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Some soluble groups of finite rank and some related
matrix groups

Hexotopeie paspemumpie rpynnsl KOHEYHOro paHra
U HEKOTOPbIE CBSI3aHHbi€ C HUMH I'PYIIbl MATPHIL

Let G be a torsion-iree soluble group of finite rank and F any [ield. The group algebra FG is
an Ore domain; let D denote its division ring of quotients. It seems likely that D is always lo-
cally residually finite-dimensional over F. This is certainly 'so in the non-modular case. Here in
somt? special situations we settle the modular case. We include some applications to groups of
matrices.

Ilyete G — paspeumnmasn rpynna Ges KpydeHHA KoHeuHoro panra B F — mone, ['pynnosas af-
re6pa FG sBnsercs o6macteio Ope; myeTs D — ee Teno yacTHeix . [IpeficTaBisercsd BepoATHHIM,
yro D Beerja JOKadbHO pPesujyalhHO KOHeYHOMepHO Haj F. 3T0 HecOMHEHHO TaK B HEMOAYJAp-
HOM cnydae. B janHoif paoTe B HEKOTOPHIX CNeNHANBHHIX CHTYAIHAX MBl PaccMaTpHBaeM MOIY-
JIApHEIL cryvail. [IpHBOIMM HEKOTOpHIE TPHJIOMEHHS K IPYyIle MATDHIL.

Hexait G — pose’sisra rpyna Ges xpydeHHS cKiHyeHHOro pamry i F — moxe. 'pynoBa anrefpa
FG e o6xactio Ope i mexait D — i Tizo wacrox. Mmosipwo, mo D saBmAH € JOKa/bHO pesHpy-
anbHO ckimvenHoBHMipHe Haj F. Ile GesmepeuHo Tax B HeMOZYJIAPHOMY BHHOAgKY.:B nesrux
creniaJbHEX CHTYAaIligX MH POSIVIAZlaeMO MOAYNAPHHH BHmanok. Hasojgumo HedKi sacrocyBaHHA
20 TPYT MATPHIb.

Let G be a torsion-free soluble group of finite rank and F any field. Then the
group algebra FG is an Ore domain [1] and therefore has a division ring D of
quotients. In [2] we considered this division ring D and more particularly
groups of matrices over D. Primarily (2] is devoted to what may be called the

@ B. A. F. WEHRFRITZ, 1991

894 ISSN 0041-6053. ¥xp. mar. ocypu., 1991, r. 43, Ne 7—8



non-modular case; that is either where char F = 0 or where char F = p= &
and no finitely generated subgroup of G involves a Priifer p*-group. Here we
make a start on the apparently much more complicated modular case. Thus.
in what follows F is always a field of positive characteristic p. At this stage we:
can do little more than cope with a few examples.

The fundamental theorem in [2] is that in the non-modular case D is locally
residually finite-dimensional over F. The major open question in this area at
present must be whether this remains true in the modular case. We are able
to settle only "a few very special cases. Our techniques suffice for the
following. :

Theorem 1. Let F be a field of characteristic p =0, r a positive
integer and set G = (a, b| a® = a” ). Then the division ring D of quotients.
of the group algebra FG is locally residually finite-dimensional over F.

Part of Theorem 1 is covered by [2, 3], new information being given only:
when p|r. The results below and of [2] depend upon the construction of loca--
lizable ideals. In [2] this is accomplished by restricting ourselves to ideals.
with the Artin-Rees property. Artin-Rees ideals require the ambient ring to-
be Noetherian. The group algebra FG of the soluble group G is Noetherian.
only if G is polycyclic (e. g. [4] 5), which is usually not the case here or in [2].
Thus we required in [2] an initial reduction to Noetherian rings. This was done
via a preliminary localization at the augmentation ideal of a torsion-iree nil-
potent normal subgroup. This approach is not available for the proof of
Thoerem 1 above.

Example. Let F be a field of characteristic p >0, set G = (a,.
b|at=ar), A = (a®), a equal to the augmentation ideal of A in FA and
C = FA\a. Then C is a divisor subset of FA and FG and we form the rings.
R = FG. C—' and S=FA.C—* of quotients. Then R and S are rlP.lther left nor
right Noetherian.

Note that the group of the example above is covered by Theorem 1. Our
proof of Theorem 1 is unsatisfactory, in that it gives no pointers towards a pro-
of of a general result. Again we construct a localizable ideal, but the Ore condi-
tion we check by direct calculation, using the very special circumstances per-
taining there. For a general theorem it seems we would need localization techni-
ques that work in very non-Noetherian situations. In a similar way we cam
also prove the following.

Theorem 2. Let F be a locally finite field of chamcrerasrcc p, let g be
a power of p and set G = (b) A, where A is a torsion-free abelian group that is
an extension of a free abelian group of finite rank by a p-group and b normalizes.
A and acts on it by a® = a* for all a € A. Then the division ring D of quotients.
of FG is locally residually finite-dimensional over F.

Clearly the groups of Theorem 2 include those of Theorem 1. We discuss.
briefly below, see the Proposition, what can be said if, in the situation of Theo-
rem 2, the group A is just torsion-iree abelian of finite rank. As in [2] there
are some ready consequences of local residual finite-dimensionality.

Corollary. Let n be a positive integer and suppose D is one of
the division rings of Theorems 1 and 2.

a) A unipofent subgroup of GL (n, D) is ummangular;zable that is, U is
a stability subgroup in lhe sense of [5].

b) Let H be a subgroup of the group of units of some [initely generated sub-
ring of the matrix ring D"<n; for example let H be any finilely generated sub-
group of GL (n, D). Then H is residually finite.

¢) Let H be as in Part b). Then there are positive integers e and f such that
every element of H o] finite order has order dividing e and every [inite p’-subgroup
of H has order dividing [.

d) Let P be a periodic subgroup of GL (n, D). Then P is locally finite and
P/O4(P) is isomorphic to a subgmup of GL (n, F). If P contains no elements of
order p then some conjugate of P in GL (n, D) lies in GL (n, F).

With one exception the above corollary is exactly that suggested by the

ISSN 0041-6053. ¥kp. mar. acyps., 1991, 7. 43, N 7—8& 895



characleristic-p cases of the corollaries of [2]. The exception is if H is as in ¢).
We do not claim that H is a finite extension of a poly residually-finite-p group
{or better). The reason is obvious; if G is the group of the example above then
G is finitely generated subgroup of GL (1, D) and yet G is not a finite exten-
sion of a poly residually-finite-p group. -

All rings and algebras below have identities and ring and algebra
homomorphisms preserve these identities. Let R be a ring. A divisor subset of
R is a multiplicative submonoid of R not containing 0 and satisfying the left
and right Ore conditions with respect to R. If a is an ideal of R then Cy (a)
denotes the set of elements of R that are regular modulo a. w5

Lemma 1. Let F be a field, r a positive integer and G = (a, b |a® =
= a’). Set A = (a®) and suppose a is a G-invariant maximal ideal of FA with
Ala finite. Then Cpq (aG) = FG\ aG is a divisor subset of FG. .

Proof. FG= @;h’FA, aG = @;b'a and FG/aG = (FA/a) (b) is a
skew group ring of the infinite cyclic group (b) over the field FA/a. As such it
is a domain, so Crg (aG) = FG\aG= Q say. Clearly Q is a multiplicative
submonoid of FG not containing 0. Thus only the Ore conditions are in doubt
and we check the right Ore condition. The left one is checked in a similar ma-
nner.

~ F {(a)/(a N F {(a)) is a domain generated over F by a finite image of (a).
Thus it is a field and a ) F (a) is a maximal ideal of the principal ideal do-
main F (a). Hence a (] F {(a) = a.F (a) for some atom (=prime element)
(c or F (a). ;

Let x€ FG\ {0} and q € Q. Since FG is an Ore domain ([1] or (5] 1.4.4) the-
re are non-zero elements y and z of FG with xz=gy. Now x= Zb‘_&i, y=

= Zb‘ o 2= Zb‘gt and g = Zb’:xt for some &;, m; {; and x; all in FA.
Set &;; = b 'E,b' € FA and n;; = b 'nb’ €FA for each i and j. Then xz=
= Zb“”gﬂg_,-, qy = Zb"*"’ximj and for each k€7 we have

i85 = y A3 1 E R ()
)2

=t 47—k

By replacing a by b'ab™’ for some suitably large I we may -assume that
;}1( t)he i Mi» Ci» Xa» &y for j with §;5=0 and y;; forj with n;540 lie in

aj. ’ i
In F(a) suppose o divides each ; but does not divide some m;. Now
(aG)’ = aG. Thus for any k we have b *gb* = Zb‘xikea(}. Hence for each

k with m, 5= 0 there exists i with a not dividing % in F (a). Let m be the
minimal j with @ not dividing ;. Then m,,50. Let | be the minimal i
with « not dividing x;,,. Set 2=1+4m and suppose i+ j=k If j<<m
then a|n;. Suppose j>m with 1;540. Then i<<I and o|y;,. Now ab€
€aNF(a)=cw.F(a). Thus a|ab and so a|y;, for all n>m. In particu-
lar o|%;;. Consequently (+) yields that o|X,m,,. But o is an atom that do-
es not divide x;, or m,,. This contradiction shows that « divides every
whenever it divides all the ;.

Using the previous paragraph, whenever « | {; for all i we may cancel o
from y and 2. Thus we may choose y and z as above such that o does not divide
every §; in F(a). Suppose z@ (. Then z€ aG and each {;€a () F (a) =
= o..F {a), by definition of e. This contradiction of the choice of z shows
that z € Q. We have now shown that Q is a right Ore subset of FG, as claimed.

Lemma 2. Let A be a forsion-free abelian minimax group and § an
automorphism of A such that Q ® zA is irreducible as Q (&) module for every
positive integer i (i. e. assume A is a plinth for (€)). Let F be a field of positive
characteristic with a maximal finite subfield E. Then the intersection on the E-in-
variant maximal ideals m of FA with A/m finite is {0}.

Proof. If Fisfinite then this lemma is 3.1 of [2]. Suppose n isa E-in-
variant maximal ideal of EA with A/n finite. Then EA/n is a finite and hence
separable field. Of course F is flat over E, so FA/Fy, = F @ ¢ (EA/n) is a
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field (6, p. 197], Theorem 21 (2)) and consequently m =. Fn is a E-invariant
maximal ideal of FA. Clearly |A/m|<|A/n|<<oeo. By [2] 3.1 we have
Ain=0. If B is a basis of F over E then FA= @zbEA, m= @ bn and
Nem = @ zb(n) ={0}. The proof is complete.

& The conclusion of Lemma 2 is false if, for example, F is the algebraic
closure of a finite field. Note that any finitely generated field of positive cha-
racterictic satisfies the requirements on F in Lemma 2.

Lemma 3. Let F be a field and G a group such that the group algebra FG
is an Ore dornain with division ring D = F (G) of quotients.

a) D is locally residually finite-dimensional over F if (and only if) for each
finitely generated subgroup H of G and each element t € FHN\{O} there exists an
F-algebra homomorphism of the subalgebra FH [¢—*) of D into a finite-dimensio-
nal (non-zero) F-algebra.

b) If E is any subfield of F then EG has a division ring E (G) of quotients.

c) D is locally residually finite-dimensional over F if E (G) is locally resi-
dually finite-dimensional over E for eveny E in some local system L of subfields
of F.

.. Proof. a) Let X be a finite subset of D and x a non-zero element of
F1X1< D. Enlarge X so that x € X. By the Ore condition there is a common
right denominator d € FG of the elements of X, so FG = Xd. There is a fini-
tely genefated subgroup H of G with d € FH and FH = Xd. Set t = xd*>€
€ FH \{0}. "By hypothesis there is an F-algebra homomorphism ¢ of
FH [t'] isto a finite dimensional F-algebra. Now =

* FIXISFHIX)<FH [dYY<<FH [,

‘since d' =" (x\a-')“e FH . Thus F [X] ¢ is defined and is a finite-dimen-
sional F-algebra. Also x—! = d*™— ' is a unit of FH [t_ll and hence x@==0.
The proof is complete,
~.b) We check the right Ore condition. If a@,c€EG\ {0} there exist b,
dEFG\'{g)} with ad = cb. ¥ B is any basis of F over E then d= Y xd,
xEB

fq; suitab]thEG and si-miiarly b= E xb,. For some y in B we have

Lo *EB
d, non-zero. Using that B is central in FG we obtain 0=%ad, = cb,. Thus
EG is a right Ore domain. The left Ore condition is checked in the
obvious way.

c) Let A be a finitely generated subgroup of G anq ¢ a non-zero element of
FH. There exists a subfield E of F in L with # € EH. By b) the subring EG of D
has a division ring L of quotients and L is naturally a subring of D. Also FG =
= F@rEG and thus D>FL = F@®gL. Hence.we have EH [t—*] << L and
D > FH [t] == F ® gEH [t~*]. By hypothesis there is an E-algebra homo-
morphism 6 of EA [#] onto some finite-dimensional E-algebra B. Then 1 & 0
is an F-algebra homomorphism of F @ g EH [#—*] =< FH (t~?) onto the finite-
dimensional F-algebra F @gB. The claim now follows from Part a).

The Proof of Theorem 1. Note first that FG is an Ore domain
({17 or [5] 1.4.4)."By Lemma 3 we may assume that F is a finitely generated
field. Let ¢ be a mon-zero element of FG. Then #= Y &'z, for some ele-

ments w; of FA, not all zero. Hence Lemma 2 yiechls the exstence of a
G-invariant maximal i&}l mof FA not containing all the =; sucih that A/m
is finite. We can localie FG at mG by Lemma 1. Clearly FG[ <<
< FG.Cpg (mG)™". :

There is a matural map w of the latter onto (FG/mG).Cra/me (0)™ =
= D, say. Now FG/mG = (FA/m) (b) is a skew group algebra. Since A/m
is finite there is a positive power 0" of b centralizing FA/m. Then (FA/m)(b")
is a group algebra with field D, say of quotients. Clearly b normalizes
D,, so D, [b] has finite dimension n over D; and hence is Artinian. Thus
D, = D, [b] embeds into D{™". Since D, is locally residually finite-dimen-
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sional over F, so is D,. Hence there is a homomorphism of FG [t—l}n into
a- finite-dimensional F-algebra. In view of Lemma 3, the proof of Theorem 1
is complete. ' - )
Remark 1. In the above proof, D, is a division ring and F (b*) lies
in its centre. Thus D, is a finite-dimensional division algebra over rhe rational
function field over F in one variable. Let X be a non-empty finite subset of .
some finitely generated subring of D and set r = II_., (x —y), where x.
and y run over X in some order. The above proof of Theorem 1 shows that there
is a homomorphism ¢ of R into some finite-dimensional division algebra L.
of characteristic p such that rp<40. Then ¢|x is one-to-one and so for a given
R the set of all such @ form a super-residual system. We make use of this re-
mark in the proof of the corollary. : :
Lemma 4. Let R = SG be a skew group ring of the group G over ring S.
If R is right Noetherian then so is S. _
Proof. If Nis aright ideal of § then M = @ e Ng is a right ideal
of R and M 1 S = N. Thus an infinite ascending chain of right ideals of S
generates an infinite ascending chain of right ideals of R. The lemma follows.
The Proof that the Example is Non-Noethe.
rian. R = @z Sb* is a skew group ring. Now S is not Noetherian
A/ {a) = P is a Priifer p*-group, so FP is a local ring with maximal idedl the
augmentation ideal. Thus S/(@ — 1) S is isomorphic to FP, which is fiot No-
etherian, since P is not [4]. Therefore S is not Noetherian and consequently R
is neither left nor right Noetherian by Lemma 4. .
Lemma 5. Let F be a field and A a free abelian group of finite rank:”
a) the group algebra FA is a unique factorization domain;
b) if A = (a) X B with a=~1, then a— 1 is an atom of FA with .
FA/(a— 1) FA = FB; ,_, o
¢) if A= (a) X Band b€ B with, a, b 1 then gb—1 and a — 1 are
non-associate atoms of FA. - Y
Proof. a). FA is a localization of the polynomial ring F [X;, ..., X,I'*
for n = rank A. The latter is a unique factorization domain (e. g. (7], Page 32,
Theorem 10), so FA is too. '
b). FA/(a— 1) FA = FB. The latter is a domain, so a — 1 is an atom.
¢). The units of FA have the form ok for @ € F* and x € A. Consequently
the only associates of a—1 of the form x—1 with x€A are
a—1 and a*—1. _
The Proof of theorem 2. By Lemma 3 we may assume that
F is a finite field. If n is a positive integer then F (b") A has a divisionring
E < D of quotients, D = E [b] and D. embeds into E®*». If E is locally
residually finite-dimensional over F then so is D. Thus we may assume that
LF1 divides g. It follows that b acts on FA and its quotient field K as a Fro-
enius map; that is x = x? for all x in K. T
A has a free abelian subgroup A, of finite rank with A4/A4, a p-group. Set
Ay = biAb—. Then A; << Ay, for all i and 4 = UA4;. Let r € FG\{0}.
By Lemma 3 it sufices to construct an F-algebra homomorphism of FG [r—1] <
< D into some finite dimensional F-algebra. If rank 4, = 0 then 4 = (1)
and the result is easy. We assume otherwise.

We may choose A4, so that r= E b'p; where all ‘Ehé' p; lie in FA,.

Now FA, is a unigue factorization domain by Lemma 5 with infinitely many
non-associate atoms. Hence we can choose an atom a,of FA, not dividing
any non-zero p;. Let J be the localization of FA, at-wFA, in K. Then J
is a discrete valuation domain with maximal idéél «f. Set J,=0bJb.
Since b induces a Frobenius map on X, so J; <(7ig for all i and /= UJ;
is a subalgebra of D. Let «; = b'ab™. Then o4/; is the maximal ideal of
"Ti and it lies in J;ndg+1orf+1. Hence Cf.i.)ri == J_iﬂ@£+1jt—|=l for all i. Conse-

quently m = [ Ja;J is an ideal of I with //m = limJ/a,J; is a field, so m
; e

i
is a maximal ideal of / satisfying mNJ = aJ.
Clearly I and m are G-invariant, so p = mG is an ideal of the subring
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1[Gl of D. Also I [Gl/p == (I/m) (b) is a skew group ring of (b) over the field -
I/m. As such it has a division ring L of quotients. Set Q = Cyqj (p) =
= I [GI'\\p. Suppose Q is an Ore subset of / [G]. Then it is a divisor subset and
we can form / [G] Q—* << D. There is an obvious map 0 of the latter onto L.
Also r & p by construction, for if otherwise all the p; lieinm | FA, < al ()
N FA, = aFA,, sor € Q and 6 maps FG [r—*] << D into L. Clearly (FA,) 6 =
= FAy/aFA,. If rank A, is at least 2 we can choose & by Lemma 5 so that
By = A, 0 is iree abelian of rank one less that of 4, and (FA,) 6 = FB,. We
can apply induction to FB, (b) = (FG) 0 < L. If rank A, = 1 then (FA) 6
is a finite field (using that A/A4, is a p-group). Then the division ring of quoti-
ents of (FG) 8 has finite dimension over the quotient field of the group algebra
F (b) << (FG) 0. The conclusion then follows from the commutative case.

It remains to check the Ore conditions for Q. Again we check only the
right one. The proof is a variant of the proof of Lemma 1. Let x € 7 [G] and
g € Q. Since FG is an Ore domain ([1] or [5] 1.4.4) so is / [G], see for example
[6] 4.4.3. Hence there are elements y and z of 7 [G] with xz=qgy=£0.
Suppose x = 3 b'E;, y =2 b, z= 2 b'E; and g=2b’y,;, where the coefficients
& M §; and y; all lie in /. Equating coefficients in xz = gy yields

Z il = Z KidMi - (%)

=k i =k

for each k, where as before &;=b""Eb’ and y;; = b~'y;b". By replacing
A, by A, for sufficiently large ! we may assume that all the §;, n;, C;, %:, Ei5
for j with ;=0 and %;; for j with n;5=0 lie in J.

We now work in J. Suppose o divides each {; but not every n;. Since

p is G-invariant we have b_kqbk:EbixikEQ for every k. Thus for each k
withm, =0 there exists i with a not dividing %;,. Let m be the minimal j
with o not dividing n; and [ the minimal i with « not dividing %,,, (of course
Nm7~0). Set k=14 m and suppose i 4 j=*k. If j<<m then «|m;. Supp-
ose j>m and m;5=0. Then j<<! and a|¥;,,. Buta? émNJ=a/, so ala?
and hense o|X;;. Consequently () yields that «|%;,m,. But « is an atom
not dividing either of the factors. This contradiction proves that if « divides
each [; then o divides each 7;. By cancelling any superfluous ofs we can
choose y and z as above such that o does not divide each ;. If z¢ Q then
z€p=m¢(b) and each ; lies in m()/=oaf. Thus 2z€Q and the proof
of the right Ore condition is complete.
-+ Remark 2. Again the above proof shows that for every finitely gene-
rated subring R of D and each finite subset X of R there is a homomorphism ¢
of R into some finite-dimensional division algebra of characteristic p such that
¢ is one-to-one on X.

In the progression from Theorem 1 to Theorem 2 and beyond, the next step
is to allow A to be any torsion-iree abelian group of finite rank. Here we have
only been able to localize at ideals arizing from certain augmentation ideals.
We merely sketch the proof of this. Note first that 4.4.2 of [5] should read as
follows.

Lemma 6. Let A be a torsion-free abelian group, let F be a field and
let Q be the quotient field of FA. Denote the augmentation ideal of A in FA by a
and let H be a group of automorphisms of A and hence of Q. If char F = p >0
assume also that A is residually a finite p-group. Then there exists a discrete va-
luation domain J with maximal ideal m such that FA < J << Q, FA | m=a
and H normalizes J and m.

(In [5] the residually finite-p hypothesis is omitted. The result is used in
[5] to study certain groups, there called X-groups, that are, in particular, fi-
nite extensions of residually torsion-free polycyclic groups, so in [5] the resi-
dual condition in implicit in the applications. In characteristic p > 0 the
augmentation ideal of a finite p-group is nilpotent, so in the characteristic p
case of the proof of [5] 4.4.2 it is now immediate that N; at = {0}.)

We return to the matter in band. Let F be a finite field of characteristic
pandlet G = (b) A, where A is a torsion-free abelian group of finite rank and
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for some fixed power ¢ of |F| we have a® = a7 for all a in A. Again FG has a
division ring D of quotients. Let A, be a free abelian subgroup of A of maximal
rank and let B be the p’-divisible closure of A, in A. Then B is residually a
finite p-group and A/B is a p-group, necessarily divisible because of the

action of b. Set B, = b'Bb™. Then B;< By for each i and A= UBi.

 Let a and b denote the augmentation ideals of A and B respectively
in FA and FB and let K and L be the quotient fields of FA and FB in D.
By Lemma 6 there is a discrete valuation domain J with maximal ideal

n=a/ such that FB<{/<CL and b= FBn. Set /= [Jb'76™ and m =
4

= [J b'nb™". Since b induces a Frobenius map we have /= J° and n=n’.

4
It follows that / is a subring of K containing [ ] V'FBb™ = FA, m is an
i

ideal of I, mNb'Jb™ = d'nb™ for each i I/m = lim (6" 76" /6'nb™) ‘is a
—_

field and m is a maximal ideal of /.

Trivially & normalizes / and m, so / (b) = @ b*] is a subring of D and
p=m(b) = @ b'm is an ideal of / (b). Moreover / (b)/p is a skew group
ring of (b) over the field //m. An adaption of the proof of Theorem 2 yields
the following.

( Proposition. Q= Cps (p) =1 (b) \p is a divisor subset of
I (b). _
Lemma 7. Letn bea positive integer and D one of the division F-algebras
of Theorem 1 or Theorem 2. Suppose F is a finitely generated field. Then there
exist positive integers e and f, depending only on n and F, such that every element
of GL (n, D) of finite order has order dividing e and every finite p’-subgroup of
GL (n, D) has order dividing f.

Proof. Let k2 bean element of GL (n, D) of finite order. If % is a p-ele-
ment the order of £ divides p», see [5] 1.3.1. Suppose k is now a p’-element.
Let K be any finite-dimensional divison F-algebra. Then KG has a classical
division ring K (G) of quotients and K ® pD is isomorphic to a subring of
K (G). As such it is a domain, so by [8] 1b) some conjugate £ of & lies in GL (n,
F). The eigenvalues of £’ are roots of unity satisfying polypomials over F of
degree n. Let E be the prime subfield of F and let X de a transcendence basis of
F over E. The degree (F : E (X)) is finite and the eigenvalues of £ lie in the
(necessarily unique) extension of E of degree n! (F : E (X)). Then &’ and hence
k has order dividing p™(F:2(X) — 1, This completes the proof of the first claim.
A finite p’-subgroup of GL (n, D) is isomorphic to a linear group of degree n and
characteristic p ([5] 2.3,1; alternatively use [8] 1b). The second claint thus fo-
llows from the first with, for example, f = nle".

The Proof of the Corollary. a). Adapt the proof of [2]
Corollary 2, Pt. a).

b). This is immediate from Theorems 1 and 2 and the corresponding
result for linear groups.

c). Now H lies in GL (n, R) for some finitely generated subring R of D.
Then R is contained in the division ring of quotients of EG in D for some
finitely generated subiield E of F. Consequently c¢) follows from Lemma 7.

d). Provided P is locally finite d) follows from [8] 1b). Let H be a finitely
generated subgroup of P. We have to prove that A is finite. By c) the group
H has finite exponent, e say. Suppose H lies in GL (n, R) where R is a finitely
generated subring of D and let ¢ be a homomorphism of R into a finite-dimen-
sional division algebra L of characteristic p. Then ¢ determines an obvious
map @, of H into GL (n, L). By the linear case K = H, is finite. Hence
K/O, (K) is isomorphic to a linear group of degree n and characteristic p,
see [5] 2.3.1. Then Burnside’s Theorem yields that (K: 0, (K) <[ =
= e™for m = n®.

Let d be the minimal number of generators of H. Then K can be generated
by d elements and so O, (K) can be generated by ¢ = fd — f 4 1 elements.
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Thus the i-th lower central factor of O, (K) can be generated by ¢f elements.
Further 0, (K), being unipotent, is nilpotent of class less than n and exponent
dividing p". Consequently there is a function of d, e, n and p only bounding
the order of K. The above proofs of Theorems 1 and 2, see remarks 1 and 2,
show that the maps ¢, of H as above forma super-residual system for /1. The-
refore H is also finite (with order bounded by the same function of d, ¢, n
and p). The proof of the Corollary is complete.
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