Abelian-by-FC-hypercentral groups

Группы, являющиеся расширением абелевых посредством FC-гиперцентрализованных групп

A splitting Theorem for FC-hypercentral group G and ZG-module of finite rank is obtained. According to this Theorem, under certain conditions, every extension E of the ZG-module A by the group G is split and all the complements to A in E are conjugate in E.

Для FC-гиперцентрализованной группы G и ZG-модуля конечного ранга получена теорема о расщеплении. Согласно этой теореме при определенных условиях каждое расширение E ZG-модуля A посредством группы G расщепляемо и все дополнения к A в E сопряжены в E.
For FC-ringenentral'nya gruppa G i ZG-moduli skhshennogo ranga ocherna teorema pro rozspilennya. Zgjado z ideo teoremoi pri pervix umosax kjikne rozroven'nye E ZG-moduli A za dopomoqy gruppy G e rozspilenniya i visi dopolnienia do A v E sprijajeni v E.

In recent years a number of results have been obtained which say that, under certain conditions, every extension E of the ZG-module A by the group G split and all the complements to A in E are conjugate in E. We say that E splits conjugately over A. Most of these results concern a group G which is generalized nilpotent (or supersolvable) and a module A which has no factors which are G-trivial (or cyclic as abelian groups). Results of this type may be found in [1-6] and may also be found in [7-9] in a cohomology setting where, in particular, it is shown that $H^2(G, A) = H^1(G, A) = 0$.

In [10, 11] D. I. Zalcik considered these splitting theorems for a hyperfinite group G and a module A which is either artinian or noetherian. In [14] he began to consider modules over FC-hypercentral groups showing that such a module with a finite composition series has a decomposition into a direct sum of a finite submodule and a submodule with no nonzero finite factors. Here we consider a splitting theorem in which G is FC-hypercentral and the ZG-module A has finite rank as an abelian group. (By the rank of the abelian group A we mean Mal'tsev special rank or Prufer rank.) We prove the following.

Theorem. Let G be a locally soluble FC-hypercentral group and let A be a ZG-module which has finite rank as an abelian group.

i). A has no nonzero G-hyperfinite images if and only if A has no nonzero finite G-factors.

ii). If A has no nonzero G-hyperfinite image then every extension E of A by G splits conjugately over A.

A G-hyperfinite image of A is a ZG-homomorphic image of A which has an ascending chain of ZG-submodules in which the factors are finite. A G-factor of A is a factor B/C where B and C are ZG-submodules of A.

It follows from i) that if A has no nonzero G-hyperfinite images then A must be torsion-free and divisible and so (as an abelian group) A is just the direct sum of finitely many copies of Q, the additive group of the rationals. In particular, $G/C_0(A)$ is a Q-linear group and so is soluble. The simplest examples in which the hypotheses of part ii) of the theorem occur and in which we have splitting is when G acts faithfully on A so that A is a soluble Q-linear group and A has a finite G-composition series in which the irreducible factors are all infinite.

However, in the statement of part ii) of the theorem there is no assumption that G acts faithfully on A and the simplest way to construct examples of non-split extensions in which A has finite factors is to include an extension of A by $G_0(A)$ which is non-splitting.

For example, let $M = A \oplus B$ be a sum of two copies of the rationals with an isomorphism $\varphi : A \to B$. Let x be the automorphism of infinite order which fixes each element of A and maps $b \in B$ to $b + \varphi(b)$. Form E, the split extension of M by $\langle x \rangle$, and let $G = E/A \cong Q \oplus Z$. Let C be any submodule of M not contained in A so that C contains an element $a + b$ with $a \in A$, $b \in B$ and $b \neq 0$. Then $(a + b) x = a + b + \varphi(b) \in C$ and so $\varphi(b) \in C$. Hence $A \cap C \\ C = 0$ and so A is not a direct summand of M. Thus E does not split over A.

It should be noted that there is no point in considering extensions by hyperfinite groups. For, if G is hyperfinite, then its irreducible modules are elementary abelian p-groups [1] and so, if A has finite rank, its irreducible G-factors are all finite.

We begin by proving part i) of the theorem.

Let G be a locally soluble FC-hypercentral group and let A be a ZG-module which has finite rank as an abelian group. Then A has a nonzero G-hyperfinite image if and only if it has a nonzero finite G-factor.

Proof. We may assume that G acts faithfully on A. It is clear that if A has a nonzero G-hyperfinite image then it has a nonzero finite G-factor. So, conversely, we assume that A has a finite G-factor U/V which may be taken to be irreducible and so is a finite elementary abelian p-group.

Choose a submodule X of A maximal subject to $X \cap U = V$. Replacing A by A/X we may assume that A has a unique minimal submodule U, and U
is a finite elementary abelian p-group. Let T be the torsion part of A; then T
 is a nonzero p-group and, since it has finite rank, T is G-hyperfinite. So we
may assume that A/T is nonzero.

We now prove by induction on $r = r(A/T)$, the rank of A/T, that A has a
nonzero G-image which is a (hyperfinite) p-group. If A/T is not rationally
irreducible then there is a submodule B/T of A/T such that $r(A/B) < r$ and
$r(B/T) < r$. By induction, B has a nonzero G-hyperfinite p-image B/C. So the
torsion part of A/C is B/C and, by induction again, A/C has a nonzero G-
hyperfinite p-image. Therefore we may assume that A/T is rationally irreducible.

We claim that A/T is faithful for G. If not, then $C_0(A/T) \neq 1$ and so there
is a nontrivial element $x \in C_0(A/T) \cap \Delta(G)$, where $\Delta(G)$ denotes the
FC-centre of G. Let $F = \langle x \rangle$; then F is generated by finitely many conju-
gates of x and, if $K = C_0(F)$, we have $|G/K| < \infty$.

For each $y \in F - 1$, the mapping $\phi_y: a \rightarrow a(y - 1)$ is a $\mathbb{Z}K$- homo-
morphism of A into T and, since G acts faithfully on A, ϕ_y is a nonzero homo-
morphism. Thus $A/C_A(A) \cong \mathbb{Z}K \otimes A(y - 1)$ is a nonzero K-image of A
which is a p-group. Suppose that $F = \langle x_1, \ldots, x_n \rangle$; then $C_A(F) = \bigcap_{i=1}^n C_A(x_i^n)$
and so $A/C_A(A)$ is a p-group. But $C_A(F)$ is a $\mathbb{Z}G$-submodule of A and, since A
has finite rank, $A/C_A(F)$ is therefore a nonzero G-hyperfinite p-image.

Thus we may assume that A/T is faithful for G so that G is an irreducible
\mathbb{Q}-linear soluble group and so is abelian-by-finite [13] (Theorem 3.24). Let H
be an abelian normal subgroup of finite index in G and let $H_1 = C_H(U)$ so that
$|G/H_1| < \infty$. Now H_1 is abelian and A has a nonzero H_1-trivial p-sub-
module U. By Lemma 2.8 of [1], A has a nonzero H_1-hypertrivial p-image
A/D. If s_1, \ldots, s_m is a transversal to H_1 in G then $D_0 = \bigcap_{i=1}^m D_{s_i}$ is a $\mathbb{Z}G$
submodule of A and A/D_0 is a p-group. Since A has finite rank, A/D_0 is a
nonzero G-hyperfinite p-image of A.

Lemma 1. Let G be an FC-hypercentral group and let A be a $\mathbb{Z}G$-
module which has finite rank as an abelian group. Let B be a submodule of A such
that B has no nonzero finite G-factors and G induces a finite group of automorphisms
on A/B. Then there is a unique submodule C of A such that $A = B \oplus C$.

Proof. We may assume that G acts faithfully on A and we proceed by induction
on $r = r(B)$ to show that B has a complement in A. If B is not rationally
irreducible then it has a submodule B_1 such that $r(B/B_1) < r$ and $r(B_1) < r$.
Then A/B_1 contains a submodule C_1 such that $A/B_1 = (B/B_1) \oplus (C_1/B_1)$.
Now $C_1/B_1 \cong \mathbb{Z}G/B$ and so G induces a finite group of automorphisms on
C_1/B_1. Again by induction C_1 has a submodule C_2 such that $C_1 = B_1 \oplus C_2$
and hence $A = B \oplus C$. So we may assume that B is rationally irreducible.
This means that every proper G-image of B is torsion. But since A has finite rank,
no nonzero torsion factor will have nonzero finite G-factors. Thus B has no
proper nonzero G-images and so is actually irreducible as a $\mathbb{Z}G$-module.

Since G is FC-hypercentral there is a nontrivial element $x \in C_0(A/B) \cap \Delta(G)$.
Let $F = \langle x \rangle$ and $L = C_0(A/B) \cap C_0(F)$, so that G/L is finite. Then L
acts trivially on A/B and B has no finite L-factors [14] (Proposition 2).
For each $y \in F$, $A(y - 1)$ is a $\mathbb{Z}L$-submodule of B and so has no finite L
factors. Also $A/C_A(A) \cong \mathbb{Z}L \otimes A(y - 1)$ and so $A/C_A(A)$ has no finite L-factors.
If $F = \langle x_1, \ldots, x_n \rangle$, then $C_A(F) = \bigcap_{i=1}^n C_A(x_i^n)$ and so $A/C_A(F)$ has no
finite L-factors. It follows that $C_A(F) + B = A$.

But $A/C_A(F)$ is a $\mathbb{Z}G$-submodule and so $A(C_F) \cap B$ is equal to either 0 or B.
If $C_A(F) \nrightarrow B$ then, since $C_A(F) + B = A$, we have $C_A(F) + B = A$, contrary to
G acting faithfully on A. Therefore $C_A(F) \cap B = 0$ and $A = C_A(F) \oplus B$.

Now suppose that $A = B \oplus C = B \oplus C_0$. Then G induces a finite group
of automorphisms on each of C and C_0 and hence also on $C + C_0$. Therefore
every irreducible G-factor of $C + C_0$ is finite and so $B \cap (C + C_0) = 0$. It
follows that $C = C + C_0 = C_0$.

Lemma 2. Let G be a locally soluble FC-hypercentral group and let A be
a $\mathbb{Z}G$-module which has finite rank as an abelian group and such that A has no
nonzero finite G-factors. Let E be an extension of A by G and let $N = C_E(A)$.
Then there is a normal subgroup M of E such that $N = A \times M$ and M is con-
tained in all supplements to A in E.

\[\text{ISSN 0041-6053. Укра. мат. журн., 1991, т. 43, № 7–8} \]
Proof. We show first that there is a normal subgroup M such that $N = A \times M$.

Choose M to be a normal subgroup of E maximal with respect to $M \leq N$ and $M \cap A = 1$. By considering E/M, we may assume (*) if S is a nontrivial normal subgroup of E contained in N, then $S \cap A \neq 1$. We show that, under this assumption, N must be equal to A.

(1) Suppose that $N \neq A$; then, since E/A is FC-hypercentral, there is a nontrivial normal subgroup L/A of E/A with $L \leq N$ and $L/A \leq \Delta (E/A)$. But then L/A is a locally soluble FC-group and so contains a nontrivial characteristic abelian subgroup K/A. (If $Z(L/A) = 1$ then L/A is periodic and we may take K/A to be the socle of L/A.) Let $x \in K - A$ and $F = \langle x^p \rangle$. Then F/A is abelian and $E(C_G(F/A))$ is finite. Let $C = C_G(F/A)$; then $[F, C, F] \leq [A, F] = 1$, since $F \leq \Delta E = C_G(F/A)$, Also $[C, F, F] \leq [A, F] = 1$ and so, by the Three Subgroup Lemma [13] (Lemma 2.3.1), $[F', C] = 1$. Therefore F' is central- ized by C and so G induces a finite group of automorphisms on F'. It follows that any irreducible G-factors of F' are finite. By the hypothesis on A it follows that $F' = 1$ and so F is abelian. We may therefore consider F as a ZG-module. By Lemma 1 there is a normal subgroup C of E such that $F = A \times C$. But this is contrary to (*) and so we have $N = A$.

This completes the proof that $N = A \times M$. Now let E_1 be a supplement to E in N so that $E = AB_1$ and $N = N \cap AB_1 = A (N \cap E_1)$. Note that $N \cap E_1 \leq E_1$ and $[N \cap E_1, A] = 1$ so that $N \cap E_1 \leq E_1$.

Now $N/N \cap E_1 \cong \text{ZG}(M/M \cap E_1) \cong \text{ZG}(M/M \cap E_1)$. Therefore $M/N \cap E_1$ is an irreducible ZG-module, and so $E/\text{ZG}(M/M \cap E_1)$ is an irreducible representation of A. Hence A is abelian-by-finite [13] (Theorem 3.24). Let B/N be an abelian normal subgroup of finite index in E/N. By Proposition 2 of [14], A has no nonzero finite ZG-factors and, in particular, A is torsion-free. By induction on the rank of A we may assume that A is rationally irreducible (and, as in Lemma 1, A is irreducible as a ZG-module).

Let $N = C_A(A)$; then E/N is an irreducible ZG-linear soluble group and so is abelian-by-finite [13] (Theorem 3.24). Let H/N be an abelian normal subgroup of finite index in E/N. By Proposition 2 of [14], A has no nonzero finite ZG-factors and, in particular, $[A, H] = A$.

By Lemma 2 $N = A \times M$ for some $M \leq E$ and each supplement to A in E contains M. Let $\tilde{A} = N/M \cong A$ as a ZG-module, where $\tilde{G} = E/N$. If $\tilde{H} = H/N$, then $[\tilde{A}, \tilde{H}] = \tilde{A}$ and so, by Theorem B of [1] E/M splits conjugately over N/M.

Let K/M be a complement to N/M. Then $KA = E$ and $K \cap A = K \cap M \leq A = M \cap A = 1$ so that K is a complement to A in E.

If K_1 is any other complement to A then $K_1 \leq M$ and so K_1/M is a complement to N/M and hence is conjugate to K/M.

Received 25.12.90