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Gas-liquid criticality in the ultrasoft restricted primitive model (URPM) of polyelectrolytes is studied using the

collective variables-based theory. For the model, an effective Hamiltonian is derived and explicit expressions

for all the coefficients are found in a one-loop approximation. Based on this Hamiltonian, the phase and critical

behaviour is analysed. Our results provide evidence that the nature of the gas-liquid criticality in the URPM is

the same as in the restricted primitive model that includes a hard core.
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Recently, a new model of polyelectrolyte solutions, the so-called ultrasoft restricted primitive model

(URPM), has been introduced in [1, 2]. The URPM is a globally electroneutral equimolarmixture of positive

and negative spatially extended charge distributions. Contrary to the familiar restricted primitive model

(RPM) [3], no hard cores are involved in the URPM. Nevertheless, the URPMadmits a thermodynamic limit

since it is H-stable in the sence of Fisher and Ruelle [4, 5]. The phase diagram of the model was studied

in [1, 2, 6] using Monte Carlo (MC) and molecular dynamic simulations. The analysis of simulation data

for relatively small system sizes revealed a nontrivial topology of the phase diagram: a region of low

temperature gas-liquid phase coexistence terminating at a critical point and a sharp conductor-insulator

transition above this point [1, 2]. The simulation data also hinted at a tricritical nature of the gas-liquid

critical point. Such a phase behaviour qualitatively differs from that found in the RPM. More recently

[6], the gas-liquid phase transition and the critical behavior of the URPM have been studied using finite

size scaling MC simulations in the grand canonical ensemble. While these simulation results confirm

the existence of the gas-liquid critical point, they fail to provide a conclusive evidence for the nature of

criticality of the model as well as reliable values for the critical exponents. In addition, the estimates of

the critical point parameters (T ∗
c = 0.0134 and ρ∗

c = 0.26) differ from those given in [2], i.e., T ∗
c ∼ 0.018,

ρ∗
c ∼ 0.16 (expressed in the same reduced units as in [6]) which are obtained for smaller system sizes and

without finite scaling size analysis. In general, the simulation results show a strong dependence of the

coexistence envelope (its location and shape) on the system size compared to the case of the RPM. The

gas-liquid phase coexistence in the URPM has been also predicted by the mean-field (MF) like theories

[7, 8], although with the critical point being considerably distant from the simulations. As expected, the

MF theories predict a classical critical behavior near the critical point.

Motivated by the abovementioned simulation studies, we address the issue of the gas-liquid criticality

in the URPM using the theory that exploits the method of collective variables (CVs) [9, 10]. The theory

enables us to derive, on the microscopic grounds, the effective Hamiltonian and find all the relevant

coefficients, including the square-gradient term, within the framework of the same approximation [11].

Using this theory, we obtained the effective Hamiltonian of the RPM in the vicinity of the gas-liquid critical

point that takes into account the contribution from higher order correlations between the positive and

negative ions [11, 12]. The resulting form of this Hamiltonian confirms the fact that its critical behaviour
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belongs to the universal class of a three-dimensional Ising model. Herein below, we derive the effective

Hamiltonian of the URPM and, on this basis, analyse the phase and critical behaviour.

We consider an equimolar mixture of N+ polycations of charge +Q and N− (= N+) polyanions of

charge −Q in a volume V with the total number density ρ = N /V (N = N+ + N−). The domain of the

volume V occupied by polyions is denoted by Ω. Polyions bear an extended charge distribution ±Qρ(r )

where the normalized distribution ρ(r ) is supposed to be the same for both species and is given by a

Gaussian law

ρ(r ) =
exp[−r 2/(2σ̄2)]

(2πσ̄2)3/2
,

σ̄=σ/2 is the radius of the polyion. The interaction potential between a polyion of species α and one of

the species β is as follows [2]:

uαβ(r )=
QαQβ

r
erf(r /2σ̄). (1)

This pair potential is finite at a full overlap [erf(r /2σ̄) ∼ r as r → 0] ensuring the existence of the thermo-

dynamic limit [4–6]. The Fourier transform of uαβ(r ) has the form:

ũαβ(k) =
4πQαQβ

k2
exp(−k2σ̄2). (2)

The model (1) is at equilibrium in the grand canonical ensemble, and by β = 1/kBT we denote the

inverse temperature (kB is the Boltzmann constant) and µ is the chemical potential. We use the method

of CVs, with the ideal gas system being a reference system. In this case, one can use the exact functional

representation of the grand partition function derived for a multicomponent system in [13] (see equa-

tion (18) in [13]). For the model (1), it can be presented as follows:

Ξ=
∫

DρN

∫
DρQ exp

(
−H [ρN ,ρQ ]

)
, (3)

where the Hamiltonian H [ρN ,ρQ ] has the form:

H [ρN ,ρQ ] = −
∫

drρN (r)+
1

2

∫
dr

[
ρN (r)+ρQ (r)

]
ln

[
ρN (r)+ρQ (r)

2

]

+
1

2

∫
dr

[
ρN (r)−ρQ (r)

]
ln

[
ρN (r)−ρQ (r)

2

]
+
β

2

∫
drdr′ uQQ (|r−r′|)

×ρQ (r)ρQ (r′)−
∫

drρN (r)ν̄N . (4)

In the above equations, ρN and ρQ denote the two CVs: ρN (r) = ρ+(r)+ρ−(r) describing the field of the

total number density and ρQ (r)= ρ+(r)−ρ−(r) describing the field of the charge density (ρ+(−)(r), in turn,

describes the field of the number density of the cations (anions)). uQQ is a linear combination of the inter-

action potentials uαβ(r ): uQQ (r )= 1
4 [u++(r )−2u+−(r )+u−−(r )]. ν̄N = (ν̄++ν̄−)/2, where ν̄α(r)= να+νS

α

is the dimensionless chemical potential of theαth species, να =βµα−3lnΛα,Λα is the de Broglie thermal

wavelength and νS
α is the self-energy of the αth species νS

α = βuαα(r,r)/2 = βu0/2 with u0 = Q2/(
p
πσ̄).

For the model under consideration, uQQ (r )= u++(r )= u−−(r )= |u+−(r )| and ν̄N = ν̄+ = ν̄− = ν̄.

Functional integrals (3)–(4) can be given a precise meaning in the case where the domain Ω is a

cube of side L (V = L3) with periodic boundary conditions. This means that we restrict ourselves to the

fields ρA(r) (A = N ,Q) which can be written as Fourier series ρA (r) = V −1 ∑
k∈Λρk,A exp(ikr), where Λ=

(2π/L)Z3 is the reciprocal cubic lattice [14, 15].

Expanding the entropic part of Hamiltonian (4) in powers of ρN and ρQ (more exactly, in powers

of deviations of ρN and ρQ from their MF values), we arrive at the expression similar to that obtained

in [11] (see equation (7) in [11]). The main difference is that in the case of the URPM, the contributions

from the hard sphere reference system to series expansion coefficients a
(in )
n reduce to the ideal gas terms.

Next, following the procedure developed in [11], one can derive the effective Hamiltonian of the URPM

near the gas-liquid critical point. Here, we directly use the expressions obtained in [11] replacing the
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contributions from the hard sphere system with the corresponding terms for the ideal gas model. As a

result, the effective Hamiltonian in the Fourier space representation reads as

H
eff = a1,0ρ0,N +

1

2!〈N〉
∑

k

(
a2,0 +k2a2,2

)
ρk,Nρ−k,N

+
∑

nÊ3

1

n!〈N〉n−1

∑

k1,...,kn

an,0ρk1,Nρk2,N . . .ρkn ,Nδk1+...+kn
, (5)

where δk1+...+kn
is the Kronecker symbol. The coefficients in a one-loop approximation have the form:

a1,0 = −∆νN −
1

2〈N〉
∑

q

g̃Q (q), (6)

an,0 = (−1)n(n−2)!−
(n−1)!

2〈N〉
∑

q

[
g̃Q (q)

]n
, n Ê 2, (7)

a2,2 = −
1

4〈N〉
∑

q

g̃ (2)
Q

(q)
[
1+ g̃Q (q)

]
, (8)

where ∆νN = ν̄N −νid
N
, the superscript “id” refers to the ideal gas system. g̃Q (q) is the screened potential

g̃Q (q)=−
βρũQQ (q)

1+βρũQQ (q)
(9)

and the superscript (2) in equation (8) denotes the second-order derivative of g̃Q (q) with respect to the

wave vector. The terms involving screened potentials arise from integration in (3) over the charge sub-

system (CVs ρQ ).

Taking into account (2) and (9), one can obtain explicit expressions for coefficients (6)–(8):

a1,0 = −ν+νid −
1

2T ∗ +
1
p
π

∞∫

0

x2dx

T ∗x2ex2 +24η
p
π

, (10)

an,0 = (−1)n (n−2)!


1− (n−1)

∞∫

0

(24η)n−1 pπn−2x2dx

(T ∗x2ex2 +24η
p
π)n


 , n Ê 2, (11)

a2,2 = −48η
p
πT ∗2

∞∫

0

x4e2x2

(T ∗x2ex2 +24η
p
π)4

[
24η

p
π(3+7x2 +2x4)

−T ∗x2ex2

(1+ x2 +2x4)
]
dx. (12)

In equations (10)–(12), the following notations are introduced: T ∗ = kBT /u0 = kBT
p
πσ̄/Q2, η= πρσ̄3/6,

and x = kσ̄. Coefficient a1,0 is the excess part of the chemical potential ν, and the equation a1,0 = 0 yields

the chemical potential in the random phase approximation (RPA).

It should be emphasized that although the original Hamiltonian of the URPM [equation (4)] does not

include direct pair attractive interactions of total number density fluctuations, the effective short-range

attraction does appear in the effective Hamiltonian. This attractive interaction is the result of taking into

account the charge-charge correlations through integration over the charge subsystem. Therefore, one

can state that the mechanism of the gas-liquid separation in the URPM is the same as in the RPM. The

form of the effective Hamiltonian (5)–(8) suggests the Ising-like critical behaviour of the URPM. Herein

below, we use explicit expressions (10)–(12) for the analysis of the gas-liquid phase separation.

First, we consider the critical point. At the critical point, the system of equations

a2,0(ρc,Tc) = 0, a3,0(ρc,Tc) = 0 (13)

holds. In addition to equations (13), we solve the equation a4,0 = 0. The loci of the above-mentioned

equations in the (T ∗,ρ∗) plane are shown in figure 1. The solid line corresponding to the solutions of the
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Figure 1. Loci of equations a2,0 = 0 (solid line), a3,0 = 0 (dashed line), and a4,0 = 0 (dotted line). Tempera-

ture and density are given in dimensionless unites: T∗ = kBT
p
πσ/(2Q2) and ρ∗ = ρσ3.

first equation in (13) is called a spinodal line. The two lines (solid and dashed) intersect at a maximum of

the gas-liquid spinodal yielding the coordinates of the critical point. As is seen, coefficient a4,0 does not

vanish at the critical point suggesting that this point is a regular critical point.

Critical temperature and critical density expressed in reduced units are presented in table 1. In order

to make some contact with the results obtained for the RPM, hereafter we use the same reduced units

for the density as in [6], i.e., ρ∗ = ρσ3 where σ is the diameter of the polyion. Our choice of the reduced

temperature, T ∗ = kBT /u0 with u0 being the maximum strength of the attractive interaction, coincides

with that of [1, 2, 6, 7]. In particular, one gets u0 = 2Q2/(
p
πσ) for the URPM and u0 =Q2/σ in the case of

the RPMwhereσ is the diameter of the polyion in the former case and the diameter of the hard sphere/ion

in the latter case. With the critical parameters defined in such a way, the critical temperature of the URPM

appears to be smaller than the critical temperature of the RPM obtained in the same approximation,

whereas the critical densities of the both models are nearly the same. As expected, our estimates of the

critical parameters of the URPM coincide with the results obtained in [8] in the RPA. It should be noted

that the RPA, like other mean-field theories [7], predicts a far too high critical temperature and a far too

low critical density compared with the available simulation data [1, 2, 6]. Some possible reasons for such

a situation have been discussed in [7].

Table 1. Reduced gas-liquid critical parameters, coefficients of the effective Hamiltonian and the reduced

Ginzburg temperature tG for the ultrasoft restricted primitive model (URPM) and for the restricted prim-

itive model (RPM) in the one-loop approximation. Temperature and density are given in dimensionless

unites: T∗
c = kBTc/u0 and ρ∗c = ρcσ

3 (see the text for details). The data for the RPM are taken from [11].

Model T ∗
c ρ∗

c a2,t a2,2/σ2 a4,0 tG

URPM 0.06750 0.0081 1.0005 0.2693 0.1384 0.0031

RPM 0.08446 0.0088 1.0758 0.2570 0.1752 0.0053

To calculate the coexistence curve, first, equating the right-hand side of (10) to zero, we obtain an ex-

pression for the chemical potential. Then, the Maxwell double-tangent construction is employed. Figure 2

shows the coexistence curve of the URPM (a solid line) in the (T ∗,ρ∗) plane. The coexistence curve of the

RPM (a dashed line) is presented for comparison. As is seen, the shape of the both curves is very similar.

The inset shows the both coexistence curves in the corresponding-state variables: t∗ = (T ∗−T ∗
c )/T ∗

c and

∆ρ∗ = (ρ∗ −ρ∗
c )/ρ∗

c . Comparing the two coexistence envelopes in this case, one can see that the URPM

has a slightly wider coexistence region than the RPM.

Finally, using equations (11) and (12), we calculate the reduced Ginzburg temperature tG where tG =
(TG −Tc)/Tc (TG is the Ginzburg temperature and Tc is the MF critical temperature). According to the
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Ginzburg criterion [15], tG marks a lower bound of the temperature region where a MF description is

self-consistent. For |t |≪ tG, Ising critical behavior should be exhibited. One expects a crossover from the

MF behaviour to the Ising-like critical behaviour when the reduced temperature |t | becomes of the order

of tG [16]. The reduced Ginzburg temperature can be expressed in terms of coefficients of theHamiltonian

(5) as follows [17]:

tG =
1

32π2

a2
4,0

a2,t a3
2,2

, (14)

where a2,t = ∂a2,0/∂t
∣∣
t=0. Taking into account (11), one can obtain for a2,t

a2,t = 48ηT ∗
c

∞∫

0

x4ex2
dx

(T ∗
c x2ex2 +24η

p
π)3

, (15)

where the same dimensionless units as in (11) are used.
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Figure 2. Gas-liquid coexistence curve of the URPM in the (T∗ ,ρ∗) representation. The coexistence curve

of the RPM (a dashed line) is presented for comparison (see the text for details). The inset shows the both

coexistence curves in the corresponding-state variables.

Substituting the parameters of the URPM critical point in equations (11) (for n = 4), (12) and (14)–(15),

one gets the values for the Hamiltonian coefficients and the reduced Ginzburg temperature in the one-

loop approximation. The results are presented in table 1. The corresponding values for the RPM obtained

within the framework of the same approximation in [11] are presented in the table for comparison. As

is seen, there is only a little difference between the results obtained for the both models. In particular,

the models have much the same region of the effective density-density attractions:
p

a2,2/σ ≃ 0.5. It is

essential that the reduced Ginzburg temperature obtained for the URPM is close to that found for the

RPM, i.e., t URPM
G

≃ 0.6t RPM
G

. It is worth noting that the reduced Ginzburg temperature of the RPM is about

20 times smaller than for the purely nonionic model (a one-component hard-sphere square-well model)

[11].

In summary, we have derived a microscopic-based effective Hamiltonian of the URPM in the vicinity

of the gas-liquid critical point and have found analytic expressions for all the coefficients in the one-loop

approximation. As for the RPM, the form of the effective Hamiltonian indicates that the critical behavior

of the URPM belongs to the universal class of a three-dimensional Isingmodel. Based on this Hamiltonian,

we have calculated the reduced Ginzburg temperature tG which, according to the Ginzburg criterion,

marks the onset of the critical region. We have found that tG for the URPM is of the same order as for the

RPM. In addition, our results have shown that the shapes of coexistence envelope of the URPM and the

RPM resemble each other when presented in the similar dimensionless units. Our results suggest that the

gas-liquid criticality in both models, i.e., the URPM and the RPM, should be of the same nature.
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Критична точка газ-рiдина ультрам’якої обмеженої

примiтивної моделi: аналiтична теорiя

О. Пацаган

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 м. Львiв, Україна

Вивчається критичнiсть газ-рiдина ультрам’якої обмеженої примiтивної моделi (URPM) полiелектролiтiв,

використовуючи теорiю, що базується на методi колективних змiнних. Для цiєї моделi виведено ефектив-

ний гамiльтонiан i отримано явнi вирази для всiх коефiцiєнтiв в однопетлевому наближеннi. На основi

цього гамiльтонiану аналiзується фазова i критична поведiнка. Отриманi результати свiдчать про те, що

природа критичностi газ-рiдина в URPM є такою ж, як i в обмеженiй примiтивнiй моделi, яка включає

твердий кор.

Ключовi слова: полiелектролiти, ультрам’яка обмежена примiтивна модель, критична точка газ-рiдина,

ефективний гамiльтонiан
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