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Abstract. In this note we describe the central polynomials

for the finite dimensional unitary Grassmann algebras Gk over an

infinite field F of characteristic ∕= 2. We exhibit a set of generators

of C(Gk), the T-space of the central polynomials of Gk in a free

associative F -algebra.
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Introduction

Central polynomials of algebras with polynomial identities are of funda-
mental importance in PI-theory. The existence of proper central polyno-
mials for the matrix algebras Mn(F ) over a field F was conjectured by
Kaplansky, and confirmed by means of direct constructions by Formanek
[5] and by Razmyslov [14]. One can find further references about central
polynomials of PI algebras in [1], [4] and [8].

However, an explicit description of the vector space of all central
polynomials was obtained for very few algebras so far (in the results
mentioned above some central polynomials for the corresponding algebras
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were constructed). The module structure of the centre of the generic
matrix algebra of order 2 was given by Formanek [6], and generators
for the central polynomials for M2(F ) were exhibited by Okhitin in [13];
both results were obtained assuming the base field F of characteristic 0.
For an infinite field F , charF = p ∕= 2, generating sets for the central
polynomials for M2(F ) were described in [2]. Very recently in [1] the
central polynomials of the infinite dimensional Grassmann algebra G over
an infinite field F of characteristic ∕= 2 were described. In fact, this is an
almost complete list of known results concerning an explicit description
of the central polynomials in a given algebra.

In this note we describe the central polynomials of the finite dimen-
sional Grassmann algebras Gk over an infinite field F , charF ∕= 2. We
exhibit a set of generators of the T-space C(Gk) of the central polynomi-
als of Gk.

Let us give the precise definitions. Let F be a field and let F1⟨X⟩ be
the free unitary associative algebra over F on the free generating set X =
{x0, x1, x2, . . .}. A polynomial f(x1, . . . , xn) ∈ F1⟨X⟩ is a polynomial
identity in an F -algebra A if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A. An
ideal I of F1⟨X⟩ is called a T-ideal if I is closed under all endomorphisms
of F1⟨X⟩. If A is an algebra then its polynomial identities form a T-ideal
T (A) in F1⟨X⟩; conversely, for every T-ideal I in F1⟨X⟩ there is an algebra
A such that I = T (A), that is, I is the ideal of all polynomial identities
satisfied in A. We refer to [3], [4], [10] and [15] for the terminology and
basic results concerning PI algebras.

A vector subspace V of F1⟨X⟩ is called a T-space if V is closed under
all (algebra) endomorphisms of F1⟨X⟩. A set S ⊂ V generates V as a
T-space if V is the minimal T-space in F1⟨X⟩ containing S. Therefore V
is the span of all polynomials f(g1, . . . , gn) where f ∈ S and gi ∈ F1⟨X⟩.
Note that if I is a T-ideal in F1⟨X⟩ then T-spaces and T-ideals can be
defined in the quotient algebra F1⟨X⟩/I in a natural way. In recent
years T-spaces turned out to be objects of intensive study, see [9] for an
account.

The polynomial f(x1, . . . , xn) is called a central polynomial for A if
f(a1, . . . , an) ∈ Z(A), the centre of A, for every ai ∈ A. The central poly-
nomials for a given algebra A form a T-space C(A) in F1⟨X⟩. However,
not every T-space can be obtained as the T-space of the central polyno-
mials for some algebra. In fact the central polynomials for a given algebra
A are closed under multiplication, and so they form a T-subalgebra in
F1⟨X⟩.

Let V be the vector space over a field F of characteristic ∕= 2, with
a countable infinite basis e1, e2, . . . and let Vk denote the subspace
of V generated by e1, . . . , ek (k = 2, 3, . . .). Let G and Gk denote the
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unitary Grassmann algebras of V and of Vk respectively. Then as a vector
space G has a basis that consists of 1 and of all monomials ei1ei2 . . . eik ,
i1 < i2 < ⋅ ⋅ ⋅ < ik, k ≥ 1. The multiplication in G is induced by
eiej = −ejei for all i and j. The algebra Gk is the subalgebra of G
generated by e1, . . . , ek, and dimGk = 2k.

Let a, b, c ∈ A, we denote by [a, b] = ab − ba the commutator of a
and b, and we set [a, b, c] = [[a, b], c].

Krakowski and Regev [11] described the polynomial identities of G
when charF = 0, and several authors described the generators of T (G)
in the general case. Let T be the T-ideal in F1⟨X⟩ generated by the triple
commutator [x1, x2, x3].

Proposition 1 ([7, 11, 12], see also [3, 4, 8, 10]). Let F be an infinite
field of characteristic ∕= 2. Then T (G) = T .

The description of the polynomial identities of Gk can be obtained easily
from the proof of Proposition 1, see for instance [3, 4] if charF = 0,
and [7] if charF ∕= 2. Let T (Gk) be the T-ideal of the polynomial
identities of Gk and let Tn be the T-ideal generated by the polynomi-
als [x1, x2] . . . [x2n−1, x2n] and [x1, x2, x3].

Proposition 2 ([7]). Let F be an infinite field of characteristic ∕= 2.
Then T (Gk) = Tn where n = [k/2] + 1, [a] being the integer part of the
rational number a.

Very recently the central polynomials for the infinite dimensional Grass-
mann algebra G were described in [1]. Let

q(x1, x2) = xp−1
1 [x1, x2]x

p−1
2

and let, for each s ≥ 1,

qs = qs(x1, . . . , x2s) = q(x1, x2)q(x3, x4) . . . q(x2s−1, x2s).

Theorem 3 ([1]). Over an infinite field F of characteristic p > 2, the
vector space C(G) of the central polynomials of G is generated (as a T-
space in F1⟨X⟩) by the polynomial x0[x1, x2, x3] and by the polynomials

xp0 , xp0 q1 , xp0 q2 , . . . , xp0 qn , . . . .

Proposition 4 ([1]). If charF = 0 then the T-space C(G) is generated
by 1, x0[x1, x2, x3] and [x1, x2].

In this note we deal with the central polynomials for the finite dimen-
sional Grassmann algebras Gk. Our main results are as follows.
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Theorem 5. Over an infinite field F of a characteristic p > 2 the vector
space C(Gk) of the central polynomials of Gk is generated (as a T-space
in F1⟨X⟩) by the polynomials

x0[x1, x2, x3], x0[x1, x2] . . . [x2n−3, x2n−2]

and by the polynomials

xp0 , xp0 q1 , xp0 q2 , . . . , xp0 qn−2, n = [k/2] + 1.

Proposition 6. If charF = 0 then the T-space C(Gk) is generated by 1,
x0[x1, x2, x3], [x1, x2] and x0[x1, x2] . . . [x2n−3, x2n−2] where n = [k2 ] + 1.

We deduce Theorem 5 and Proposition 6 from the following proposi-
tion of independent interest.

Proposition 7. Let F be an infinite field of characteristic ∕= 2. Then,
for each k ≥ 2, C(Gk) = C(G) + Tn−1, where n = [k2 ] + 1.

1. Proof of the main results

To prove our results we need the following well-known properties of the
T-ideal T (see, for instance, [3, 10, 7]).

Lemma 8. Let F be a field. For all g, g1, g2, g3, g4 ∈ F1⟨X⟩ we have
the following:

(i) [g1, g2] + T is central in F1⟨X⟩/T ;

(ii) [g1, g2][g3, g4] + T = −[g1, g3][g2, g4] + T ;

(iii) [g1, g2][g3, g4] + T = T if gi = gj for some i and j, i ∕= j.

Let B be the set of all polynomials in F1⟨X⟩ of the form

xn1

i1
xn2

i2
. . . xns

is
[xj1 , xj2 ] . . . [xj2r−1

, xj2r ]

where s, r ≥ 0, i1 < i2 < . . . < is, j1 < j2 < . . . < j2r, nk > 0
for all k. Note that 1 ∈ B because 1 is of the form above for s =
r = 0. Let, for each n ≥ 1, Bn be the subset of B consisting of all
elements with 0 ≤ r < n, that is, of elements of B whose “commutator
part” [xj1 , xj2 ] . . . [xj2r−1

, xj2r ] contains less than n commutators. The
next proposition is well-known. It follows immediately, for instance, from
[3, Theorem 4.3.11 (i) and the proof of Theorem 5.1.2 (i)].



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.P. Koshlukov, A. Krasilnikov, E. A. Silva 73

Proposition 9. Let F be an infinite field of characteristic ∕= 2. Then
the F -vector space F1⟨X⟩/T has a basis {b + T ∣ b ∈ B} and the vector
space F1⟨X⟩/Tn has a basis {b+ Tn ∣ b ∈ Bn}.

First we prove Proposition 7. Note that C(G) + Tn−1 ⊆ C(Gk).
Indeed, C(G) ⊂ C(Gk) because T ⊂ Tn and C(G)/Tn and C(Gk)/T
are the centres of F1⟨X⟩/Tn and of F1⟨X⟩/T , respectively. On the other
hand, Tn−1 ⊂ C(Gk) because the elements of Tn−1/Tn are central in
F1⟨X⟩/Tn. Indeed, Tn−1/Tn is spanned by elements of the form ℎ+ Tn,
where ℎ = g0[g1, g2] . . . [g2n−3, g2n−2] (gi ∈ F1⟨X⟩). Since [g, g′] + T is
central in F1⟨X⟩/T for all g, g′, for each t we have

[ℎ, xt] + T = [g0, xt][g1, g2] . . . [g2n−3, g2n−2] + T ∈ Tn/T,

that is, [ℎ, xt] ∈ Tn. Hence, ℎ+ Tn is central in F1⟨X⟩/Tn and so is each
element of Tn−1/Tn.

Thus, to prove Proposition 7 it suffices to check that

C(Gk) ⊆ C(G) + Tn−1.

Let f be an arbitrary element of C(Gk). By Proposition 9, the set {b+T ∣
b ∈ B} is an F -basis of the algebra F1⟨X⟩/T so

f + T =
∑

�ib
(1)
i +

∑
�ib

(2)
i + T

where, for all i, �i, �i ∈ F , b
(1)
i ∈ Bn−1 and b

(2)
i ∈ B∖Bn−1. Equivalently,

f =
∑

�ib
(1)
i +

∑
�ib

(2)
i + f1

where �i, �i, b
(1)
i and b

(2)
i are as above and f1 ∈ T . Note that

∑
�ib

(2)
i ∈

Tn−1 and f1 ∈ T ⊂ Tn−1 so (
∑

�ib
(2)
i + f1) ∈ Tn−1. Hence, to prove

that f ∈ C(G) + Tn−1 it suffices to check that g =
∑

�ib
(1)
i ∈ C(G) or,

equivalently, that [g, xt] ∈ T for all t.
Let

b
(1)
i = xm1

i1
. . . xms

is
[xj1 , xj2 ] . . . [xj2r−1

, xj2r ].

Then

[b
(1)
i , xt] + T = [xm1

i1
. . . xms

is
, xt][xj1 , xj2 ] . . . [xj2r−1

, xj2r ] + T.

Note that if A is an associative ring then

[v1v2 . . . vl, u] =
l∑

i=1

v1 . . . vi−1[vi, u]vi+1 . . . vl.
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Also recall that [g, g′] + T is central in F1⟨X⟩/T for all g, g′. Hence we

obtain that [b
(1)
i , xt] + T equals

s∑

l=1

ml x
m1

i1
. . . xml−1

il
. . . xms

is
[xil , xt][xj1 , xj2 ] . . . [xj2r−1

, xj2r ] + T.

Further, it follows from the items ii) and iii) of Lemma 8 that, for all
gi ∈ F1⟨X⟩ and for each permutation � on the set {1, 2, . . . , 2u},

[g1, g2] . . . [g2u−1, g2u] + T = ±[g�(1), g�(2)] . . . [g�(2u−1), g�(2u)] + T

and

[g1, g2] . . . [g2u−1, g2u] + T = T

if gi = gj for some i and j, i ∕= j. Therefore we can rewrite [b
(1)
i , xt] + T

as a linear combination of elements of the form

x
m′

1

i1
. . . x

m′

s

is
[xj′

1
, xj′

2
] . . . [xj′

2r+1
, xj′

2r+2
] + T,

where j′1 < j′2 < . . . < j′2r+2. Since b
(1)
i ∈ Bn−1, we have r < n − 1 so

each element above belongs to Bn.

Thus, for each i,

[b
(1)
i , xt] + T =

∑
ijb

(3)
ij + T,

where ij ∈ F , b
(3)
ij ∈ Bn. It follows that

[g, xt] + T =
∑

�i′bi′ + T (1)

where �i′ ∈ F , bi′ ∈ Bn for all i′.

Note that g ∈ C(Gk). Indeed, as we observed above, Tn−1 ⊂ C(Gk)

so (
∑

�ib
(2)
i + f1) ∈ C(Gk). Also f ∈ C(Gk) so g = f − (

∑
�ib

(2)
i + f1) ∈

C(Gk).

Since g ∈ C(Gk), we have [g, xt] + Tn = Tn. On the other hand,
(1) implies [g, xt] + Tn =

∑
�i′bi′ + Tn because T ⊂ Tn. It follows that∑

�i′bi′ + Tn = Tn. Since {b+ Tn ∣ b ∈ Bn} is a basis of F1⟨X⟩/Tn over
F , we have �i′ = 0 for all i′. Then, by (1), [g, xt] + T = T for all t, that
is, g ∈ C(G).

Thus,

f = g + (
∑

�ib
(2)
i + f1) ∈ C(G) + Tn−1,

as required. This completes the proof of Proposition 7.
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Now we prove Theorem 5. Recall that charF = p > 2. By Proposi-
tion 7, C(Gk) = C(G) + Tn−1, where n = [k2 ] + 1. It can be easily seen
that as a T-space Tn−1 is generated by

x0[x1, x2, x3] (2)

and

x0[x1, x2][x3, x4] . . . [x2n−3, x2n−2]. (3)

Since, by Theorem 3, the T-space C(G) is generated by (2) and by the
set

xp0 , xp0 q1 , . . . , xp0 qs , . . . , (4)

the T-space C(Gk) = C(G) + Tn−1 is generated by (2), (3) and the set
(4). Notice that xp0 qs ∈ Tn−1 for all s ≥ n− 1 because, by Lemma 8,

xp0 qs + T = xp0 xp−1
1 [x1, x2]x

p−1
2 . . . xp−1

2s−1[x2s−1, x2s]x
p−1
2s + T

= xp0x
p−1
1 xp−1

2 . . . xp−1
2s [x1, x2] . . . [x2s−1, x2s] + T.

It follows that C(Gk) is generated as a T-space by the polynomials (2),
(3) and xp0 , xp0 q1 , . . . , xp0 qn−2. The proof of Theorem 5 is completed.

Finally, we prove Proposition 6. Here we assume charF = 0. By
Proposition 7, C(Gk) = C(G) + Tn−1 where n = [k2 ] + 1. By Proposition
4, the T-space C(G) is generated by 1 and by the polynomials (2) and
[x1, x2]. Since the T-space Tn−1 is generated by the polynomials (2) and
(3), the T-space C(Gk) is generated by 1 and by the polynomials (2), (3)
and [x1, x2], as required. Proposition 6 is proved.
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