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We revisit the particle-hole symmetry of the one-dimensional (D = 1) fermionic spinless Hubbard model, as-
sociating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XX Z
Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon com-
paring two regimes of that chain model so that the number of particles in one regime equals the number of
holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models
share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation
functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor
correlation functions is proportional to the z-component of magnetization of the X X Z Heisenberg model. The
results presented in this paper are valid for any value of the interaction strength parameter V, which describes
the attractive/null/repulsive interaction of neighboring fermions.
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The one-band Hubbard model [1} 2] partially describes quantum magnetic phenomena; the complex-
ity of real materials, however, imposes severe limitations on the direct comparison of experimental and
theoretical results. It is not always clear which missing terms should be included in the fermionic Hamil-
tonian to account for the diversity of phenomena in a strongly correlated electron system.

The development of optical lattices over the last two decades has made the experimental simulation
of chain models possible. The three-dimensional Hubbard model at low temperatures has been simulated
by a fermionic quantum gas trapped in an optical lattice [3} 4]. A review of the simulation of the Fermi-
Hubbard model with fermionic atoms in optical lattices can be found in [5]. The simulation of a one-
dimensional spin-1/2 Ising model by a degenerate Bose gas of rubidium atoms confined in an optical lat-
tice can be found in [6]. The simplest one-dimensional fermionic model is the fermionic spinless Hubbard
model, the generalizations of which have been applied to the description of Verwey metal-insulator tran-
sitions and charge-ordering phenomena of the Fe30y4, Ti4O7, LiV204 and other d-metal compounds [7}/8].

In this paper we revisit the consequences of the particle-hole symmetry on the thermodynamics of
the one-dimensional fermionic spinless Hubbard model in the whole range of temperatures, by mapping
it into the exactly solvable D =1 spin-1/2 X X Z Heisenberg model. Appendix@ shows the S-expansion of
the Helmholtz free energy (HFE) of this model, up to the order 88 [9].

The spinless fermionic Hubbard model in D =1 is a very simple anti-commutative model the Hamil-
tonian of which is [10]:
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in which (c;, c:f), with i € {1,2,..., N}, are fermionic annihilation and creation operators, respectively, and
N is the number of sites in the chain. These operators satisfy anticommutation relations, {ci,cf} =0; j 1;
and {c;,c;} = 0, in which ¢ is the hopping integral, V is the strength of the repulsion (V' > 0) or attrac-
tion (V < 0) between first-neighbour fermions, y is the chemical potential and n; = crci is the operator
number of fermions at the i site of the chain.

Sznajd and Becker [10] have shown that the Hamiltonian has a particle-hole symmetry; conse-
quently, the HFE of this model, W (¢, V, u; B), satisfies the relation

W, V,u;B) =W, V,—u+2V; ) - (u-V), 2)

in which g = k—lT, k is the Boltzmann’s constant and 7 is the absolute temperature in Kelvin. The relation
is valid for any values (positive, null or negative) of V and u. Equation (2) provides the condition for
having the same number of particles and holes at the same potential V but at distinct chemical potentials,

mp @,V T)=1- () (L, V,—u+2V;T), 3)

in which (n;) is the average number of fermionic particles at each site of the chain at temperature 7.

Haldane [11] showed the equivalence of the model (1) and the spin-1/2 XX Z Heisenberg model in
D = 1. More recently, Sznajd and Becker [10] also used the inverse Wigner-Jordan transformation to
show that the Hamiltonian (1) is mapped onto the Hamiltonian of the one-dimensional spin-1/2 XXZ
Heisenberg model with a longitudinal magnetic field,

N
Hs-12(J,A,R) =Y [J(SFS},, +S!S], | +AS}S}, ) - hS?], @)
i=1
in which §! = "71, le{x,y, 2}, and o' are the Pauli matrices. The norm of the spin operator Sis ||§|| = ?
The Hamiltonians (1) and (4) are related by
JA h
H(t,V,u) =Hg=1/2o(J=2t,A=V/2t),h=pu-V)-N T + E 1 (5)

and 1 is the identity operator of the chain. This relation shows a constant shift between the energy spec-
trum of these two models.

Let Ws=1/2(J, A, h; B) be the HFE associated to the Hamiltonian (4) of the D = 1 spin-1/2 X X Z Heisen-
berg model. A direct consequence of (5) is that

u

——Z| 6

7 2 ) (6)
At finite temperature (T # 0), the HFE of the one-dimensional S = 1/2 XX Z Heisenberg model is an

even function of the longitudinal magnetic field A,

Ws=120,A, = T) = Ws=1,2U,A, 1 T). 7

Such invariance of Ws-1,2 comes from the symmetry of the Hamiltonian @) upon reversal of the external
magnetic field, # — —h, and of the spin operators, §,~ - —§,-, inwhich i€ {1,2,--- N}.

Consider, for a given magnetic field / and a fixed value (positive, null or negative) of V, the chemical
potential i so that = u— V. For a reversed magnetic field, the corresponding chemical potential p, for
which —h=pu, - Vis

Uo=—p+2V. (©)]

The identity (7) and the condition (8) recover the result (2) satisfied by the HFE of the spinless Hubbard
model for any values of V and p. Notice that in the half-filling condition (u = V), we have yy = u, and there
is no visible consequence of the symmetry (7).

We point out that the quantity —u+2V, which appears on the r.h.s. of (8), also appears as an argument
of W (the HFE of D =1 spinless fermionic Hubbard model) in the r.h.s. of , which in its turn comes
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from the particle-hole symmetry of the Hamiltonian (I). On the other hand, (7) comes from the fact that
the HFE of the D =1 spin-1/2 X X7 Heisenberg model is insensitive to a reversal of the longitudinal
magnetic field.

Equation (3) can be interpreted as follows: the number of particles in the chain under a potential V'
and a chemical potential p equals the number of holes in the chain under the same potential V and
a chemical potential u, given by (8). Those configurations correspond to distinct distributions of the
fermionic particles in the chain, and certainly have some different thermodynamic functions at tempera-
ture T. In what follows, we explore the consequences of the equality (7) in the thermodynamic functions
of those two configurations.

The specific heat C and the entropy S, both per site, are related to the HFE of the model by
C(t,V,;8) = —,62% [BW(t,V,u; )] and % = ﬁz%W(t, V, u; B), respectively. Due to equation @) we ob-
tain

Cit,V,ui;,T)=C(t,V,—u+2V;T) (9a)
and
S, V,u; T)=8(t,V,—u+2V;T). (9b)

Both and are valid in the whole range of temperatures T > 0. This can be verified at each order
of the B-expansion of the thermodynamic functions derived from the expansion (16) of the HFE of the
model, shown in appendix A.

However, not all thermodynamic functions of the model (1) are identical for the chemical potentials u
and o, at the same potential V. The internal energy per site (¢, V, u; f) = % [BW(t,V,u; P)] distinguishes
the distributions of the fermionic particles in the chain:

e(t,V ;) ==V +pu+et,V,u; B). (10)

Notice that the difference of internal energies per site does not depend on the temperature. This equality
is valid for any temperature T > 0 and it is verified at each order of the expansion in f for this thermo-
dynamic function, obtained from (16).

In the spin-1/2 Heisenberg model (), the parallel and anti-parallel configurations of spin with respect
to the external magnetic field can be distinguished, for instance, by the average value of the z-component
of the spin operator S7 at a site and the correlation function of odd powers of such operators. In terms of
fermionic operators, we have 87 = n; — %]li, in which 1; is the identity operator at the i-th site.

For the spinless fermionic Hubbard model, the first-neighbor correlation function G; ;1 (¢, V,u; T) =
(n;jn;;) also relates configurations in which the number of particles in one equals the number of holes
in the other, for two values of the chemical potential, p and p,.

The two-point correlation function G; ;1 is related to the HFE by

OW (L, V, 15 T)

Gi,i+1(tr V,IJ, T)= oV

(11)

From relation (), the symmetry condition (7) and the definition of the z-component of the magneti-
zation of the D =1 spin-1/2 X X Z Heisenberg model,

_aWS=1/2(]1Ay h; T)

on
SHU,A B T), (12)

MS=Y2(1 A, B T)

in which i €{1,2,---, N} and <S§>(], A, h; T) is the mean value of the z-component of the spin-1/2 operator
at the i™? site of the chain and at temperature T, we obtain

Gi i1 (6, Vo T) = Gy 1 (8, V, i, T) = —2MS=Y2 (], A, 1, T), (13)

where on its r.h.s. we have the z-component of the magnetization M5=1/2 in the presence of a longitu-
dinal magnetic field. (Notice that M; is a one-point function of the model, whereas G; ;;+; is a two-point
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function.) Equation is valid for each order of the f-expansion of the function G; ;+1 (¢, V, u; B), derived
from the expansion (16).

As a consequence of the symmetry in equation , the magnetization M;g:” 2 is an odd function of the
magnetic field A,

MS=V2(1 A —h; T) = —M5=Y2 (] A, I T). a4

By writing equation li in terms of fermionic operators, Sf =n;— %, one obtains

M)V, T) =1-(n)(t,V,—u+2V;T), (15)

thus, recovering equation (3).

In summary, we have verified that the particle-hole symmetry of the one-dimensional spinless
fermionic Hubbard model (I) is associated to the invariance of the HFE of the D =1 spin-1/2 XXZ
Heisenberg model (4) with respect to a reversal of the longitudinal external magnetic field.

The thermodynamics of the chain off the half-filling condition (¢ # V) with chemical potentials u
and po, under the same potential V, are not identical; rather, some thermodynamic functions permit
their distinction. Although the number of fermionic particles in the chain differ for y and p,, we obtain
unexpected results, expressed in and (9b), where both configurations exhibit the same specific heat
and entropy per site at any finite temperature T and at any value of V. Distinction arises from other
thermodynamic functions of the chain, though: the values of the internal energy per site of these two
distributions of particles in the chain differ by a constant that is independent of the temperature; and
the difference of their first-neighbour correlation functions is a one-point function proportional to the
z-component of magnetization per site of the spin-1/2 model (4).

The equality of the number of particles in the chain for the chemical potential ¢ and the number
of holes in the chain for the chemical potential uy is a consequence of the odd parity of magnetization
M5S=Y2(J, A, h; B) under reversal of the magnetic field & — —h, for any temperature.

The results presented here are valid for any value of V (negative, null or positive) and any value of
temperature T > 0, verified at each order of the S-expansion of the respective thermodynamic function.
These results are also valid at very low temperatures and could be checked in an optical lattice simulation
of the one-dimensional fermionic spinless Hubbard model.
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A. The HFE of the one-dimensional spinless fermionic Hubbard model
up to order f°

In reference [9] we calculated the S-expansion of the HFE of the normalized one-dimensional spin-S
of the X X7 Heisenberg model with single-ion anisotropy term in the presence of a longitudinal magnetic
field up to the order 5, in terms of the rescaled spin operator § = S/ v/S(S + 1).

In the present work we have applied equation (6) to equation (B) of reference [9], with 1S|| = %5 to
derive the f-expansion, up to the order 5, of the HFE of the one-dimensional fermionic spinless Hubbard
model. We have obtained

n2 1 1
Wi, V,i,8 = —F—EH'FZV
1, 1 5 , 12)
-2+ Vu-—Vv2i-=
(4 FREET gt p
1 1 1 1
=V - =V + =V V2 ) 2
(16 T 6" "8/ HP
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Ao cnmeTpii yacTuHKa-aipka pepmioHHOi 6e3cniHOBOI Moaeni
ra66appas D=1

M.T. Tomadl, E.B. Koppea Cinbsd2, 0. Poxac®

IHcTUTYT disnkun, PepepanbHuii yHiBepcuteT aymMiHeHce, Hitepoli-PX, Bpasunis

N =

dakynbTeT MaTemMaTuKK, Gi3ukM Ta iHGOPMaTUKK, TeXHONOTIYHNI dakynbTeT, JepxaBHWA yHiBepcmTeT
Pio-ae-XaHeipo, PeceHge-PX, bpa3unisa

w

dakynbTeT TOUHMX Hayk, PegepanbHuii yHiBepcuTeT M. JlaBpac, JlaBpac-MX, bpa3unis

Mwu HaHOBO NepernsAaEMo CUMeTPito YacTUHKa-Aipka oAHOBUMIPHOI (D = 1) pepmioHHOI 6e3cniHoBOi Mogeni
rabbapga, NOB'A3yOUMN L0 CMMeTPIto 3 iHBapiaHTHICTIO BiNbHOI eHeprii FefbMronbLa oAHOBUMIPHOI CniH-1/2
XXZ mogeni laiizeHbepra, npu iHBepcii (nepekugaHHi) No340BXHbOr0 MarHiTHOro NoAas i NPy AOBINbLHINA CKiH-
YeHHi TemnepaTypi. B pe3ynbTaTi NOPIBHAHHA ABOX PEXMMIB NaHLOXKOBOI MOAEI, KOAN YMCI0 YaCTUHOK
B OAHOMY peXuMi AOPIBHIOE UNCAY AiPOK B iHLIOMY, 3HaliAeHO, L0 B 3arabHOMYy, iX TepMOAMHaMIKa € Nogi-
6HOI0, ane He ifeHTMYHOM: 06UABI MOAeni MakTb OAHAKOBI GYHKLii NUTOMOT TENOEMHOCTI Ta eHTponii, ane
Pi3Hi BHYTPILLIHIO €Heprito Ha BY30/, KOPenauiiHi GyHKLii nepLumnx Cycigis i Yncno YacTUHOK Ha By30/. 3aBAs-
KW LA cMeTpii, pi3HULS MK KOpenauitHMU GyHKUIsMK NepLumnX CyCigiB € NPOnopLiiHO A0 Z-KOMMOHEHTA
HamarHiveHocti X X Z mogeni laiizeHbepra. MpejcTaBneHi B Lili CTaTTi pe3yabTaTy cripaBeAnvBi NS A0BiNbHO-
ro 3Ha4yeHHs napameTpa cuav B3aeMogii V, akuii onncye nputaranbHy/Hynb0BY/BiALLTOBXYBabHY B3aEMO/iHO
CyCifHix GepmioHiB.

KntouoBi cnoBa: kBaHTOBO-CTaTUCTUYHA MeXaHiIKa, CU/IbHOCKOPE/bOBaHa e/IeKTPOHHA CUCTeEMa, MOZeni
CMIHOBUX IaHLKOXKIB
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