a}^{5}=L_{a^{2} a^{2}} L_{a}-4 \beta L_{a^{2} a^{2}} L_{a}^{2}$. Multiplying this relation
from the right side with $L_{a}$ yields $L_{a^{2} a^{2}} L_{a}^{2}=0$, so that $L_{a^{3}} L_{a}^{2}=0$ and $L_{a^{2} a^{2}} L_{a}=8 L_{a}^{5}$. Now, it is easy to prove that $\Psi=\left\{a^{2} a^{2}, L_{a}^{i}(b): i=\right.$ $0,1, \ldots, 5\}$ is linearly independent and hence a basis of $\mathfrak{A}$. Let $a^{2}=$ $\lambda a^{2} a^{2}+\sum_{i=0}^{5} \mu_{i} L_{a}^{i}(b)$. Multiplying by $a, 2$ times, we get $0=\mu_{0} L_{a}^{2}(b)+$ $\mu_{1} L_{a}^{3}(b)+\mu_{2} L_{a}^{4}(b)+\mu_{3} L_{a}^{5}(b)$, so that $\mu_{0}=\mu_{1}=\mu_{2}=\mu_{3}=0$. Now, multiplying with $a^{2}$, we get $a^{2} a^{2}=\lambda\left(a^{2}\right)^{3}+\mu_{4} L_{a^{2}} L_{a}^{4}(b)+\mu_{5} L_{a^{2}} L_{a}^{5}(b)=0$, but this is impossible.

Case 2. If $a^{2} a^{2}=0$, then $L_{a^{3}} L_{a}^{2}=-2 L_{a}^{5}$. Now, it is easy to prove that $\Phi=\left\{a^{3}, L_{a}^{i}(b): i=0,1, \ldots, 5\right\}$ is linearly independent and hence a basis of $\mathfrak{A}$. Let $a=\lambda a^{3}+\sum_{i=0}^{5} \mu_{i} L_{a}^{i}(b)$. Multiplying by $a, 3$ times, we get $0=\mu_{0} L_{a}^{3}(b)+\mu_{1} L_{a}^{4}(b)+\mu_{2} L_{a}^{5}(b)$, so that $\mu_{0}=\mu_{1}=\mu_{2}=0$. Next, multiplying by $a$ two time, we have $a^{3}=\mu_{3} L_{a}^{5}(b)$, but this is impossible because $\Phi$ is a basis.

Lemma 8. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then every monomial in $P$ of $x$-degree $\geq 6$ and $y$-degree 1 is an identity in $\mathfrak{A}$.

Proof. By Lemma 2 and Lemma 6 we only need to prove that $L^{4} U=0$ and $U L^{2} U=0$ are multiplication identities in $\mathfrak{A}$. Using identity (3), Table ii and relation $0=\delta\left[x^{2}\right]\{x(x(x(x(x y))))\}$ we have that $0=U L^{4}+$ $L U L^{3}+L^{2} U L^{2}+L^{3} U L+L^{4} U=L^{2} U L^{2}+L^{3} U L+L^{4} U=L^{4} U$. Now, from Lemma 2, multiplication identities $L^{6}=0$ and $L^{4} U=0$, and identity (11), we see that

$$
U L L U=-U L U L=\frac{1}{4} U L_{x^{2} x^{2}}=U L_{x^{3}} L .
$$

Let $a \in \mathfrak{A}$. If $a^{2} a^{2}=0$, if follows immediately that $L_{a^{2}} L_{a}^{2} L_{a^{2}}=0$. If $a^{2} a^{2} \neq 0$, then there exists $\lambda \in F$ such that $a^{3}=\lambda a^{2} a^{2}$. Therefore, $L_{a^{2}} L_{a}^{2} L_{a^{2}}=L_{a^{2}} L_{a^{3}} L_{a}=\lambda L_{a^{2}} L_{a^{2} a^{2}} L_{a}=0$. This proves the lemma.

Using identity (2), Lemma 2 and Lemma 7, we can prove easily the following multiplication identities

$$
\begin{gathered}
L^{3} U=-L^{2} U L=-L^{2} L_{x^{3}}=L L_{x^{3}} L=\frac{1}{4} L L_{x^{2} x^{2}} \\
L U L^{2}=-L_{x^{3}} L^{2}=-\frac{1}{4} L_{x^{2} x^{2}} L
\end{gathered}
$$

for nilalgebras of dimension $\leq 7$ and degree 3 over the field $F$. We shall use these formulas now.

Lemma 9. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then $L^{3} U=0$ and $L U L^{2}=0$ are multiplications identities in $\mathfrak{A}$.

Proof. Let $a$ be an element in $\mathfrak{A}$. If $a^{2} a^{2}=0$ then, from above identities we obtain immediately that $L_{a}^{3} L_{a^{2}}=(1 / 4) L_{a} L_{a^{2} a^{2}}=0$ and $L_{a} L_{a^{2}} L_{a}^{2}=$ $-(1 / 4) L_{a^{2} a^{2}} L_{a}=0$. If $a^{2} a^{2} \neq 0$ then there exists $\lambda \in F$ such that $a^{3}=\lambda a^{2} a^{2}$. This means that $L_{a^{3}}=\lambda L_{a^{2} a^{2}}$. Then we have $L_{a}^{3} L_{a^{2}}=$ $L_{a}^{2} L_{a^{3}}=\lambda L_{a}^{2} L_{a^{2} a^{2}}=0$ and $L_{a} L_{a^{2}} L_{a}^{2}=-L_{a^{3}} L_{a}^{2}=\lambda L_{a^{2} a^{2}} L_{a}^{2}=0$ by Lemma 8. This proves the lemma.

Lemma 10. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then $L U L=0$ is a multiplication identity in $\mathfrak{A}$.

Proof. We will assume the contrary, there exist two elements $a, b \in \mathfrak{A}$ such that $a\left(a^{2}(a b)\right) \neq 0$. We know by (3) that

$$
a\left(a^{2}(a b)\right)=-(1 / 4)\left(a^{2} a^{2}\right) b
$$

Therefore, $a^{2} a^{2} \neq 0$ and also the sequence $\left\{a^{2} a^{2}, a\left(a^{2}(a b)\right)\right\}$ is linearly independent, because $L_{b}$ is nilpotent. For any $\lambda \in F$ we have that $a^{3}=\lambda a^{2} a^{2}$. Obviously, this forces $L_{a^{3}}=\lambda L_{a^{2} a^{2}}$. From identity (2) and above lemma, we have immediately that $L_{a} L_{a^{2}} L_{a}=-L_{a^{3}} L_{a}-2 L_{a}^{4}=$ $-\lambda L_{a^{2} a^{2}} L_{a}-2 L_{a}^{4}=4 \lambda L_{a} L_{a^{2}} L_{a}^{2}-2 L_{a}^{4}=-2 L_{a}^{4}$, that is

$$
\begin{equation*}
L_{a} L_{a^{2}} L_{a}=-2 L_{a}^{4} \tag{12}
\end{equation*}
$$

We will now prove that $\Psi=\left\{b, a b, a^{2}(a b), a\left(a^{2}(a b)\right), a, a^{2}, a^{2} a^{2}\right\}$ is a basis of $\mathfrak{A}$. Let $\lambda_{1} b+\lambda_{2} a b+\lambda_{3} a^{2}(a b)+\lambda_{4} a\left(a^{2}(a b)\right)+\mu_{1} a+\mu_{2} a^{2}+\mu_{3} a^{2} a^{2}=0$, with $\lambda_{i}, \mu_{j} \in F$. Multiplying with $a, a^{2}$ and $a$ successively, we get $\lambda_{1}=0$. Multiplying with $a^{2}$ and $a$ successively, we have $\lambda_{2}=0$. Multiplying with $a$ and $a^{2}$ successively, we obtain $\mu_{1}=0$, so that

$$
\lambda_{3} a^{2}(a b)+\lambda_{4} a\left(a^{2}(a b)\right)+\mu_{2} a^{2}+\mu_{3} a^{2} a^{2}=0
$$

Multiplying with $a$ it follows that $\lambda_{3}=0$ since $a^{2} a^{2}, a\left(a^{2}(a b)\right)$ are linearly independent and $a^{3} \in\left\langle a^{2} a^{2}\right\rangle$. Multiplying with $a^{2}$ we have $\mu_{2}=0$. Now, relation $\lambda_{4} a\left(a^{2}(a b)\right)+\mu_{3} a^{2} a^{2}=0$ forces $\lambda_{4}=\mu_{3}=0$. Therefore, we have proved that the sequence $\Psi$ is linearly independent. Since $\operatorname{dim}(\mathfrak{A}) \leq 7$, it follows that $\Psi$ is a basis of $\mathfrak{A}$.

On the other hand, because $\Psi$ is a basis of $\mathfrak{A}$, we have a representation $a(a b)=\alpha_{1} b+\alpha_{2} a b+\alpha_{3} a^{2}(a b)+\alpha_{4} a\left(a^{2}(a b)\right)+\alpha_{5} a+\alpha_{6} a^{2}+\alpha_{7} a^{2} a^{2}$, with $\alpha_{i} \in F$. Using the operators $L_{a} L_{a^{2}} L_{a}, L_{a} L_{a^{2}}, L_{a^{2}} L_{a}$ and $L_{a} L_{a}$, we prove that $\alpha_{1}=0, \alpha_{2}=0, \alpha_{5}=0$ and $a(a(a(a b)))=0$ respectively, but this is impossible since by identity (12) we have that $2 a(a(a(a b)))=-a\left(a^{2}(a b)\right)$ and by hypothesis this element is diferent form zero. This proves the lemma.

It was proved in [8] the following result for power-associative nilalgebras.

Lemma 11. Every commutative power-associative nilalgebra of dimension $\leq 8$ over a field of characteristic $\neq 2,3$ or 5 is solvable.

Theorem 1. Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with dimension $\leq 7$ and degree 3. Then, the algebra $\mathfrak{A}$ is solvable.

Proof. By Lemma 10 we have that $a^{2} a^{2}$ belong to the annihilator of the algebra $\mathfrak{A}$, for every $a \in \mathfrak{A}$. This means that the linear subspace $J=\left\langle a^{2} a^{2}: a \in \mathfrak{A}\right\rangle$ is an ideal of $\mathfrak{A}$ and $\mathfrak{A} J=0$. Thus, $\mathfrak{A} / J$ is a commutative power-associative nilalgebra of dimension $\leq 7$, and hence solvable. This implies that $\mathfrak{A}$ is solvable.

## 2. The case degree $(A)=4$ and $x(x(x x))=0$

For any subalgebra $\mathfrak{B}$ of an algebra $\mathfrak{A}$, the $\operatorname{set} \operatorname{st}(\mathfrak{B})=\{x \in \mathfrak{A}: x \mathfrak{B} \subset \mathfrak{B}\}$ is called stabilizer of $\mathfrak{B}$ in $\mathfrak{A}$. For every element $a \in \operatorname{st}(\mathfrak{B})$, we can define a linear transformation $\overline{L_{a}}$ on the quotient vector space $\overline{\mathfrak{A}}=\mathfrak{A} / \mathfrak{B}$ as follows,

$$
\overline{L_{a}}(x+\mathfrak{B})=a x+\mathfrak{B},
$$

for all $x \in \mathfrak{A}$. We will now denote by $M_{\mathfrak{B}}$ the linear space $\left\{\overline{L_{a}}: a \in \operatorname{st}(\mathfrak{B})\right\}$ and by $N_{\mathfrak{B}}$ the linear subspace $\left\{\overline{L_{b}}: b \in \mathfrak{B}\right\}$. Evidently, we have that $N_{\mathfrak{B}} \subset M_{\mathfrak{B}}$.

The following result will be useful. Items (iv), (v), (vi) and (vii) follow immediately from (i)-(iii) proved in [6].

Lemma 12. Let $V$ be a vector space of dimension 3 over a field $F$ of characteristic $\neq 2$ and let $\mathfrak{M}$ be a vector space of nilpotent linear endomorphisms in $\operatorname{End}_{F}(V)$. Then $\operatorname{dim} \mathfrak{M} \leq 3$ and either $\mathfrak{M}^{3}=0$ or: (i) $\operatorname{dim} \mathfrak{M}=2$; (ii) for every nonzero $f \in \mathfrak{M}$ we have that $\operatorname{rank}(f)=2$; (iii) if $\mathfrak{M}=\left\langle f_{1}, f_{2}\right\rangle$, then there exists a basis $\phi$ of $V$ and $0 \neq \lambda \in F$ such that the matrices (using columns) of $f_{1}$ and $\lambda f_{2}$ with respect to $\phi$ are

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

respectively; (iv) if $f, g$ and $f g$ are all in $\mathfrak{M}$, then $f=0$ or $g=0$; (v) if $f, g, h$ and $f(g+f h)$ are all in $\mathfrak{M}$ and $f \neq 0$, then $g=0$ and $h \in\langle f\rangle$; (vi) if $f, g, h \in \mathfrak{M}$ and $f(f+g h)=0$, then $f=0$; (vii) if $f, g \in \mathfrak{M}$ and $f^{2} g^{2}=0$, then the sequence $\{f, g\}$ is linearly dependent.

Let $\mathfrak{A}$ be a nilalgebra over the field $F$ with degree 4 and dimension $\leq 7$ satisfying the identity $x^{4}=0$. From Lemma $4, \mathfrak{A}$ is solvable if $\operatorname{dim}(\mathfrak{A}) \leq$ 6 , so that throughout this section we will assume that $\mathfrak{A}$ has dimension 7. By Corollary 1, the algebra $\mathfrak{A}$ satisfies the identities $x\left(x^{2} x^{2}\right)=0$ and $x^{2} x^{3}=0$. Now we may take an element $b$ in $\mathfrak{A}$ such that $\mathfrak{B}$, the subalgebra of $\mathfrak{A}$ generated by $b$, has dimension 4. By Corollary 1, we have

$$
\mathfrak{B}=\left\langle b, b^{2}, b^{3}, b^{2} b^{2}\right\rangle
$$

and

$$
\begin{equation*}
\left\langle b^{3}, b^{2} b^{2}\right\rangle \mathfrak{B}=(0) \tag{13}
\end{equation*}
$$

If $\operatorname{dim} N_{\mathfrak{B}}=0$, then $\mathfrak{B}$ is an ideal of $\mathfrak{A}$ and hence $\mathfrak{A}$ is solvable because $\mathfrak{A} / \mathfrak{B}$ is solvable. If $M_{\mathfrak{B}}$ is nilpotent, then there exists $a \in \mathfrak{A}$ but not in $\mathfrak{B}$ such that

$$
\begin{equation*}
f(a+\mathfrak{B})=0+\mathfrak{B} \tag{14}
\end{equation*}
$$

for all $f \in M_{\mathfrak{B}}$. There exists a smallest integer $m, 1 \leq m \leq 3$, such that $M_{\mathfrak{B}}^{m}=(0)$. If $m=1$ take $a \in \mathfrak{A}$ but not in $\mathfrak{B}$; if $m>1$, take $0 \neq g \in$ $M_{\mathfrak{B}}^{m-1}$ and $a+\mathfrak{B}$ in $g(\mathfrak{A} / \mathfrak{B})$ with $a+\mathfrak{B} \neq 0+\mathfrak{B}$. Then (14) is satisfied. Since $a \in \operatorname{st}(\mathfrak{B})$ we have that $\overline{L_{a}} \in M_{\mathfrak{B}}$. Then relation (14) implies that $0+\mathfrak{B}=\overline{L_{a}}(a+\mathfrak{B})$ and hence $a^{2} \subset \mathfrak{B}$. Let $\mathfrak{B}^{\prime}=\left\langle b, b^{2}, b^{3}, b^{2} b^{2}, a\right\rangle$. We have that $\mathfrak{B}^{\prime}$ is a subalgebra of $\mathfrak{A}$ with codimension 2. Using Lemma 4 we get that $\mathfrak{A}^{2} \mathfrak{A}^{2} \subset \mathfrak{B}^{\prime}$ so that $\mathfrak{A}$ is solvable.

We now consider the case $N_{\mathfrak{B}} \neq(0)$ and $M_{\mathfrak{B}}^{3} \neq(0)$. Then $M_{\mathfrak{B}}$ satisfies (i)-(vii) of Lemma 12. By Lemma 1 we have that $N_{\mathfrak{B}}$ is nilpotent, so that Lemma 12 forces $\operatorname{dim}\left(N_{\mathfrak{B}}\right)=1$ since $N_{\mathfrak{B}} \subset M_{\mathfrak{B}}$ and $M_{\mathfrak{B}}$ is not nilpotent. Let $0 \neq h \in N_{\mathfrak{B}}$. Then $\overline{L_{b^{i}}}=\alpha_{i} h$ for any $\alpha_{i} \in F$ and for $i=1,2,3$. From identities (3) and (2) we have $\overline{L_{b^{2} b^{2}}}=-4 \alpha_{1}^{2} \alpha_{2} h^{3}=0$ and $\alpha_{3} h=\overline{L_{b^{3}}}=-\alpha_{1} \alpha_{2} h^{2}-2 \alpha_{1}^{3} h^{3}=-\alpha_{1} \alpha_{2} h^{2}$ so that $\overline{L_{b^{3}}}=0$ since $h^{3}=0$. Next (3) forces ${\overline{L_{b^{2}}}}^{2}=-2 \alpha_{1}^{2} \alpha_{2} h^{3}+2 \alpha_{1}^{2} \alpha_{2} h^{3}+4 \alpha_{1}^{4} h^{4}=0$. Therefore $\overline{L_{b^{2}}}=0$ since $\overline{L_{b^{2}}} \in M_{\mathfrak{B}}$ and from Lemma 12 every nonzero element in $M_{\mathfrak{B}}$ is nilpotent of index 3. Thus, we have proved that

$$
\mathfrak{B}^{2} \mathfrak{A}=\left\langle b^{2}, b^{3}, b^{2} b^{2}\right\rangle \mathfrak{A} \subset \mathfrak{B}
$$

This yields $N_{\mathfrak{B}}=\left\langle\overline{L_{b}}\right\rangle$. Because $N_{\mathfrak{B}} \nsubseteq M_{\mathfrak{B}}$ and $\operatorname{dim}\left(M_{\mathfrak{B}}\right)=2$, we can take $a \in \operatorname{st}(\mathfrak{B})$, but not in $\mathfrak{B}$ such that $M_{\mathfrak{B}}=\left\langle\overline{L_{b}}, \overline{L_{a}}\right\rangle$. By Lemma 12 there exists a basis $\Phi=\left\{v_{1}+\mathfrak{B}, v_{2}+\mathfrak{B}, v_{3}+\mathfrak{B}\right\}$ of $\mathfrak{A} / \mathfrak{B}$ such that the matrices of $\overline{L_{b}}$ and $\overline{L_{a}}$ with respect to $\Phi$ are respectively

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \quad \text { and } \quad \frac{1}{\lambda}\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

for any $0 \neq \lambda \in F$. This means that $v_{3}+\mathfrak{B}=\alpha a+\mathfrak{B}, v_{2}+\mathfrak{B}=\alpha a^{2}+\mathfrak{B}$ and $v_{1}+\mathfrak{B}=\alpha a^{3}+\mathfrak{B}$ for any $\alpha \in F, \alpha \neq 0$. We can assume, without lost of generality, that $\lambda=1$ and $\alpha=1$. Now, by equation (3) and (13) we have $\left(b^{2} b^{2}\right) a=-4 b\left(b^{2}(b a)\right) \subset b\left(b^{2} \mathfrak{B}\right)=(0)$, so that

$$
\left(b^{2} b^{2}\right) a=0
$$

On the other hand, $a b$ can be expressed as a linear combination of $b, b^{2}, b^{3}, b^{2} b^{2}$. Let $a b=\mu_{1} b+\mu_{2} b^{2}+\mu_{3} b^{3}+\mu_{4} b^{4} b^{2}$. Then $c b=\mu_{1} b+\mu_{4} b^{2} b^{2}$, where $c=a-\mu_{2} b-\mu_{3} b^{2}$. Therefore $c(c b)=\mu_{1} c b+\mu_{4} c\left(b^{2} b^{2}\right)=\mu_{1} c b$. Since $\mathfrak{A}$ is an Engel algebra, $L_{c}$ is nilpotent and hence either $\mu_{1}=0$ or $c b=0$. This implies

$$
a b \in \mathfrak{B}^{2}
$$

Using relation (3) we have that $b^{2}\left(b^{2} a\right)=-2 b^{2}(b(b a))+2 b\left(b^{2}(b a)\right)+$ $4 b(b(b(b a)))=0$. This forces

$$
b^{2} a \in \mathfrak{B}^{3}
$$

Finally, using (2) and (3) we have

$$
\begin{aligned}
& \left(b^{2} b^{2}\right) a^{2}=-4 b\left(b^{2}\left(b a^{2}\right)\right) \in\left\langle b\left(b^{2}(-a+\mathfrak{B})\right)\right\rangle=\left\langle b\left(b^{2} a\right)\right\rangle=0 \\
& \left(b^{2} b^{2}\right) a^{3}=-a\left(a^{2}\left(b^{2} b^{2}\right)\right)-2 a\left(a\left(a\left(b^{2} b^{2}\right)\right)\right)=0
\end{aligned}
$$

and hence $b^{2} b^{2} \in \operatorname{ann}(\mathfrak{A})$. Let $J=\left\langle b^{2} b^{2}: b \in \mathfrak{A}\right.$, $\left.\operatorname{dim}(\operatorname{alg}(b))=4\right\rangle$. Then $\mathfrak{A} / J$ is a commutative nilalgebra of dimension $\leq 6$ and degree $\leq 3$, so that solvable. This implies that $\mathfrak{A}$ is solvable.

## 3. The case degree $(A)=4$

Let $\mathfrak{A}$ be a nilalgebra with degree 4 . If $a \in \mathfrak{A}$, then there exists an integer $t$ such that $a^{t} \neq 0$ and $a^{t+1}=0$ so that the elements $a, a^{2}, \ldots, a^{t}$ are linearly independent. Since $\operatorname{deg}(\mathfrak{A})=4$, we have that $t \leq 4$ and hence $\mathfrak{A}$ satisfies the identity

$$
x^{5}=0 .
$$

Now we will see that $\mathfrak{A}$ is a nilalgebra of index $\leq 9$. Let $\mathfrak{B}$ be a subalgebra of $\mathfrak{A}$ generated by a single element and let $k_{1}$ be the index of $\mathfrak{B}$ as leftnilalgebra, that is $k_{1}$ is the smallest integer such that $x^{k_{1}}=0$ for all $x \in \mathfrak{B}$. Evidently, $\operatorname{dim} \mathfrak{B} \leq 4$ and $k_{1} \leq 5$. If $k_{1} \leq 3$, then $\mathfrak{B}$ is a Jordan algebra and hence nilpotent with $\mathfrak{B}^{k_{1}}=0$. If $k_{1}=4$, then by Lemma 1 and Lemma 5, we have that $p(x)=0$ is an identity in $\mathfrak{B}$ for every monomial $p(x)$ of degree $\geq 5$. Finally, if $k_{1}=5$, then there exists $b \in \mathfrak{B}$ such that $\mathfrak{B}=\left\langle b, b^{2}, b^{3}, b^{4}\right\rangle$. Now, because $\mathfrak{B}$ is nilpotent, we have that

$$
b^{2} b^{2} \in\left\langle b^{3}, b^{4}\right\rangle, \quad b^{2} b^{3}, b^{3} b^{3} \in\left\langle b^{4}\right\rangle, \quad b^{4} \mathfrak{B}=(0)
$$

Thus, $\mathfrak{B}^{3}, \mathfrak{B}^{4} \subset\left\langle b^{3}, b^{4}\right\rangle, \mathfrak{B}^{5} \subset\left\langle b^{4}\right\rangle$ and $\mathfrak{B}^{t}=0$ for all $t \geq 9$. It has the following consequences.

Lemma 13. The algebra $\mathfrak{A}$ satisfies the identities

$$
x^{i}\left(x^{j}\left(x^{t} x^{2}\right)\right)=0, \quad i, j, t \geq 1
$$

and $p(x)=0$ for every monomial $p(x) \in P$ of degree $\geq 9$.
Linearizing the above identities we have the following multiplication identities (in order to simplify, we will write $L_{3}$ instead of $L_{x^{3}}$ and $L_{4}$ instead of $L_{x^{4}}$ ):

$$
\begin{align*}
& L_{4}+L L_{3}+L^{2} U+2 L^{4}=0  \tag{15}\\
& L_{x^{2} x^{3}}+2 L L_{3} L+L U U+2 L U L^{2}=0  \tag{16}\\
& 2 L_{4} L^{2}+L_{4} U+L_{3} L_{3}+L_{3} L U+2 L_{3} L^{3}=0  \tag{17}\\
& L_{x^{3} x^{3}}+2 L L_{3} U+4 L L_{3} L^{2}=0  \tag{18}\\
& U^{3}+2 U U L^{2}+2 U L_{3} L+2 L_{x^{2} x^{3}} L=0  \tag{19}\\
& L_{4}\left(L_{3}+L U+2 L^{3}\right)=0 \tag{20}
\end{align*}
$$

Lemma 14. [9] Every nilalgebra of bounded index over $F$ is an Engel algebra.

We have proved that the index of a nilalgebra of degree 4 is $\leq 9$. We then apply Lemma 14 to obtain

Corollary 2. Every nilalgebra of degree 4 over $F$ is an Engel algebra.
Theorem 2. Let $\mathfrak{A}$ be a nilalgebra over the field $F$. If $\operatorname{dim}(\mathfrak{A}) \leq 7$, then $\mathfrak{A}$ is solvable.

Proof. We already prove that $\mathfrak{A}$ is solvable if either $\operatorname{deg}(\mathfrak{A}) \neq 4$ or $x^{4}=0$ is an identity. Thus, it remains to prove that $\mathfrak{A}$ is solvable if $\operatorname{dim}(\mathfrak{A})=7$, $\operatorname{deg}(\mathfrak{A})=4$ and $x^{4}=0$ is not an identity in $\mathfrak{A}$.

Let $\mathfrak{A}$ be a nilalgebra of dimension 7 and degree 4 such that there exists $b \in \mathfrak{A}$ with $b^{4} \neq 0$. Let $\mathfrak{B}$ be the subalgebra of $\mathfrak{A}$ generated by b. Because $\mathfrak{A}$ has degree 4 , we have $\mathfrak{B}=\left\langle b, b^{2}, b^{3}, b^{4}\right\rangle$ and $b^{5}=0$. As in Section 3, if $M_{\mathfrak{B}}$ is nilpotent, then the algebra $\mathfrak{A}$ is solvable. Also, the algebra is solvable if $N_{\mathfrak{B}}=0$. Thus, we can assume that $M_{\mathfrak{B}}$ is not nilpotent and $\operatorname{dim} N_{\mathfrak{B}} \geq 1$. By Lemma 12, we have that $\operatorname{dim}\left(M_{\mathfrak{B}}\right)=2$. From (15) we have

$$
\overline{L_{b^{4}}}=-\overline{L_{b} L_{b^{3}}}-{\overline{L_{b}}}^{2} \overline{L_{b^{2}}}=-\overline{L_{b}}\left(\overline{L_{b^{3}}}+\overline{L_{b} L_{b^{2}}}\right) \in N_{\mathfrak{B}} .
$$

Combining above relation and (v) of Lemma 12 we get that $\overline{L_{b^{4}}}=0$. Now (17) implies $\overline{L_{b^{3}}}\left(\overline{L_{b^{3}}}+\overline{L_{b} L_{b^{2}}}\right)=0$ and by (vi) of Lemma 12 we get that $\overline{L_{b^{3}}}=0$. This means that

$$
\begin{equation*}
\mathfrak{B}^{3} \mathfrak{A} \subset \mathfrak{B} \tag{21}
\end{equation*}
$$

and $N_{\mathfrak{B}}=\left\langle\overline{L_{b}}, \overline{L_{b^{2}}}\right\rangle$. Now relation (19) for $x=b$ forces $0={\overline{L_{b^{2}}}}^{3}+$ $2{\overline{L_{b^{2}}}}^{2}{\overline{L_{b}}}^{2}+2 \overline{{\overline{b^{2}}}^{L_{b^{3}} L_{b}}}+2 \overline{L_{b^{2} b^{3}} L_{b}}=2{\overline{L_{b^{2}}}}^{2}{\overline{L_{b}}}^{2}$ and hence using (vii) of Lemma 12 we have that

$$
\begin{equation*}
\operatorname{dim}\left(N_{B}\right)=1 \tag{22}
\end{equation*}
$$

We can assume, without loss of generality, that

$$
\begin{equation*}
\overline{L_{b}} \neq 0 \tag{23}
\end{equation*}
$$

since if $\overline{L_{b}}=0$, then $\overline{L_{b^{2}}} \neq 0$ and we can take $0 \neq \lambda \in F$ such that $\left(b+\lambda b^{2}\right)^{4}=b^{4}+\lambda\left[b\left(b^{2} b^{2}\right)+b^{2} b^{3}\right]+\lambda^{2}\left(b^{2}\right)^{3} \neq 0$. Because $\operatorname{dim}\left(N_{\mathfrak{B}}\right)=1$, there exists $\alpha \in F$ such that $\overline{L_{b^{2}}}=\alpha \overline{L_{b}}$. As in Section 3 there exists $a \in \mathfrak{A}$ such that $M_{\mathfrak{B}}=\left\langle\overline{L_{b}}, \overline{L_{a}}\right\rangle, \Phi=\left\{a^{3}+\mathfrak{B}, a^{2}+\mathfrak{B}, a+\mathfrak{B}\right\}$ is a basis of $\mathfrak{A} / \mathfrak{B}$ and the matrices of $\overline{L_{b}}$ and $\overline{L_{a}}$ with respect to $\Phi$ are respectively $\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. This means that

$$
\begin{equation*}
b a^{3}-a^{2}, b^{2} a^{3}-\alpha a^{2}, b a^{2}+a, b^{2} a^{2}+\alpha a, b a, b^{2} a, a^{4} \in \mathfrak{B} \tag{24}
\end{equation*}
$$

By (24) we have that $b a \in \mathfrak{B}$ so that $b a=\lambda_{1} b+\lambda_{2} b^{2}+\lambda_{3} b^{3}+\lambda_{4} b^{4}$, with $\lambda_{i} \in F$. Therefore $\left[a-\lambda_{2} b-\lambda_{3} b^{3}-\lambda_{4} b^{3}\right] b=\lambda_{1} b$. This implies that $\lambda_{1}=0$ and hence

$$
\begin{equation*}
b a \in \mathfrak{B}^{2} \tag{25}
\end{equation*}
$$

since every multiplication operator on $\mathfrak{A}$ is nilpotent. Let $j$ be a positive integer. From (15) and (21) we get

$$
\begin{equation*}
b^{4} a^{j}=-b\left(b^{3} a^{j}\right)-b\left(b\left(b^{2} a^{j}\right)\right)-2 b\left(b\left(b\left(b a^{j}\right)\right)\right) \in \mathfrak{B}^{2} \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
b^{4} \mathfrak{A} \subset \mathfrak{B}^{2} \tag{27}
\end{equation*}
$$

By (20) we see that $0=b^{4}\left(b^{3} a^{3}+b\left(b^{2} a^{3}\right)+2 b\left(b\left(b a^{3}\right)\right)\right)=b^{4}\left(b\left(b^{2} a^{3}\right)\right)=$ $-\alpha b^{4} a$ and now using identity (17) we have $2 b^{4}\left(b\left(b a^{3}\right)\right)+b^{4}\left(b^{2} a^{3}\right)+$ $b^{3}\left(b^{3} a^{3}\right)+b^{3}\left(b\left(b^{2} a^{3}\right)\right)+2 b^{3}\left(b\left(b\left(b a^{3}\right)\right)\right)=0$ and hence $-2 b^{4} a+\alpha\left(b^{4} a^{2}-\right.$ $\left.b^{3} a\right)=-b^{3}\left(b^{3} a^{3}\right) \in\left\langle b^{4}\right\rangle$. Therefore

$$
\begin{equation*}
b^{4} a=0, \quad \alpha\left(b^{4} a^{2}-b^{3} a\right) \in\left\langle b^{4}\right\rangle \tag{28}
\end{equation*}
$$

since $\mathfrak{A}$ is an Engel algebra and $\alpha b^{4} a=0$.
The proof now splits into two cases:

Case 1. The relation $x^{3} x^{3}=0$ is not an identity in $\mathfrak{A}$. In this case, we can assume without loss of generality that

$$
\begin{equation*}
b^{4} \neq 0, \quad \text { and } \quad b^{3} b^{3} \neq 0 \tag{29}
\end{equation*}
$$

Let $b_{1}$ be an element in $\mathfrak{A}$ such that $b_{1}^{3} b_{1}^{3} \neq 0$ and $\mathfrak{B}$ the subalgebra of $\mathfrak{A}$ generated by $b_{1}$. Then $\left\{b_{1}, b_{1}^{2}, b_{1}^{3}, b_{1}^{3} b_{1}^{3}\right\}$ is a basis of $\mathfrak{B}$ and products satisfy the following properties, $b_{1}^{2} b_{1}^{2} \in\left\langle b_{1}^{3}, b_{1}^{3} b_{1}^{3}\right\rangle, b_{1}^{3} \mathfrak{B} \subset\left\langle b_{1}^{3} b_{1}^{3}\right\rangle$ and $\left(b_{1}^{3} b_{1}^{3}\right) \mathfrak{B}=$ (0), because $\mathfrak{B}$ is nilpotent. By Corollary 1 we have that $x^{4}=0$ is not an identity in $\mathfrak{B}$. Thus, there exists an element $b$ in $\mathfrak{B}$ of the form $\lambda_{1} b_{1}+\lambda_{2} b_{1}^{2}+\lambda_{3} b_{1}^{3}+\lambda_{4} b_{1}^{3} b_{1}^{3}$ such that $b^{4} \neq 0$ and also we can assume that $\overline{L_{b}} \neq 0$. Evidently, we have $\lambda_{1} \neq 0$. Now $b^{2} \in \lambda_{1}^{2} b_{1}^{2}+\left\langle b_{1}^{3}, b_{1}^{3} b_{1}^{3}\right\rangle, b^{3} \in$ $\lambda_{1}^{3} b_{1}^{3}+\left\langle b_{1}^{3} b_{1}^{3}\right\rangle$ and $b^{3} b^{3}=\lambda_{1}^{6} b_{1}^{3} b_{1}^{3} \neq 0$. Then (29) is satisfied. Evidently, we have $b^{3} b^{3}=\gamma b^{4}$ for any $0 \neq \gamma \in F$. Combining (18) and (28) it follows $0=\left(b^{3} b^{3}\right) a^{2}+2 b\left(b^{3}\left(b^{2} a^{2}\right)\right)+4 b\left(b^{3}\left(b\left(b a^{2}\right)\right)\right)=\left(b^{3} b^{3}\right) a^{2}-2 \alpha b\left(b^{3} a\right)=$ $\gamma b^{4} a^{2}-2 \alpha b\left(b^{4} a^{2}\right)$. Thus $b^{4} b^{2}=(2 \alpha / \gamma) b\left(b^{4} a^{2}\right)$. Since $\mathfrak{A}$ is an Engel algebra it follows that

$$
b^{4} a^{2}=0
$$

Combining this identity with (28) we have that

$$
\begin{equation*}
\alpha b^{3} a \in\left\langle b^{4}\right\rangle \tag{30}
\end{equation*}
$$

Now, relation (16) with $x=b$ for the element $a^{2}$ implies $2 b\left(b^{3} a\right)+$ $\alpha b\left(b^{2} a\right) \in\left\langle b^{4}\right\rangle$. Combining this relation with (30) we see that $b\left(b^{3} a\right) \in$ $\left\langle b^{4}\right\rangle$, so that $b^{3} a \in\left\langle b^{3}, b^{4}\right\rangle$. Therefore

$$
b^{3} a \in\left\langle b^{4}\right\rangle
$$

since $\mathfrak{A}$ is an Engel algebra. Next, we put $x=b$ in (15) to obtain $0=b^{4} a+b b^{3} a+b\left(b\left(b^{2} a\right)\right)+2 b(b(b(b a)))=b\left(b\left(b^{2} a\right)\right)$, and hence

$$
b^{2} a \in\left\langle b^{3}, b^{4}\right\rangle
$$

Now, by Lemma 13 we know that $x\left(x^{2} x^{3}\right)=0$ is an identity in $\mathfrak{A}$ and hence $0=(1 / 48) \delta[b: 4, a ; 2]\left\{x\left(x^{2} x^{3}\right)\right\}=b\left(b^{2}\left(b a^{2}\right)\right)+2 b\left(b^{2}(a(b a))\right)+$ $4 b((b a)(b(b a)))+2 a\left(b^{2}(b(b a))\right)+2 b\left((b a)\left(b^{2} a\right)\right)+a\left(b^{2}\left(b^{2} a\right)\right)+b\left(a^{2} b^{3}\right)+$ $2 a\left((b a) b^{3}\right)$, forces $b\left(b^{3} a^{2}\right) \in\left\langle b^{4}\right\rangle$ so that

$$
b^{3} a^{2} \in\left\langle b^{4}\right\rangle
$$

Finally, (18) implies $0=\left(b^{3} b^{3}\right) a^{3}+2 b\left(b^{3}\left(b^{2} a^{3}\right)\right)+4 b\left(b^{3}\left(b\left(b a^{3}\right)\right)\right)=$ $\left(b^{3} b^{3}\right) a^{3}+2 b\left(b^{3}\left(\alpha a^{2}-2 a\right)\right)=\left(b^{3} b^{3}\right) a^{3}$. Therefore we must have $b^{4} a^{3}=0$. Consequently, we have proved, in this case, that $b^{4} \in \operatorname{ann}(\mathfrak{A})$. Let $J=$
$\left\langle c^{4}: c^{3} c^{3} \neq 0, c \in \mathfrak{A}\right\rangle$. Then $\overline{\mathfrak{A}}=\mathfrak{A} / J$ is a nilalgebra of dimension $\leq 6$ and hence solvable. This forces the solvability of $\mathfrak{A}$.

Case 2. The relation $x^{3} x^{3}=0$ is an identity in $\mathfrak{A}$. Linearizing this identity we have that $\mathfrak{A}$ satisfies the identity

$$
x^{3}\left(x^{2} y\right)+2 x^{3}(x(x y))=0
$$

Taking $x=b$ and $y=a^{2}$ it follows immediately that $\alpha b^{3} a \in\left\langle b^{4}\right\rangle$ and for $x=b$ and $y=a^{3}$ this identity forces $\alpha b^{3} a^{2}-2 b^{3} a \in\left\langle b^{4}\right\rangle$. Therefore

$$
b^{3} a \in\left\langle b^{4}\right\rangle
$$

Next, (15) forces $0=b^{4} a+b\left(b^{3} a\right)+b\left(b\left(b^{2} a\right)\right)+2 b(b(b(b a)))=b\left(b\left(b^{2} a\right)\right)$, so that

$$
b^{2} a \in\left\langle b^{3}, b^{4}\right\rangle
$$

Now, taking the identity $\delta[b: 4, a: 3]\left\{x^{4} x^{3}\right\}=0$ we have

$$
\begin{aligned}
-b^{4} a^{3}= & {\left[b^{3} a+b\left(b^{2} a\right)+2 b(b(b a))\right] \cdot\left[b a^{2}+2 a(a b)\right]+} \\
& {\left[b\left(b a^{2}\right)+2 b(a(b a))+2 a(b(b a))+a\left(a b^{2}\right)\right] \cdot\left[b^{2} a+2 b(b a)\right]+} \\
& {\left[b a^{3}+a\left(a^{2} b\right)+2 a(a(a b))\right] \cdot\left[b^{3}\right] } \\
\in & \left\langle b^{4}\right\rangle \cdot\left\langle a, b, b^{2}, b^{3}, b^{4}\right\rangle+\mathfrak{B} \cdot\left\langle b^{3}, b^{4}\right\rangle+\mathfrak{B} \cdot\left\langle b^{3}\right\rangle \subset\left\langle b^{4}\right\rangle
\end{aligned}
$$

since by (24) we have that $b a^{3}+a\left(a^{2} b\right) \in \mathfrak{B}$. This means that

$$
b^{4} a^{3}=0
$$

because $L_{a^{3}}$ is nilpotent. From $\delta[b: 3, a: 2] x^{5}=0$ we get $-b\left(b\left(b a^{2}\right)\right)=$ $a\left(a b^{3}\right)+a\left(b\left(a b^{2}\right)\right)+2 a(b(b(b a)))+b\left(a\left(a b^{2}\right)\right)+2 b(a(b(b a)))+2 b(b(a(b a)))=$ 0 . This means that

$$
b\left(b a^{2}\right) \in\left\langle b^{4}\right\rangle
$$

Finally, from $\delta[b: 4, a: 2]\left\{x^{4} x^{2}\right\}=0$ it follows that

$$
\begin{aligned}
-b^{4} a^{2}= & {\left[b^{3} a+b\left(b^{2} a\right)+2 b(b(b a))\right] \cdot[2 b a]+} \\
& {\left[b\left(b a^{2}\right)+2 b(a(b a))+2 a(b(b a))+a\left(a b^{2}\right)\right] \cdot\left[b^{2}\right] } \\
\in \quad & \left\langle b^{4}\right\rangle \cdot\left\langle b^{2}, b^{3}, b^{4}\right\rangle+\left\langle b^{4}\right\rangle \cdot\left\langle b^{2}\right\rangle=(0)
\end{aligned}
$$

Therefore $b^{4} \in \operatorname{ann}(\mathfrak{A})$ and as in the case 1 , this implies the solvability of $\mathfrak{A}$.

## References

[1] A.A. Albert, Power-associative rings, Trans. Amer. Math. Soc., N.64, 1948, pp.552-593.
[2] I. Correa, I.R. Hentzel, A. Labra, On the nilpotence of the multiplication operator in commutative right nil algebras, Comm. in Algebra, N.30, 2002, pp.3473-3488.
[3] A. Elduque, A. Labra, On the Classification of commutative right-nilalgebras of dimension at most four, Comm. in Algebra, N.35, 2007, pp.577-588.
[4] L. Elgueta, A. Suazo, (2004). Solvability of commutative power-associative nilalgebras of nilindex 4 and dimension $\leq 8$, Proyecciones, N.23, 2004, pp.123-129.
[5] L. Elgueta, J.C.G. Fernandez, A. Suazo, Nilpotence of a class of commutative power-associative nilalgebras, Journal of Algebra, N.291, 2005, pp.492-504.
[6] J.C.G. Fernandez, On commutative power-associative nilalgebras, Comm. in Algebra, N.32, 2004, pp.2243-2250.
[7] J.C.G. Fernandez, On commutative left-nilalgebras of index 4, Proyecciones, N.27(1), 2008, pp. 103-112.
[8] J.C.G. Fernandez, A. Suazo, Commutative power-associative nilalgebras of nilindex 5 Result. Math., N.47, 2005, pp.296-304.
[9] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J., N.27, 1960, pp.21-31.
[10] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices III, Ann. of Math., N.70, 1959, pp.167-205.
[11] B. Mathes, M. Omladic, H. Radjavi, Linear spaces of nilpotent matrices, Lin. Alg. Appl., N.149, 1991, pp.215-225.
[12] J.M. Osborn, Varieties of algebras, Adv. in Math., N.8, 1972, pp.163-396.
[13] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, A.I. (1982). Rings that are nearly associative, Academic Press, 1982.

## Contact information

## J. C. G. Fernandez Departamento de Matemática-IME, Univer-

 sidade de São Paulo Caixa Postal 66281, CEP 05315-970, São Paulo, SP, Brazil E-Mail: jcgf@ime.usp.brReceived by the editors: 19.09.2008 and in final form 19.09.2008.

