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Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyro-

syl-tRNA synthetase (MtTyrRS). Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were

constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All

complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD) simulations in solution.

Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active

center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds

and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyro-

sine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive

Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the en-

zyme evidences a significant conformational mobility of the active site.

Keywords: tyrosyl-tRNA synthetase, Mycobacterium tuberculosis, substrate, hydrogen bond, molecular dyna-

mics, grid.

Introduction. Tyrosyl-tRNA synthetase from M. tuber-

culosis (MtTyrRS) belongs to a class I of aminoacyl-

tRNA synthetases (aaRSes) that catalyze the attach-

ment of tyrosine to its cognate tRNATyr at the preribo-

somal protein synthesis step.

The catalytic domain of MtTyrRS has the Ross-

mann fold and the active center has the HIGH and

KMSKS (KFGKS in MtTyrRS) motifs that catalyze the

amino acid activation with ATP [1–3]. MtTyrRS is a

promising antibiotic target for discovering and deve-

loping new selective inhibitors [4–7]. In general, the

aminoacylation reaction has two steps: L-tyrosine is ac-

tivated by ATP, forming the enzyme-bound tyrosyl-

adenylate intermediate, and at the second step of the re-

action, the activated tyrosine transfers to tRNATyr to

form the tyrosyl-tRNATyr complex [1–3].

The inhibitor SB-219383 and its analogues are a

class of specific inhibitors of bacterial TyrRS, but their

polarity prevents the transport across the bacterial cell

wall. SB-219383 shows the competitive inhibitory acti-

vity against Staphylococcus aureus TyrRS (Ki = IC50 =

= 0.6 nM for S. aureus TyrRS; IC50 = 22 �M for mam-

malian TyrRS) and a weak anti-bacterial activity against

some Streptococcal strains in vitro (MIC = 32 �g/ml)

[8, 9]. Other pyranosyl and carbocyclic analogues of

SB-219383 have been synthesized to reduce its overall

polarity and thus improve its penetration through the

bacterial cell wall, although only one compound exhi-

bits a weak antimicrobial activity against Streptococ-

cus pyogenes (MIC 8 mg/ml) [10].
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The active sites of bacterial aaRSes have being stu-

died for years. The 3D structures of TyrRS from E. coli

(1VBM, 1VBN, 1WQ3, 1WQ4, 1X8X) [11, 12], Ther-

mus thermophilus (1H3E, 1H3F) [13], S. aureus (1JII,

1JIJ, 1JIK, 1JIL) [14], Bacillus stearothermophilus

(1TYD, 2TS1, 3TS1, 4TS1) [15], and M. tuberculosis

(2JAN) [16] were solved by X-ray crystallography. Tyr

RS [17–20, 26], MetRS [21], AspRS [22, 23], LysRS

[24] and TrpRS [25] were studied by the MD simu-

lations. The structure of full-length Bos taurus TyrRS

was modeled and analyzed [26]. Mammalian TyrRS was

studied by fluorescence spectroscopy [27].

Since the different bacterial TyrRSes have homolo-

gous catalytic domains, their active sites are similar [4].

According to the data of the Protein database of NCBI,

the MtTyrRS active center (H37Rv strain) is formed by

following 20 residues: Tyr36, Gly38, Phe39, Asp40,

His47, Gly49, His50, Tyr171, Gln175, Asp178, Gln191,

Gly193, Gly194, Gln197, Leu223, Val224, Lys231,

Phe232, Gly233, Lys234.

In this paper, we have investigated the mechanisms

of the substrates interaction with the MtTyrRS active

site. Specifically, we have studied MtTyrRS in the comp-

lexes with L-tyrosine, ATP and tyrosyl-adenylate by

100 ns MD simulations. The data on dynamic binding of

the substrates in the active center are important to de-

sign new inhibitors. The search for and development of

inhibitors based on dynamic pharmacophores may help

to find a new specific inhibitor of MtTyrRS, non-toxic

to humans.

Materials and methods. Initial structures. Structu-

re of the MtTyrRS dimer in free state was prepared ac-

cording to the scheme described in our previous work

[28]. The crystallographic structures of complexes of

bacterial TyrRSes were used to build the MtTyRS struc-

ture in the complexes with substrates. To construct the

complexes we superimposed the atomic coordinates of

the protein – 2JAN [16] and ligand (Tyr) – 1X8X (E. co-

li TyrRS) [11], keeping the protein structure and Tyr in-

variable. The same strategy was applied to generate the

complex of MtTyrRS with ATP (1H3E – T. thermo-

philus TyrRS) [13], and with the tyrosyl-adenylate

intermediate (1VBM – E. coli TyrRS) [11]. In the latter

case we replaced the atom S by P, to obtain the tyrosyl-

adenylate but not its analogue.

Molecular dynamics. MD simulations were per-

formed using the GROMACS 4.5 package [29]. Each

system was simulated for 100 ns with the Amber

ff99SB-ILDN force field [30] and three times with the

CHARMM27 force field [31]. The ligand topologies

for the Amber ff99SB-ILDN force field were prepared

by using the acpype (AnteChamber PYthon Parser in-

terfacE) scripts [32], based on the antechamber suite.

The ligand topologies for the CHARMM27 force field

were prepared by using the SwissParam web-service

[33]. The protein was placed in a triclinic water box

with the minimum distance between MtTyrRS and the

box wall of 1 nm. The explicit TIP3P water molecules

were used. All simulations were performed under perio-

dic boundary conditions. Na+ and Cl– counterions were

added to neutralize completely the system at 150 mM

NaCl salt concentration. Each system was energy-mi-

nimized and then equilibrated with positioning restraints

on heavy atoms of the protein before the simulations

were initiated. The leap-frog integration algorithm was

used, with a 2 fs timestep. All bond lengths were con-

strained using the LINCS algorithm. Unless otherwise

stated, the long-range electrostatic interactions were

computed using the fourth-order particle mesh Ewald

(PME) method with a Fourier spacing of 0.16 nm. The

real space coulombic interactions and the pair-list calcu-

lations were set to 1.0 nm. A twin-range cutoff of 1 nm

was used for the Van der Waals interactions. The tempe-

rature and pressure were maintained by coupling the

temperature and pressure baths using the V-rescale and

Parrinello-Rahman methods with relaxation times of

0.1 and 0.5 ps, respectively. A temperature of 310 K

and pressure of 1 atm were used. All MD simulations

were performed using the services of the MolDynGrid

virtual laboratory (http://moldyngrid.org), at the ICYB

and ISMA clusters of the Ukrainian National Grid envi-

ronment [34–36].

Graphical and structural analysis. The PyMOL pro-

gram was used for the visualization and graphical struc-

ture analysis [37]. The Root Mean Square Deviations

(RMSD) and Root Mean Square Fluctuations (RMSF)

were calculated using the g_rms and g_rmsf programs

of GROMACS, respectively. Hydrogen bonds were

calculated with g_hbond program. The LigPlot+ pro-

gram was used for schematic visualization of the hydro-
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gen bonds between the substrate and the residues of the

active center [38].

Results and discussion. To check the global struc-

tural stability in the course of MD simulations the RMSD

and RMSF of C-alpha atoms of MtTyrRS in complex

with tyrosyl-adenylate were monitored (Fig. 1). RMSD

increase up to ~ 10 ns, and then become more stable (~ 3–

7 C). After ~70 ns of simulations RMSD increase again

up to ~ 9.3 C. This is due to high mobility of the C-termi-

nal domains [20]. RMSF show that besides the C-mo-

dules, the catalytic KMSKS loops are also highly

mobile elements of the protein [28].

In order to evaluate the substrate binding in the

MtTyrRS active center the H-bonds were calculated

with their occupancy over the entire 100 ns of MD simu-

lations (Table). L-tyrosine in the active site forms H-

bonds to Tyr36, Asp40, Gln175, Asp178 and two H-

bonds with Gln197 (Fig. 2). Occupancy of these H-

159

THE MECHANISMS OF SUBSTRATES INTERACTION WITH THE ACTIVE SITE OF M. tuberculosis

A B

Fig. 1. RMSD (A) and RMSF

(B) of Ñ
�
atoms from the ini-

tial structure of MtTyrRS in

the complex with tyrosyl-

adenylate intermediate du-

ring 100 ns MD simulations

A B

Fig. 2. Hydrogen bonds bet-

ween the tyrosine and resi-

dues of the MtTyrRS active

center (À) and schematic re-

presentation of H-bonds bet-

ween the tyrosine and resi-

dues of the active center (B)

A B

Fig. 3. ATP and residues of

the active center that form

H-bonds. Lys231 and Lys

234 (magenta) of the cata-

lytic KFGKS motif (À) and

schematic representation of

H-bonds between the ATP

and residues of the active

center (B)



bonds is about ~ 30–40 % of 100 ns of MD simulations

for residues of loops, and up to 99 % of 100 ns of MD

simulations for residues of�-helixes and�-strand of the

enzyme active center. It is worth to note, that the L-ty-

rosine binding pocket is negatively charged because of

Asp40 and Asp178.

For the binding of ATP in the active center, Lys

231, Phe232 and Lys234 of the catalytic KFGKS se-

quence are important. The positively charged Lys231

and Lys234 interact with the negative phosphate groups

of ATP. Phe232 and Lys234 have H-bonds with ATP.

Besides, one H-bond with ATP is formed by His50, and

two bonds – by Val224 (Fig. 3). Due to the high mobi-

lity of the catalytic loop, the occupancy of each H-bond

to ATP is not more than ~ 50 % of 100 ns of MD simu-

lations (Table). The catalytic loop catalyzes the forma-

tion of the tyrosyl-adenylate intermediate by interac-

ting with the phyrophosphate moiety of ATP [39].

The tyrosyl-adenylate intermediate occupies entire

pocket of the active site interacting with the catalytic
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A B

Fig. 4. Hydrogen bonds bet-

ween the tyrosyl-adenylate

and residues of the MtTyrRS

active center (A) and schema-

tic representation of H-bonds

between the tyrosyl-adenyla-

te and residues of the active

center (B)

L-tyrosine binding site ATP binding site

-Asp40

-Asp178

-Asp196

+Lys234

+Lys231

KFGKS motif

Pocket of the active center

Fig. 5. Schematic representation of the MtTyrRS active center. The L-

tyrosine binding site has negatively charged Asp40 and Asp178. The

ATP binding site has negatively charged Asp196 and positively char-

ged Lys231 and Lys234 of the catalytic sequence

Hydrogen bonds Distance, C Occupancy, %

MtTyrRS–Tyr

Tyr36-OH–OH 2.82 75.41

Asp40-OD2–H1N 2.71 30.42

Gln175-OE1–H2N 2.73 47.56

Asp178-OD2–HO 2.98 99.21

Gln197-NE2H–OC2 2.89 37.74

Gln197-OE1–H3N 2.87 39.56

MtTyrRS–ATP

His50-NE2H–O2' 3.28 20.00

Val224-O–H20N6 2.81 47.47

Val224-NH–N1 3.03 49.71

Phe232-O–H1N6 2.86 18.70

Lys234-NZHZ2–O2A 2.61 43.68

MtTyrRS–Tyr–AMP

Tyr36-OH–OH 3.11 33.44

Gly38-O–H24OAE 2.89 20.01

Asp40-NH–OAD 3.04 88.37

Gln175-OE1–H1N 2.69 89.49

Asp178-OD2–HO 2.71 99.07

Gly194-NH–O2' 2.67 26.89

Asp196-OD1–HO3' 2.62 52.80

Gln197-NE2H–O5' 3.23 21.87

Gln197-OE1–H2N 2.86 37.08

Val224-O–H1N6 3.01 60.70

Val224-NH–N1 3.28 66.12

Phe232-O–H2N6 3.12 52.38

N o t e. For each hydrogen bond the percentage occupancy was cal-
culated.

Hydrogen bonds between substrates and the MtTyrRS active center



loop (Fig. 4). The substrate forms H-bonds with resi-

dues that interact with other substrates (tyrosine and

ATP) and with Tyr38, Gly194 and Asp196 (Table). H-

bonds occupancy reveals stability of the tyrosyl-ade-

nylate in the enzyme active center. In general, the Mt

TyrRS active center can be divided into two parts: the

L-tyrosine binding site and the ATP binding site (Fig.

5). The L-tyrosine binding site involves the negatively

charged Asp40 and Asp178. The ATP binding site con-

tains the negative Asp196 as well as the positive Lys

231 and Lys234 of the universal catalytic KMSKS mo-

tif of the aaRS of class I. In bacterial TyrRS, the Lys

231 and Lys234 of the catalytic KMSKS sequence

stabilize the intermediate state for the tyrosine activa-

tion by interaction with the phyrophosphate moiety of

ATP substrate [39].

Conclusions. In this study, we have investigated the

mechanisms of the substrates interaction with the active

center of MtTyrRS in solution. We have performed 100

ns MD simulations of the MtTyrRS dimer in complexes

with L-tyrosine, ATP and tyrosyl-adenylate intermedi-

ate. The L-tyrosine binding site is negatively charged,

whereas the ATP binding site has the positively char-

ged Lys231 and Lys234 of the catalytic sequence. The H-

bonds occupancy reveals significant conformational

mobility of the active center of MtTyrRS in solution.

Ìåõàí³çì âçàºìîä³¿ ñóáñòðàò³â ç àêòèâíèì öåíòðîì òèðîçèë-

òÐÍÊ ñèíòåòàçè Mycobacterium tuberculosis çà äàíèìè

ìîëåêóëÿðíî¿ äèíàì³êè

Â. Â. Ìèêóëÿê, Î. ². Êîðíåëþê

Ðåçþìå

Ìåòà. Äîñë³äèòè ìåõàí³çìè âçàºìîä³¿ ñóáñòðàò³â ðåàêö³¿ àì³íî-

àöèëþâàííÿ ç àêòèâíèì öåíòðîì òèðîçèë-òÐÍÊ ñèíòåòàçè åó-

áàêòåð³¿ Mycobacterium tuberculosis (MtTyrRS). Ìåòîäè. Ñóïåðïî-

çèö³ºþ MtTyrRS ç êðèñòàëîãðàô³÷íèìè ñòðóêòóðàìè áàêòåð³é-

íèõ TyrRS ïîáóäîâàíî êîìïëåêñè ç òèðîçèíîì, òèðîçèíîì, ÀÒÔ ³

òèðîçèëàäåí³ëàòîì. Êîìïëåêñè MtTyrRS ç ñóáñòðàòàìè âèâ÷àëè

ìåòîäîì ìîäåëþâàííÿ ìîëåêóëÿðíî¿ äèíàì³êè (ÌÄ) ó ðîç÷èí³. Ðå-

çóëüòàòè. Ïîêàçàíî âîäíåâ³ çâ’ÿçêè ì³æ ñóáñòðàòàìè ³ àêòèâíèì

öåíòðîì MtTyrRS òà ¿õíþ ñòàá³ëüí³ñòü ó ïðîöåñ³ ÌÄ. Ñòàá³ëü-

í³ñòü ÀÒÔ â àêòèâíîìó öåíòð³ çàáåçïå÷óºòüñÿ âîäíåâèìè çâ’ÿçêà-

ìè, à òàêîæ åëåêòðîñòàòè÷íèìè âçàºìîä³ÿìè ç Lys231 òà Lys

234 êàòàë³òè÷íîãî ìîòèâó KFGKS. Âèñíîâêè. Ä³ëÿíêà çâ’ÿçóâàí-

íÿ L-òèðîçèíó â àêòèâíîìó öåíòð³ ôåðìåíòó º íåãàòèâíî çàðÿä-

æåíîþ, òîä³ ÿê ä³ëÿíêà çâ’ÿçóâàííÿ ÀÒÔ ìàº ïîçèòèâíî çàðÿäæå-

í³ Lys231 ³ Lys234 êàòàë³òè÷íî¿ ïîñë³äîâíîñò³ KFGKS. Ïðîöåíò-

íå ñï³ââ³äíîøåííÿ òðèâàëîñò³ ³ñíóâàííÿ âîäíåâèõ çâ’ÿçê³â, ÿê³

ôîðìóþòüñÿ ì³æ ñóáñòðàòàìè òà ôåðìåíòîì, äî çàãàëüíîãî

÷àñó ìîäåëþâàííÿ ÌÄ ñâ³ä÷èòü ïðî êîíôîðìàö³éíó ðóõëèâ³ñòü

àêòèâíîãî öåíòðà.

Êëþ÷îâ³ ñëîâà: òèðîçèë-òÐÍÊ ñèíòåòàçà, Mycobacterium tu-

berculosis, ñóáñòðàò, âîäíåâèé çâ’ÿçîê, ìîëåêóëÿðíà äèíàì³êà, ãðèä.

Ìåõàíèçì âçàèìîäåéñòâèÿ ñóáñòðàòîâ ñ àêòèâíûì öåíòðîì

òèðîçèë-òÐÍÊ ñèíòåòàçû Mycobacterium tuberculosis ïî

äàííûì ìîëåêóëÿðíîé äèíàìèêè

Â. Â. Ìèêóëÿê, À. È. Êîðíåëþê

Ðåçþìå

Öåëü. Èññëåäîâàòü ìåõàíèçìû âçàèìîäåéñòâèÿ ñóáñòðàòîâ ðå-

àêöèè àìèíîàöèëèðîâàíèÿ ñ àêòèâíûì öåíòðîì òèðîçèë-òÐÍÊ

ñèíòåòàçû ýóáàêòåðèè Mycobacterium tuberculosis (MtTyrRS). Ìå-

òîäû. Ñóïåðïîçèöèåé MtTyrRS ñ êðèñòàëëîãðàôè÷åñêèìè ñòðóê-

òóðàìè áàêòåðèàëüíûõ TyrRS ïîñòðîåíû êîìïëåêñû ñ òèðîçè-

íîì, òèðîçèíîì è ÀÒÔ è òèðîçèëàäåíèëàòîì. Êîìïëåêñû MtTyrRS

ñ ñóáñòðàòàìè èçó÷àëè ìåòîäîì ñèìóëÿöèè ìîëåêóëÿðíîé äèíà-

ìèêè (ÌÄ) â ðàñòâîðå. Ðåçóëüòàòû. Ïîêàçàíû âîäîðîäíûå ñâÿçè

ìåæäó ñóáñòðàòàìè è àêòèâíûì öåíòðîì MtTyrRS è èõ ñòàáèëü-

íîñòü â ïðîöåññå ÌÄ. Ñòàáèëüíîñòü ÀÒÔ â àêòèâíîì öåíòðå îáå-

ñïå÷èâàåòñÿ âîäîðîäíûìè ñâÿçÿìè, à òàêæå ýëåêòðîñòàòè÷åñ-

êèìè âçàèìîäåéñòâèÿìè ñ Lys231 è Lys234 êàòàëèòè÷åñêîãî ìî-

òèâà KFGKS. Âûâîäû. Ñàéò ñâÿçûâàíèÿ L-òèðîçèíà â àêòèâíîì

öåíòðå ôåðìåíòà çàðÿæåí îòðèöàòåëüíî, â òî âðåìÿ êàê ó÷à-

ñòîê ñâÿçûâàíèÿ ÀÒÔ èìååò ïîëîæèòåëüíûå Lys231 è Lys234 êà-

òàëèòè÷åñêîé ïîñëåäîâàòåëüíîñòè KFGKS. Ïðîöåíòíîå ñîîò-

íîøåíèå äëèòåëüíîñòè ñóùåñòâîâàíèÿ âîäîðîäíûõ ñâÿçåé, ôîð-

ìèðóþùèõñÿ ìåæäó ñóáñòðàòàìè è ôåðìåíòîì, ê îáùåìó âðåìå-

íè ìîäåëèðîâàíèÿ ÌÄ ñâèäåòåëüñòâóåò î êîíôîðìàöèîííîé ïîä-

âèæíîñòè àêòèâíîãî öåíòðà.

Êëþ÷åâûå ñëîâà: òèðîçèë-òÐÍÊ ñèíòåòàçà, Mycobacterium

tuberculosis, ñóáñòðàò, âîäîðîäíàÿ ñâÿçü, ìîëåêóëÿðíàÿ äèíàìè-

êà, ãðèä.
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