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Kone6anusi H yCTOHYHBOCTb B JOTHYECKOH MOJEIH
C JUCKPETHBIM 3anasiblBaHHEM

Consider the delay difference equation

ax :
Xpy = ] i m=0,1,9 wg

1 + 2 Bixn—-ki

i=1

where, @ € (1, o), By, By -.es Bm € (0, co) and the delays &y, k&, ..., k_ are nonnegative infe-
gers. We obtain conditions for the oscillation and asymptotic stability of all positive solu-
tions about its positive equilibrium
m
(@—1/Y)] By

=1
We also prove that all positive solutions of equation are bounded away from zero and infini-
ty and that when m = 2, &, = 0 and &, = |, the positive equilibrium is a global attractor,
PaccmarpHBaeTcd pasHOCTHOE ypaBHEHHe C 3anasibiBaHHEM

X
Fpyr= n o AT R eee

m
1+ ¥ Bx, —

=1

rae o € (1, o), By, Bay -ns [:3me (0, =) u sanasisBaHHS Ry, ks, ..., Rk — HeOTpHIaTe’BHEE

OeJble YHCAA. l'}o.ﬂy!:enm YciaoBHS KoJebJeMocTH H aCHMOTOTHYECKOH YCTO‘I.I‘IKBOCTK BCgX I[OJIO-
JKHTEJbHBIX PB!JIEHHR OTHOCHTEJILHO MNOJIOMEHHA PaBHOBECHHA

(@— 17, By

i=1

,B,OKQS&HD, 9TO BCe MOJOMHTENEHEIE pelleHHA ypaBHeHHs OrpaHH4YeHbl BHe HYJIA H GecKoHeu-
HOCTH, H eclH m= 2, ky = 0 0 ky = 1, TO NMoJOXKeHHe paBHOBECHs ABJAETCHA [JIOGANbHBLIM aT-
TPAKTOPOM.

Posrasnaerbes pisHENene piBHAHHA 3 3ali3HEHHAM

ox
Xpy = L R ] e e

m
Lo E Bx, — &,
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Ie a € (1, o), By, By -0 ﬁm € (0, o) i sanisHenHA Ry, ko, ..., km—nenin‘emni mimi uHcaa.
Opnep>xani YMOBH KOJHBHOCTI Ta acEMNTOTH4HOI cTifikocTi Beix mopjaTHix posB’sSKiB BiZHOCHO
NoJIOKeHHA! piBHOBArH
m
(@—1)/Y) By

=l

Hoseneno, mo Bei HomaThi po3B’ssku pDIBHAHHA oOMexxeHi mosa HyJeMm i Heckinuemmicrio, ¥
Komu m= 2, ky = 01 ky = 1, To noJoKeHHs PIBHOBATH € IJIOGAJBLHEM aTPaKTOPOM.

1. Introduction and Preliminaries. Consider the delay
difference equation :

Xy

. , n=0,1,2,.. (1
o Z Bixn-k,;
=1

Xnt1 =

where

@ €(1,00), By Par s s P € (0, 00), kyy gy .., by EN=1{0,1,2,..}3. (2

The special case of (1) with m = 1 was proposed by E. C. Pielou in her
books [1, p. 22; 2, p. 79] as a discrete analog of the delay logistic equation

N(t):rN(t)[l_ﬂt;—T)]

Pielou’s interest was to show that the tendency to oscillate is a property of
the populations themselves and is independent of any extrinsic factors. The
blow-fly, lucilia cuprina, is an example of a biological population, which,
according to the laboratory studies of Nicholson [3], behaves in the manner
of (1) with m = 1.

The line of our investigation in this paper is parallel to that in [4] where
the special case of (1) with m = 1 was studied.

Let k=max{k;:i=1, 2, ..., m}. If ay, ..., a, are & - 1 given con-~
stants, then Equation (1) has a unique solution satisfying the initial condi-
tions ' T

%y =@, n=—=F%,..,0. (3)
For initial values of the form
a, =0, n=—Fk..,—1 and ;>0 4y

the initial value problem (1) and (3) has a unique solution which is positive
for n = 0.

T In this paper, we will only investigate solutions of Equatin (1) whose
initial values satisfy (4). Such solutions, in this paper, are called posifive
solutions.

A sequence of real numbers {x,} is said to oscillate about 0, or simply,
oscillate if the terms x, are neither all eventually positive nor all eventually
negative. Otherwise the sequence is called nonoscillatory. A sequence {x,}
is said to oscillate about x* if the sequence {x, — x*} oscillates about 0.

The following known results will be useful in the proofs of our theorems.
The lemma 1 which is exracted from [5], provides necessary and sufficient
conditions for the oscillation of a certain nonlinear difference equation in
terms of the oscillation of all solutions of an associated linear difference equa-
tion. The lemma 2 which was established in [6], provides necessary and suf-
ficient conditions for the oscillation of all solutions of a linear difference
equation in terms of its associated characteristic equation.

Lemmal [5]. Assume that ky, ks, ..., by €N and f € C [R™, R] is such
that, 3

Flrgs o) =20 fori; o w20,

Flug, ooe s ) << 0 foruy, ..., up, << 0,
and
f,...,u) =0 if and only ifu = 0.



Now, suppose that there exists @ 8§ = 0 such that for i = 1, 2, ..., m, [ hascon-

tinuous first partial derivatives, D,f, for all uy, t,, ..., Uy € [—8, 0] with
Dif(or 0: veny 0) = Pi E(G! o0)
and
Y (P + k)= 1;
=l
Jurthermore, assume that either
Pty o ) < Y Pty for sy, ., Uy €10, ), ®)
i=l
or
f(u]_: Ug, -- um)> E Pitly, for ul: uz: cee sy Uy E [‘__ 6! O]' I (6)
=1
Then, every solution of the nonlinear difference equation
X1 — Xy =+ f(xr:—kl: Xy ==+ » xn—km} =0 (7)

oscillates if and only if every solution of the associated linear difference equation

yn+]'_yn_|[—zpiyn_.k£=0s n=0, ]-:2:'“
i=l
oscillates. .
Lemma 2 [6]. Let py, poy ..., pr be real numbers. Then the following
fwo stalements are equivalent.
a) Every solution of the difference equation

Xn-k + PiXnte—1 S + Pr¥n = 0: n= 0: 1.- 2: (8)

escillates.
b) The characteristic equation of (8)

M4 p AT L+ p=0

has no positive roots.
Finally, the next lemma, from (7], provides sufficient conditions for
the oscillation of all solutions of a linear delay difference equation. The con-

ditions here are explicitly given in ferms of the coefficients and the delays
of the equation.

Lemm a 3 (7). Assume that for i =1, 2, ..., m, k; € N and p; € (0, ).
Also, suppose that one of the following conditions holds:

-oscillates.
(;3 I)kH-l _
1
a) _S_ ;p; Pz e 2

[1—[ Pi} ('v-[- 1)v+l > 1, where v= -;1—2125

=l

T hen every solutzon of the difference equation

Xppl — Xp + 2 D=0 B=071,2
=1
oscillates.
2. O0scillatory Behavior. The main result in this section is
the following theorem, which states lhat Equation (1) has the same oscilla-
tory behavior as an associated linear difference equation. Then by applying
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this theorem and T'emma 3, we obtain sufficient conditions for the oscil-
lation of all positive solutions of (1) in terms of its coefficients and delays.

Theorem 1. Assume that (2) holds. Then every positive solution of (1)
oscillates about its positive equilibrium

@— /Y B
=1
if and only if every solution of the linear difference equation

s — U+ [(@— 1/ 31 B.] 3 Bty = O ©)

=1 i=I

oscillates about 0.
. Before we present the proof of Theorem 1, we need the following lemma
which provides a useful inequality for the proof of Theorem 1.

Lemma 4. Assume that o > 1 and let ¢, ¢, ..., ¢, be positive numbers
such that ¢, + ¢y + ... -+ ¢, = 1. Then,

log[ 14 (e— 1) (e + ... + ™) ];“; L (Caty + oor + it) (10)

(0

For all uy, ws, ..o, U, ER.
Proof (by induction on m). First, we consider the case m = = 1. Let j be
defined for any « € R by the equation

B 1+ (@—1)e" o—1
[ (w) = log !: = ]— ks
Then, ( B "
, . a—1)e* e
e 14 (@—1)e* %
and so, ’
f(@)=0 if and only if u=>0. 1y

Since f (0) = 0, from (11) wesee that f () =0 for all u € R. Thus, (10)
holds for m = 1.

* Next, we assume that the statement of the lemma is true for m € N. We
will show that it is also true for m 4~ 1.

= ~
For i = 1,2,-‘.,.’?1—-1, Set C; = G and u; = u;. AISO, let
5. o ¢, e'm ¢ glm--1
Crpp = Cm 1 Cm41 and Uy = ]Og [ m +~m+l .
Cm

~ o~
Since we are assuming that ¢, + ¢, + ... +Cnt1 =1, we have c;+c5 4 ...
. -1—:,,1 = 1. Thus, by the induction hypothesis,

log[ = DOt ot ) ]2“21 A R

a

or equ.valently,

14+ (00— 1) (€™ + ... + 0™ ™ + Cppae”™t1) ]>
=

log 5

— ~ o Ym-1
> [01u1+ or + O ttim—t + Gy log ( enf ¥ Gntie )] (12) .
Cm
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Now, since log is a concave function and
C Cn-1
Tm'+ = T 1:

c

Cﬂ’l m

we have that

log [om. gim . Cntl gimi) > Om gom . Cm L gy (13)
Combining (12) and (13), we obtain
iog [ 14 (@—1) (6" + ... + Cmpre’™H) ]9 %

[/

1
[egtty 4 woo F Cpppithny)

and the proof is complete.
Proof of Theorem 1. The change of variables

t = [0 — /3 B,

=l

transform (1) to the difference equation

2oyt — 20 T (g ons zﬂ_km) = 0, (14)
where
_ 1+ [a—l)fz ;5;}2558;“
Fltigs von s ) = log (;“1 =
14 (@— 1}i Bie
= log - =1
with

-_BIZ[&I for i=1,2,.

Observe that by Lemma 4,
P gy e ) =

i=l1

and so, in particular, condition (6) of Lemma 1 is satisfied. One can see that
indeed all the hypotheses of Lemma 1 are satisfied and that the linear equa-
tion associated with (14) is Eduation (9). The proof of the theorem is there-
fore ‘a conséquence of Lemma 1.

For the purpose of illustrating the use of Theorem 1, we present two of
its corollaries. The first is a generalization of Theorem 1 in [4].

Corollary 1. Assume a € (1, o), By, Bs € (0, o) and k€ {1, 2, }
Then, .every positive solution of the difference equatr:on

n=0,12,.. (15)

bt S 5 B o:’xn

S T B + oty
oscillates about .'.rs positive equilibrium (c— 1)/(By + By), if and only if
o (@—1)B, By + B)"* K
@Bt BT EE O o

40 Cc;r_ollary 1 follows immediately from Theorem 1 and the following lem-
ma. >
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Lemma 5. Assume that p, g€ (0, oo) and k€{1, 2, ...}. Then every
solution of the difference equation

X1 — G¥n + PX, = 0 (17)
oscillates about O if and only if
k
P R
R FT — pEEN
q (+ 1)
Proof. The characteristic equation of (17) is

F)y =AM —gA® - p=0.

(18)

Since F (0) >0, F (4 o0) = co and F (M) has only one critical point, namely
A = gkl/(k + 1), it follows that min {F (A) : A € [0, co)} = F (A). Thus F (A
has no positive roots if and only if F (A) > 0. This is equivalent to (18). Now
the proof is completed by applying Lemma 2.

The second corollary of Theorem 1 provides sufficient conditions for
the oscillation of all positive solutions of (1). It.is a direct application of
Lemma 3 and Theorem 1.

Corollary 2. Assume (2) holds. Then every positive solution of Eg-

uation (1) oscillates about its positive equilibrium (o— I)IZ B; provided that
i=l1

one of the following conditions holds:

) [(a—ul)fth ]2[3 (s k:) Y s, (19).

i=l

b) ((oc— 1)/a Z 51)(ﬁ p )Um kY + ™ > 1, where v= ——i ki (20)

i=1 . =1

Note that both (19) and (20) are «sharp» sufficient conditions for oscil-
lation in the sense that when m = 1 each of them is reduced to

o— 1 o K"
o (k+ 1)32—{-—1

which, by Corollary 1, is a necessary and sufficient condition forthe os*
cillation of all positive solutions of (1).

3. Boundedness and Asymptotic Stability. In this
section we prove that every positive solution of Equation (1) is bounded
away from zero and infinity. We also present sufficient cond1t1ons for the
asymptotic stability of the positive equilibrium of (1). -

Theorem 2. Assume that (2) holds. Then every positive solution of
Egquation (1) is bounded away from zero and infinity.

Proof. Let {x,} be a positive solution of Equation (1). Then x.-..,.l =a§_
< ax,, for n =0, and so &

1
Xn—p == Tp X - for n=op.

Hence, for n>k =max{k;, ky, ..., By},

. Xy _
Xnt1= T S = ’

S EY

=1 R

and so, {x,} is bounded from above.
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Set

|
B = —m—a—— and b= am
o Py B,
L T 1 +B L B:
=1 & =l
Then
Xt = a{':“ =bx,, lor n=>k,
14 (Z 5&) B
=]
and so
xnﬁpé-—;? x,, for n=k+p.
Hence
Xnp1 = max“ , forn=2k.
B
14 (ZT’H %
i=1
Let
a—1

V= I‘l‘ill’l < I?’g
Z bt
=l
Now we claim that x, >~ for n > 2k. Otherwise, there exists n>2& such
that x, <<v<Cx,. By using the rionotonicity of the function mfg
with 6 >0 we see that

X, ocxn_f.l

=

B G

=l f==1

X1 =

Whlch yields the contradiction x,4; = v. The proof of Theorem 2 is complete.
Concerning the (local) asymptotic stability of Equation (1) note that
its linearized equation about its positive equilibrium

(@— 1)-’(2 Ps

i=l

is (9) which_can be written in the form

m
Ynis —Yn+ Y, Py, =0 (21)
with =
m
pi= (@ — e V'B;[P; fori=1,2,...,m
[ 8
_ The characteristic equation of (21) is
e(h) =AM — Ak by phFF = (22)
=l

where k& = max {k, %, ..., k,}. The following lemma provides a sufficient
condition for the zeros of (22) to lie inside the unit circle.
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' Lemm a6. Assume that py, ps, .-y Pm € (0, ) and I, ky, ks, ..., &, are
such that L=k, for i=1, 2, ..., m and

s I I—k; EI

==l

Then all the roots of the equation

O S L

=1
lie inside the unit circle.
Proof. Set

BT P, T Z pia’:—-kf
=l

and note that condition (23) implies ¢ (I/(l 4+ 1)) << 0. Sincec (1) >0, ¢ (A)
has at least one root inside the interval (I/(I + 1), 1). Next, observe that
on|MA|=1(+ 1) condition (23) implies that

o m
L e ‘ AT,
l \> (H_I)pﬂ Zpa(H_l) :—:'Zm

i=l

Hence, by Rouche’s theorem, A" — A! and ¢ (A) have the same number of
zeros inside | A | = I/ (I+1). Therefore, ¢ (A) has exactly ! zeros inside | A] =
= I/(l 4+ 1) and the proof is complete

Therefore, we have the following theorem concerning the asymptotic
stability of Equatlon (1) about its positive equilibrium.

Theorem 3. Assume that (2) holds. Then the positive equ;hbrzum of
Equation (1) is asympiotically stable provided that

(]3.‘.1)"“’1 m k—k;
[a-—l)focZﬁ} Zs <k+1) <1 (24)

where k = max {ky, ky, ..., Ry}
Before we close this section, note that from (9)"the linearized equation

of
ax, B |

x"""s-l—i-ﬁlxn—l—ﬁzxﬂ#] , n=0,12,.., (25)
is

Ynpr+ PUn+ 99, =0, n=0,1,2,..., (26)
where

__ Bt B _ (e—1)8,
P= =Bt M 1T aE T (27)

It is well known (see for example [7]) that Equation (26) is asymptotically
stable if and only if ¢ —p+1>0, p4+¢g+1>0and 1 —g=>0)
As these conditions are satisfied when p and ¢ are given by (27), Equation
(26) is asymptotically stable. This observation anticipates the result of the
next section.

4. Global Attractivity. Ouraim in this section is to establish
a global attractivity result about the positive equilibrium of Equation (25).
With regards to this matter, it was proved in Theorems 3 and 4 of [4] that
when B, = 0 or B, = 0, the positive equilibrium of (25) is a global attrac-
tor of all positive solutions. The next result extends these two theorems from
[4] to the case where B,p, = 0.

Theorem 4. Assume that o€ (1, o) and By, B, € (0, o). Then,
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every positive solution of Equation (25) converges to the positive equilibrium
(@ — D/(By + By). -
Prootf We tailor this proof after the proof of theorem 4 in [4].
The change of variables

o—1 y
= =, H =—1 28
o By + Bs + Be’ or n= &)

(@R Yn—(e—1y,,
It =TT B @+ B+ )
where B = B;/p,. Furthermore, the solutions of (25) are positive, and so, by
(28),
Yn>—(— 1)/(1 +B) (30)
a+[3yn 'i-yn_1}1‘ (31)
Also note, that for n=0,1,2, ...
(@t B) g —la/(@+B)y, 1+ 9, .

transforms (25) to

e 1% (29)

and

S T ARG B ) 52
___(fe—=D4+(A+B)
yﬂ.{.l — Y= (1 + f»") (06 e Byn + yn—l) (E’yn —i‘yn_l) (33)
and
_BP+3e—a)talyn—(@—De+pB) + T +Pyal¥p,
Yye = (1 +B)* (@ + By, + Un) (@ + Byn + ¥, )
. (@— 1B+ PB) g2 (34)
(1 +B)* (& + By + 9n) @ +BYn + 9, 4) ~
The proof will be complete if we show that
limy, = 0. (35)

Moo

In view of (33), we see 'that (35) holds for every solution of Equation
(29) which is eventually nonnegative or eventually nonpositive. Therefore,
it remains to establish (35) for every solution (y,} of (29) which is «strictly»
oscillatory, in the sense that for every n, € N, y, attains both positive and
negative values for n > n,. Such a solution consists of a «string» of consecu-
tively negative (nonnegative) terms followed by a string of consecutively
nonnegative (negative) terms, and so on. We shall call these strings nega-
tive semicycles and positive semicycles, respectively.

By using (29) and (31), we see that every semicycle contains at least
two terms. From (33), we have that the term of greatest magnitude in a given
semicycle is either the first or the second term. Furthermore, from (32), it
follows that in every semicycle, there exists at least one term which immedia-
tely follows the term of greatest magnitude.

Now, to complete the proof, we consider the four consecutive semicycles

e Moyl Cry1, and C;ig which we supposse are negative, positive, negative
and positive semicycles, respectively, such that

Cr1 = {yk—|—l’ yk_{_g! ceea 9’!}* C, = {yx.i_p Ypggr -+ ym}'
C'f+1_= {ym+l’ Ympor - yn}: C*'+9 = {yn.-l-l‘ Yuyz -2 yq}‘

Let us denote by. b B, br11, and bi—l,_g the absolute values of the terms
of greatest magnitude in the above four semicycles.
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We will establish the following two estimates, from which the prqof of

(35) will become obvious: .y
_ 1 (0 — 1) 5=
z 2 36
ST SR G =
and
1 (a— 1P o -
- , -
| Ce<arEr @ 47)
To this end, note that from (29) and (34) we have,
1 (@—1)y,_, 1
e — s — X
b = Wi OF Y1) < 14+p e+Pn+y., == +B
% (O-" - l) y:_1
a4 (14 B) Y4
Next, observe that for a, b, ¢ >0 the function
ax — :
)= ey is increasing for x> — ble. (38)
Therefore,

I+B a—(1+pB)bs
Also, using (29) and (34), we have

s 1 @ —1Ypny 1 (@—1g,,
= It T s < T E G o F Uy TP o Uy

and using (39), we obtain,

_ 1 (@— DbF
br < * . 40
TETHR atof e
Now, observe that for a, b, ¢>0, the function
g(x)= ﬁ is increasing for x << ble. (41)

Thus, from (40) and using (39) we get,

o=t I
H<TIP" g ) @—Nby A FBF
T+B a—( +p) b
(G-——' 1)2br._]

o (14 B) — [oe (14 B2 — (e — 1)) b2
and so by (30)
_ (— 1267y -
TLBF s a—1
o (1 +B)— [ (1 + B)* — (e— 1)) TFp

b <

1 (eI
T IR @e—1P+oa(l+B)P

This proves (36).
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In a similar way, we prove (37). From (29) and (34), we derive

N 1 (m"_l)yn—-l
brre = (Yy O Uy <— T+F ot ByntYna

- 1 ) (05_1)9,1_1
1+ a+(1+B)Y,y
and thus, by (38)
+ 1 (@e—1)b
- S B =00t
Hence, from (40)
(@—1) 1 (@—1bF
e L . I+B atbf 1 (a—1)p6F
TEP 1 (@—0btF A+B o240
S RTIF arir
and so,
b+ 1 (Of.— 1)2 b;f'

e < (1 3 [3)" ) o2

which proves (37) and completes the proof of the theorem.

R em ar k. Throughout this paper we have assumed that condition (2)
holds and in particular, that @ € (1, o). Now, instead of condition (2), as-
sume that

o E{O: 1]: '311 ﬁz: el | Bm E(O' Oo)
ky, Ry, ..., B EN. 2"

Then, zero is the only nonnegative equilibrium of (1). Furthermore, zero is
a global attractor of all positive solutions of (1). Indeed, in this case xs4y <<
< ax, << X, and so, every positive solution of (1) converges monotonically
to zero. e
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