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Non-linear theory of diffusion of impurities in porous materials upon ultrasonic treatment is described. It is
shown that at a defined value of deformation amplitude, an average concentration of vacancies and tempera-
ture as a result of the effect of ultrasound possibly leads to the formation of nanoclusters of vacancies and to
their periodic educations in porous materials. It is shown that at a temperature smaller than some critical value,
a significant growth of a diffusion coefficient is observed in porous materials.
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1. Introduction

It is known that in an ultrasonically treated solid, the concentration of defects, in particular the con-
centration of vacancies nonlinearly depends on both temperature and acoustic vibration intensity [1} [2].
Moreover, in a certain ultrasonic and temperature range, one can observe a significant increase (more
than by one order) of the defect structure of a sample, i.e., the acoustic effect is clearly synergetic in this
case. In work [1] it has been demonstrated that the equilibrium vacancy concentration can be high even at
low temperatures, if the bulk deformation exceeds some critical value. The processes of self-organization
of vacancies (that interact with one another and with the crystalline matrix through the deformation
field) into separate clusters and periodic structures is possible if their concentration is high enough [3].
The formation of a periodic pore lattice in metal and in dielectric materials irradiated with high-energy
neutron and electron beams has been observed in works [4}[5].

In works [648] it has been demonstrated that by means of a supersonic wave one can control the
transport properties of semiconductors and change their structure due to the processes of impurity atom
diffusion, dissolution and the formation of complexes, as well as the formation of impurity atom clusters
and intrinsic defects in periodic deformation fields.

Extrinsic heterogeneous deformation causes the change of point defect chemical potential and leads
to the directional diffusion flows. In work [9] it has been empirically determined that Si ultrasonic pro-
cessing can stimulate a diffusion at room temperature. A significant increase (more than 2 + 3 times
larger) of carbon diffusion coefficient in steel is observed at a fixed temperature in a certain range of
acoustic vibration amplitude [10].

In this work, a nonlinear diffusion deformation theory of vacancy cluster formation in ultrasonically
treated porous material is made, in order to specify the ultrasonic effect on the impurity diffusion coeffi-
cient.
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2. The model

We model a porous medium using a system of spherical particles (granules), the radius of which is
g = Ry — ro, and the radius of impurities is rq (ﬁgure (a)), where 2rj is the space between the granules,
considered herein below as the pore diameter (figure (1| (b)). We select a cylindrical bulk element of a
porous material (figure[T) with the radius Ry and the cylindrical pore having the radius ry (Ry > o). The
average concentration of vacancies of this system is Nyp.

Considering the nonlocal Hooke’s law [11], the
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where K = [A(I7])dr is an elasticity coefficient
Bl rda = [%fﬂl(lrl)rzdr/fﬂt(lrl)dr]1/2 is the
characteristic length of interaction between the
vacancy and matrix atoms; AQq is the crystalline
volume change caused by one defect; €(r) is a
strain tensor radial component. The elastic field -
of a solid acts on the vacancy with the force: .
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Figure 1. Geometrical model of a porous medium
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(2.3) with impurity.
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Under this force, the defects in the elastic field get the velocity
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where u, Dy are, respectively, the mobility and vacancy diffusion coefficient; T is the temperature; kg is
the Boltzmann constant. Here, we use the Einstein relation to determine the impurity mobility.

As we can see from (2.4), the vacancy velocity in the elastic field is determined by the deformation
gradients and crystal volume gain due to these defects. Thus, the defects that are the compression centers
(AQg4 < 0), in particular the vacancies, will move to the area of the relative compression [the direction of
the velocity vector of vacancy coincides with the direction of the vector —grad e(r)].

Taking into account, the stationary flow of vacancies can be presented as follows:

ON, 0e e
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or k T \or or o3’
The potential energy density of the elastic defect-free continuum that takes into account the anhar-
monic components can be presented as follows:

j=-Dy 2 AQq). @.5)
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where E is the modulus of elasticity; @, 8 are the elastic anharmonicity constants; ay is the characteristic
distance of the crystalline matrix atom interaction that is roughly equal to the matrix lattice parameter.

Then, taking into account and (2.6), the free energy density of a crystal with vacancies can be
presented as follows:

; 1 1 1 0%e(r)
® = Uy + NqU™ — TS == Ee? (1) + = Eae® (r) + —Efe* (r) + Ed} e(r
at NaUy > ()3 ()4ﬁ() 05,2 (r)
52
e(r)
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where S is the entropy density.
Applying the relation o = d®/0d¢, we obtain the mechanical stress expression:
02
0 = Ee + Eaé? +E,B£ +Ea06 — KNgAQyq. 2.8)
r?

The mechanical stress in an ultrasonically treated solid, subjected to the anharmonic components, is
as follows:
0=0+Eeycoswt+ Ea(egg coswt)2 +EB (g coswt)3 s 2.9)

where € is an ultrasonically induced deformation amplitude. Here, the wavelength A > Rj. Having av-
eraged by the time, we obtain:
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where @ = a (1+€5/2¢2).
Let us present the vacancy concentration and deformation as follows:

Na(r)=N1(r)+ Np, (2.11)

e(r)=¢€1(r)+ NgAQq + €gcoswt, (2.12)

where N (r), £1(r) are the space inhomogeneous components of vacancy concentration and deformation,
respectively; N;(r) < Np. Thus,
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From the strained solid equilibrium condition 06 /dr = 0, we obtain the following deformation equa-
tion: ( 2) ( 3) X
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Taking into account (2.5), the diffusion steady-state equation for vacancies can be written as follows:
div [ p 2Ny, DK (02 iy, O 2 Q) ) +Ge-Na_y 2.14)
\% - = - =Y :
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where Gy, T4 are the generation rate and vacancy lifetime, respectively.

To find the vacancy concentration distribution and deformation in the investigated structure one
needs to solve the system of nonlinear differential equations (2.13) and (2.14). Substituting (.11]
into (2.13), (2.14), and taking into account that N, (r) < Ny and at r — Ry, the conditions ON; / dr = 0 and
0e; /6r = 0 must be kept, we obtain that Ny = G474, and the equation for N; (r) and £, (r) reads as follows:

Dy

0Ny _ . D (651 G ) 0, (2.15)
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where 0, = KAQq is the vacancy deformation potential.
Integrating the equation (2.15), we obtain:

(2.17)
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Substituting into (2.16), we obtain the deformation equation that, after integration, can be writ-
ten as follows:
Oy 2 _ 23
W—d61+f81 —ce] =0, (2.18)
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Here, we have taken into account that a <0, 8> 0 [3].

3. Formation of vacancy nanoclusters and their periodic structures

The solution of the equation is as follows:

d€1
r=
/ 2fed  cet
2_41 .
aEl 3 + 3

where 7 is the constant of integration.
Making a substitution £; = %, one can present this integral as follows:
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where A = —f2/(9a) + c/2.

The integral is expressed by analytic functions whose type we determine by the sign of the coef-
ficients a and A.
If the following conditions are fulfilled:

+7c,

r— rC = (31)

No a; 22 No
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then €; =0, and N(r) = Ny, the distribution of vacancies is spatially homogeneous. Taking into account
that 2a?/(96) = 4/9 [3] and @ = a {1 +¢5/[2(NoAQq)? + €3]}, the conditions can be written as fol-

lows:
-1

2
Ny, a2 2k T\ ( Np)2 1
—°<TO and &< V2ky (—0) EE———— (3.3)
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If the average defect concentration exceeds the value Ny = Ncag / réa, whatever is the supersonic
wave deformation amplitude, the spatially nonuniform solution becomes unstable, and there appears a
new spatially nonuniform stationary state (i.e., the formation of clusters or periodic vacancy structures).
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Moreover, if the second condition in (3.3) is not fulfilled, vacancy clusters will always appear. If the con-
centration of clusters or periodic vacancy structures is constant, then their formation conditions depend
on the temperature. In particular, the conditions can be written as follows:

-1

-1 , (3.4)
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T 0,

where T, = 02N,/ (Ekg).
In other cases, depending on the values Ny(T) and &g, the solution of the equation (2.18) will be as
follows:
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where A=3v2]al (|9ca—2f2|)_%, B= \/if(|9ca—2f2|)‘%.

The constant of integration r. is chosen for the reason that the maximum vacancy clustering occurs
at the pore surface, so that the condition r. = ry is fulfilled.

Thus, vacancy clusters or their periodic structures are formed at certain values of the defect concen-
tration Ny (or the temperature T) and supersonic wave amplitude €. In figure |2| the areas of possible
formation of vacancy clusters depending on the values 5% and Ny/N¢ (T./T) are plotted. The calculations
are made for the following parameter values: a(z) / réa =0.01; v2kg T/6, = 0.01. At the average defect
concentration Ny > N, (or the temperature T < T¢) in porous material, periodic defect-deformation struc-
tures are formed (even at €y = 0). The specific values of critical concentration N, (critical temperature T;)
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Figure 2. Areas of possible vacancy cluster formation depending on the values E% and No/N¢ (Tc/T):
Dy — the distribution of vacancies is spatially homogeneous; D; — there appears an asymmetric vacancy
cluster [formula (3.5)]; D, — there appears a symmetric vacancy cluster [formula (3.6)]; D3 — there
appears a periodic vacancy lattice [formula (3.7)].

are governed by the elastic constants of a material, by the variation of the crystal volume per one defect,
and by the temperature (i.e., average defect concentration).

Substituting the formulae (3.5)-(3.7) into (2.17), we can find the vacancy concentration. Figure3|qual-
itatively shows the spatial vacancy concentration distribution (when a symmetric cluster is formed) in
the vicinity of a pore having the radius ry.

The cluster radius depends on the defect concentration, the elastic constants, and the temperature,
and can be determined as follows:

or
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va T\

1
Tcluster = ——= = I'd
cluster \/a a\

N, a? No\ ™!
—0—70)(1——0) 3.8)
N¢ i N¢
T. a? T\t
—<_ 20 (1-—C) ) (3.9)
T 2 T

da

In figure |4} the dependence of the radius of a cluster of vacancies on their relative concentration
No/ N [temperature (T./T)]in the range aj/r3, < No/ N; <1 is presented. At an increase of the vacancy
concentration (i.e., a decrease of temperature), the cluster radius increases monotonously and lies in a

nano-range.
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Figure 3. Spatial vacancy concentration distribution

in the vicinity of the pore.
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Figure 4. The dependence of the radius of a cluster
of vacancies on their concentration: 1 — rq, =3 nm;
2—7Tga=4nm;3 —rgy =5nm;4—rga =6 nm.
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4. Diffusion coefficient

Since vacancy clusters or their periodic structures are formed when the vacancy concentration ex-
ceeds a certain critical value (at the temperature that is lower than a certain critical value), we may
assume that the porosity of the structure will increase due to the pore expansion and the formation of
new ones. The size r; of the pore at whose surface a vacancy cluster is formed can be determined in the
following way (see figure[3):

T = T+ Tcluster - 4.1)

Let us find the dependence of the diffusion coefficient D of the impurities of a porous structure on
the pore radii within the the kinetic theory which is based on the assumption that the size of impurities
is much less than the distance between the impurities and between the granules. This approximation is
fairly accurate for a structure with a considerable degree of porosity and with a small concentration of
impurities.

Diffusion coefficient of gases (impurities):

%
Dy=—, (4.2)
3z
where 74 is the arithmetic average velocity of the impurities; z is the number of collisions of an impurity
with other impurities and granules of a porous structure per unit of time.

We define the number of collisions of an im-

Dypg 3 purity with other impurities and granules of a
15 D, 2 porous structure as the sum of the collisions with
1 impurities and the collisions with granules taken

10 separately.

For this purpose, we assume that the impuri-
ties and granules are globules having the radii ryq
5 and (Ry — o), respectively (figure [I). Taking into

account that the other impurities are also moving
while the granules are motionless, the full num-
0_'1 0:2 0:3 0:4 0_'5 NI,, [ Tc] ber of the impacts can be presented as follows:

z=4 \/znrgnof)d +m(rqg+Ro— r0)2 ngtq, (4.3)

Figure 5. The dependence of the relative change of where ng, ng are, respectively, the granule and

a coefficient of diffusion Dgyys/Dg on the concentra- impurity concentrations at the granule-free bulk.
tion of vacancies (i.e., temperature) at different radii Here, it is considered that the average velocity of
of an impurity: 1 — rg = 0.45 nm; 2 — rq = 0.3 nm; the relative motion of an impurity is /2 times
3—rg=0.15nm. larger than the velocity of an impurity taking into

consideration the immobile granules.
The concentration of impurities at the granule-free bulk can be calculated through the concentra-
tion of impurities in the full bulk of the structure n as ng = nR3/[R3 - (R, —r,)’]. Then, the diffusion
coefficient can be written as follows:

o
Do = d (4.4)

- .
2 Ry 3 Y
3 [4 \/EﬂrdrzR(3)_(RO_ro)3 v (ra + Ro —10) ]

Taking into account (4.1), we obtain the dependence of the diffusion coefficient on the vacancy cluster
size:

Uq
Doys = . (4.5)

R3
3 [4 \/fnrgn +%(rd+R0_rO_rcluster)2
0

0
3
Rg ~(Ro=T0~T¢luster)

In ﬁgure the dependence of the relative change of a coefficient of diffusion Dgys/Dy on an average
concentration of the vacancies (i.e., temperature) at different radii of an impurity is presented.
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Such a dependence shows a monotonously increasing character. In particular, at an increase of the
relative concentration of the vacancies at Ny/ N = 0.55, the coefficient of diffusion increases 10 times.

The obtained results are in good agreement with the experimental results. In particular, in [2], it is es-
tablished that upon ultrasonic processing, the concentration of vacancies in solids non-linearly depends
on the amplitude of an ultrasonic wave and temperature. At a temperature below some critical value
and at a particular ultrasonic power, a significant increase of the defects of samples (more than an order
of magnitude) is observed. Thus, the acoustic and thermal effects have a pronounced synergetic charac-
ter [2]. In [10l, it is experimentally established that when the amplitude of an ultrasonic wave exceeds
some critical value in nickel, the pores are formed. Furthermore, at a temperature of T' < 600°C, a signifi-
cant increase of a diffusion coefficient of carbon in nickel (by 2 + 11 times) is observed. At a temperature
of T > 600°C, the diffusion coefficient does not change upon ultrasonic processing.

5. Conclusions

1. A nonlinear diffusion deformation model is presented for the formation of vacancy nanoclusters
and their periodic structures in ultrasonically treated porous material, and the formation criteria
are determined according to the deformation amplitude value, the average vacancy concentration
and temperature.

2. Within the above mentioned model, it is shown that the diffusion coefficient of porous structures
significantly increases at a temperature lower than some critical value, which turns out to be in
good agreement with the empirical results.
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HeniHiliHa moaenb andysii AomiloK y nopyBaTMX MaTepianax
nicns ynbTpasByKoBOi 06po6Ku

P.M. Menewak, O.B. Ky3uk, 0.0. [laHbkiB

JAporobuubknii AepXxaBHWUIA NegaroriyHnin yHiBepcmTeT iM. IBaHa PpaHka,
Byn. 1. ®paHka, 24, 82100 lporobuy, YkpaiHa

CTBOPEHO HeniHiHy Teopito Andysii AOMILLOK y NopyBaTux MaTepianax nicaa ynbTpassykoBoi 06po6bku. Moka-
3aHo, LU0 NPV NeBHOMY 3HaYeHHi aMnniTyAn Aedopmalii, cepesHbOT KOHLLEHTpaLLii BakaHCili Ta TemnepaTtypu B
pe3ynbTaTi BNAWBY YAbTPa3BYKy MOXnBe GOPMyBaHHA HAHOKNACTEPIB BaKaHCIi Ta iX NepioANYHNX YTBOPEHb
B MOpyBaTUX MaTepianax. [okasaHo, Lo Npy TemnepaTypi, MeHLLI 3a AesKe KpUTUYHE 3HaYeHHS, y MopyBaTUX
CTPYKTYpax CnocTepiraeTbCs 3HayYHe 3pocTaHHA koedilieHTa Andysii.

KntouoBi cnoBa: koeiLieHT Andys3ii, yibTpa3Byk, BakaHcis, nopa
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