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The relaxation of temperatures and velocities of the components of a quasi-equilibrium two-component ho-
mogeneous completely ionized plasma is investigated on the basis of a generalization of the Chapman-Enskog
method applied to the Landau kinetic equation. The generalization is based on the functional hypothesis in or-
der to account for the presence of kinetic modes of the system. In the approximation of a small difference of the
component temperatures and velocities, it is shown that relaxation really exists (the relaxation rates are posi-
tive). The proof is based on the arguments that are valid for an arbitrary two-component system. The equations
describing the temperature and velocity kinetic modes of the system are investigated in a perturbation theory
in the square root of the small electron-to-ion mass ratio. The equations of each order of this perturbation
theory are solved with the help of the Sonine polynomial expansion. Corrections to the known Landau results
related to the distribution functions of the plasma and relaxation rates are obtained. The hydrodynamic theory
based on these results should take into account a violation of local equilibrium in the presence of relaxation
processes.
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1. Introduction

In his known paper [1] Landau obtained a kinetic equation for a two-component fully ionized elec-

tron-ion plasma. This equation iswidely used for investigation of plasma kinetics (see, for example, [2–6]).

Of course, it describes the situation in the plasma approximately. The Landau equation takes into account

only the short-range part of the Coulomb interaction because the Coulomb potential is artificially cut in

the collision integral at the Debye radius. This can be done exactly using the Balescu-Lenard equation. In

the Landau collision integral, the Coulomb potential is also cut at small distances where this potential is

big and the situation needs special attention. This was done in an exact consideration by Rukhadze and

Silin [7]. A comparison of the mentioned theories shows that the Landau kinetic equation describes the

effects of the short-range part of the Coulomb interaction in plasma with a logarithmic accuracy (see the

discussion of the mentioned results in [2]). The long-range part of the Coulomb interaction can be taken

into account by the Vlasov term which describes the one-particle effects of a self-consistent field [2]. In

homogeneous states, there is no self-consistent field, and one can investigate these states only on the basis

of the Landau kinetic equation.

On the basis of his equation [1] Landau investigated the case in which the components are spatially

homogeneous equilibrium subsystems with different temperatures Ta(t) (a = e,i) and the temperature

relaxation is observed. This phenomenon is of great interest because of its fundamental importance for

applications in plasma theory and condensed matter physics in general. Temperature and velocity re-

laxation in two-component systems is observed in many systems and breaks local equilibrium in them.

Even for spatially uniform states, the problem of calculating the distribution function in the presence of

relaxation is considered to be a complicated one [6] because of the lack of a small parameter. Among
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the existing applications, it is worth to mention the plasma hydrodynamics with account of the relax-

ation processes (two fluid hydrodynamics) [8, 9], electron-phonon hydrodynamic phenomena in metals

and semiconductors [10], magnon-phonon hydrodynamic phenomena in ferromagnetic materials [11],

relaxation of the hot spot [12], etc.

In the present paper, the relaxation of temperatures Ta (t) and velocities υan (t) of the plasma compo-

nents

Ta(t) −−−−→
t≫τT

T, υan(t) −−−−→
t≫τu

υn (1.1)

are investigated (on the basis of the ideas of paper [1] the velocity relaxation was studied, for example, in

[13]). In (1.1), T,υn are the equilibrium temperature and velocity of the plasma; τT ,τu are the relaxation

times. Our consideration is based on the Chapman-Enskog method generalized to account for the relax-

ation phenomena (we use the term “relaxation phenomena” in the narrow sense of the word as nonequi-

librium processes that can be observed in spatially uniform states). Such a theory should describe kinetic

modes of the system. In the recent statistical mechanics, the problem of investigating the effect of kinetic

modes on the behavior of nonequilibrium systems is considered to be very important (see, for instance,

review [14]). The generalization is based on the idea of the Bogoliubov functional hypothesis (see, for

example, [15, 16]), which describes the structure of the nonequilibrium distribution function at the times

under consideration

fap (t)−−−−→
t≫τ0

fap

(

Te(t , f0),υe(t , f0)
)

,
[

τ0 ≪ τT ,τu , fap0 ≡ fap (t = 0), f0 ≡
{

fap0

}]

. (1.2)

The function fap (Te(t , f0),υe(t , f0)) contains asymptotic values of the parameters

Te(t)−−−−→
t≫τ0

Te(t , f0), υe(t) −−−−→
t≫τ0

υe(t , f0). (1.3)

So, at times t ≫ τ0, the distribution function depends on the time and the initial state of the system

fap0 only through parameters that describe the state of the system (the reduced description parameters).

Here, τ0 is some characteristic time which is chosen to precede the end of relaxation processes. In fact,

only the set of reduced description parameters depends on τ0, but the value of τ0 depends on the initial

state of the system fap0. Arrows in the functional hypothesis (1.2) and definitions (1.3) show that their

right-hand sides are a result of the natural evolution of the system. The function fap (Te(t , f0),υe(t , f0))

is the asymptotic limit of the distribution function fap (t), and it exactly satisfies the kinetic equation. The

asymptotic distribution fap (Te,υe) does not depend on the initial state of the system fap0. These state-

ments are the basic ideas concerning the functional hypothesis applied by us for a generalization of the

Chapman-Enskog method. The reduced description parameters in (1.2) do not include the ion temper-

ature and velocity due to the energy and momentum conservation laws in the spatially uniform states

under consideration. They are functions of the electron temperature and velocity (in what follows we do

not show the dependence of the reduced description parameters on the initial distribution function fap0).

The Landau approximation [1] (and the corresponding approximation of [13]) can be written in the

form

fap (Te,υe)= wa,p−maυa (Ta), wap (Ta) ≡
na

(2πma Ta)3/2
exp

{

−
εap

Ta

}

(1.4)

(εap ≡ p2
a/2ma ). The use of the Maxwell distribution for a system consisting of interacting equilibrium

subsystems (quasi-equilibrium state) is quite attractive from the physical point of view. The correspond-

ing local distribution gives the local equilibrium approximation for the description of spatially nonuni-

form states. This simple idea by Landau is a basis of many investigations. For example, plasma hydro-

dynamics was investigated in [8, 9] on the basis of the Landau approximation. The local equilibrium

approximation is a basis of investigations in the book [17] devoted to transport processes in a multicom-

ponent plasma.

In the present paper, the problem of correction of the assumption (1.4) is considered as a very impor-

tant one, and the distribution function fap (Te,υe) is calculated in a perturbation theory in a small difference

of the component temperatures and velocities (let the corresponding small parameter be λ). In terms of

the theory of hydrodynamic states, this means that in the plasma in the presence of relaxation, the local

equilibrium is violated. Note, that in spatially inhomogeneous states, relaxation in a two-component sys-

tem was studied in [18]. However, the authors of [18] did not obtain these results because they described
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the system by the energy densities of the components. The idea of considering the relaxation processes

in the system at their end was proposed in our paper [19] and presented at the conferences QEDSP 2011

and MECO 38. It is worth noting that this idea can be also used in the Grad method. As is known [20],

the disadvantage of this method is the absence of a small parameter. The above-mentioned parameter λ

can be selected for the small parameter in the Grad method. Further development of this approach was

presented by us in [21].

The final results of the present paper are given in an additional perturbation theory in the small

mass ratio σ≡
p

me/mi, and the integral equations of the theory in each order in σ are solved using the

method of truncated Sonine polynomial expansion.

The paper is organized as follows. In section 2, the basic definitions and equations of the theory are

presented. In section 3, a generalized Chapman-Enskog method is developed and integral equations for

the distribution functions are obtained. In section 4, these equations are solved in aσ perturbation theory

with the help of the truncated Sonine polynomial expansion method.

2. Basic equations of the theory

A two-component fully ionized electron-ion plasma can be described by the Landau kinetic equation

[1]. In the considered case of spatially uniform states, the component distribution function fap satisfies

the equation
∂ fap (t)

∂t
= Iap ( f (t)) (2.1)

with the standard expression for the collision integral Iap ( f )

Iap ( f ) = 2πe2
aL

∑

b

e2
b

∂

∂pn

∫

d3p ′Dnl

(

p

ma
−

p ′

mb

)

(

∂ fap

∂pl
fbp′ − fap

∂ fbp′

∂p ′
l

)

,

Dnl (u) ≡ (u2δnl −un ul )/|u|3 , (2.2)

where L is the Coulomb logarithm (the subscripts a,b,c, . . . = e, i denote the electron and ion components).

The quantities ma , ea are the particle masses and charges ee = −e , ei = ze , where e is the elementary

electric charge and z is the ion charge number.

The particle number density na , temperature Ta and velocity υan of the components are defined using

the standard formulas [3, 15]

na =
∫

d3p fap , πan = manaυan =
∫

d3p fap pn , εa =
3

2
na Ta+

1

2
manaυa

2 =
∫

d3p fapεap , (2.3)

where πan and εa are the momentum and energy densities of the components. In this paper, the temper-

ature is measured in energy units.

Let us introduce the quantities υn and T as:

πn =
∑

a

πan = υn

∑

a

mana , ε=
∑

a

εa =
3

2
T

∑

a

na +
1

2
υ2

∑

a

ma na , (2.4)

where πn , ε are the total momentum and the total energy densities, respectively. These quantities do not

depend on time because of the relations

∂πan (t)

∂t
= Ran ( f (t)),

∂εa (t)

∂t
=Qa( f (t)) , (2.5)

where the functions

Ran ( f ) ≡
∫

d3ppn Iap ( f ), Qa( f ) ≡
∫

d3pεap Iap ( f ) (2.6)

obey the properties
∑

a

Ran ( f ) = 0,
∑

a

Qa( f ) = 0. (2.7)
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The particle densities na do not depend on time because

∫

d3pIap ( f ) = 0. (2.8)

According to the definition (2.3), (2.4), the quantities υn , T are equal to the equilibrium temperature and

velocity of the system and can be considered as the given parameters. According to the concept of the

Galilean invariance, we consider the problem under study in the reference frame where υn = 0.

Let us introduce the deviations τ,un of the electron subsystem temperature Te and velocity υen from

their equilibrium values

Te−T = τ, υen = un (2.9)

which should be considered as parameters describing the relaxation in the system because the deviations

of the ion temperature Ti and velocity υin are also expressed in terms of τ, un

Ti−T =−zτ−
1

3
mezu2(1+ zσ2), υin =−zσ2un ,

[

σ= (me/mi)
1/2

]

. (2.10)

Here, it was taken into account that in spatially uniform states, the charge neutrality condition ni ≡ n,

ne = zn is satisfied. Expressions (2.10) justify the functional hypothesis in the form (1.2) that contains

only electron variables.

3. Generalization of the Chapman-Enskog method

The generalization of the Chapman-Enskog method presented here is based on the functional hypoth-

esis (1.2), which can be written in the form

fap (t) −−−−→
t≫τ0

fap (τ(t),u(t)) (3.1)

suitable for our consideration of the relaxation processes at their end. Then, substitution of (2.3) into (2.5)

with account for (2.9) leads at t ≫ τ0 to the closed-form time equations for the parameters τ, un

∂un(t)

∂t
=

1

nzme

Ren( f (τ(t),u(t))),
∂τ(t)

∂t
=

2

3nz
Qe( f (τ(t),u(t))). (3.2)

According to the basic idea of the reduced description method, the distribution function fap (τ(t),u(t))

exactly satisfies the kinetic equation (2.1) for times t ≫ τ0. This leads to the following integro-differential

equation for the function fap (τ,u)

∂ fap (τ,u)

∂un

1

nzme

Ren( f (τ,u))+
∂ fap (τ,u)

∂τ

2

3nz
Qe( f (τ,u)) = Iap ( f (τ,u)). (3.3)

One should add to this equation the definition of the parameters un and τ given in terms of the

distribution function fap (τ,u)

∫

d3p fap (τ,u) = na ,

∫

d3ppn fap (τ,u) = manaυan (τ,u) ,

∫

d3pεap fap (τ,u) =
3

2
na Ta (τ,u)+

1

2
manaυa (τ,u)2 , (3.4)

where the component temperatures and velocities Ta(τ,u), υan(τ,u) as functions of τ,u are defined by

the formulas

υen (τ,u) = un , υin(τ,u) =−zσ2un , Te(τ,u) = T +τ , Ti(τ,u) = T − zτ−
1

3
mezu2

(

1+ zσ2
)

.

(3.5)
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In the present paper, relaxation processes in the system are investigated at their end. The correspond-

ing small parameter λ can be introduced by estimates

τ

T
∼λ,

unp
T /me

∼λ, (λ≪ 1). (3.6)

The solution of equation (3.3) with additional conditions (3.4) is found in the form of a series in λ

fap (τ,u) = f (0)
ap + f (1)

ap +O(λ2). (3.7)

The further calculation needs only the assumption that un , τ ∼ λ (λ≪ 1). In fact, estimates (3.6) follow

from the requirement | f (1)
ap |≪ f (0)

ap and the expression for f (1)
ap obtained below.

In the main approximation, equations (3.3), (3.4) give the Maxwell distribution with the equilibrium

temperature

f (0)
ap = wap , [wap ≡ wap (T )]. (3.8)

This is true because the distribution wap meets additional conditions (3.4)

〈1〉a = na , 〈pn〉a = 0, 〈εap〉a =
3

2
na T , (3.9)

it does not depend on τ, un and is an equilibrium distribution Iap (w) = 0 (hereafter for an arbitrary

function gp , the notation

〈gp〉a =
∫

d3pwap gp (3.10)

is used).

In view of rotational invariance, the solution of equation (3.3) in the first order in λ has the structure

f (1)
ap (τ,u) = wap [Aa (βεap )τ+Ba (βεap )pnun ], (β≡ T −1) (3.11)

where Aa(x), Ba (x) are some scalar functions. Note that in the Landau approximation (1.4), these func-

tions are given by the relations

AL

e (x) =β(x −3/2), AL

i
(x) =−zβ(x −3/2); BL

e (x) =β, BL

i
(x) =−zβσ2. (3.12)

Substitution of (3.11) into (2.6) gives the right-hand sides Ren( f (τ,u)), Qe( f (τ,u)) of equations (3.2) in the

first order in λ

R(1)
en =−menzλuun , Q (1)

e =−
3

2
nzλT τ , (3.13)

where the notations

λu =
1

3menz

∑

a

{

pn ,Ba (βεap )pn

}

ea
, λT =

2

3nz

∑

a

{

εep , Aa (βεap )
}

ea
(3.14)

are introduced (these formulas are written in terms of the integral brackets {gp ,hp }ab defined by (A.1) in

the appendix). Substitution of expressions (3.13) into (3.2) gives the evolution equations for the parame-

ters τ, u
∂τ

∂t
=−λT τ+O(λ2),

∂un

∂t
=−λuun +O(λ2) (3.15)

which describe their relaxation in themain approximation. Thus, the quantities λT , λu are the relaxation

rates, and τT ≡λ−1
T

, τu ≡λ−1
u are the corresponding relaxation times for the temperature and velocity.

The contribution f (1)
ap (3.7), according to (3.3) and (3.14), satisfies the equation

−λu un

∂ f (1)
ap

∂un
−λT τ

∂ f (1)
ap

∂τ
=

∑

b

∫

d3p ′Mab(p, p ′) f (1)
bp′ . (3.16)

The kernel Mab(p, p ′) in this equation is defined by the linearized Landau collision integral (2.2)

Iap (w +δ f ) =
∑

b

∫

d3p ′Mab (p, p ′)δ fbp′ +O((δ f )2). (3.17)
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Both sides of equation (3.16) contain the unknown function f (1)
ap . So, our choice of the small parameter λ

of the theory leads to a generalization of the Chapman-Enskog method too. Note that the left-hand sides of

similar equations for the standard hydrodynamic state which is investigated on the basis of the Chapman-

Enskog method contain only the known functions.

Substitution of expression (3.11) into this equation leads to the integral equations for the functions

Aa(βεap ) and Ba (βεap ):

λT Aa(βεap ) =
∑

b

K̂ab Ab(βεbp ), λuBa (βεap )pn =
∑

b

K̂abBb(βεbp )pn . (3.18)

Here, K̂ab is the linearized collision operator defined in the appendix by formulas (A.2). Additional con-

ditions to equations (3.18) follow from (3.4) and (3.11), and they can be written in the form

〈Aa(βεap )〉a = 0, 〈Aa(βεap )εap〉a =
3

2
nz(δae−δai), 〈Ba(βεap )εap〉a =

3

2
nz(δae−σ2δai). (3.19)

Equations (3.18), (3.19) are the main equations of the developed theory that will be analyzed in the next

part of this paper.

Integral equations (3.18) show that Aa(βεap ), Ba (βεap )pn are eigenfunctions and λT , λu are the cor-

responding eigenvalues for the linearized collision operator of the kinetic equation under consideration.

They describe the temperature and velocity kinetic modes of the system. It is important to emphasize

that formulas (3.14) are consequences of integral equations (3.18) and the additional conditions (3.19).

Therefore, equations (3.18) with additional conditions (3.19) can be solved without taking into account the

expressions (3.14). However, it may be useful to simplify the calculation.

The quantities λT , λu are positive due to the identities

{

Aa(βεap ), Aa(βεap )
}

=λT

∑

a
〈Aa(βεap )2〉a ,

{

pnBa (βεap ), pnBa (βεap )
}

=λu

∑

a

〈p2Ba (βεap )2〉a , (3.20)

following from integral equations (3.18) and the definition of the total integral brackets {gp ,hp } (A.6) in

the appendix. These brackets have the important property, {gp , gp } Ê 0 which completes the proof. It is

well known from the kinetic theory that the brackets {gp ,hp } reflect the general properties of kinetic

equations, which lead to entropy growth and the principle of kinetic coefficients symmetry (see, for ex-

ample, [2, 22]). Thus, the developed theory shows the presence of temperature and velocity relaxation in

an arbitrary two-component system for the case of small deviations of the component temperatures and

velocities from their equilibrium values.

4. Approximate solutions of the main equations of the theory

In this section, equations (3.18), (3.19) are investigated in a σ perturbation theory and the obtained

equations in each order in σ are solved with a truncated Sonine polynomial expansion method. The

investigation is based on the following estimates of the momentum pn in wap

pn ∼
√

maT ; me ∼σ0, mi ∼σ−2. (4.1)

We seek the relaxation rates and the distribution functions in a σ perturbation theory:

λT =
∑

sÊ0

λ(s)
T

, λu =
∑

sÊ0

λ(s)
u ; Aa

(

βεap

)

=
∑

sÊ0

A(s)
a

(

βεap

)

, Ba

(

βεap

)

=
∑

sÊ0

B (s)
a

(

βεap

)

(4.2)

(A(s) is the contribution of the order σs to the quantity A).
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4.1. The temperature relaxation

4.1.1. Calculation of A
(0)
e (x), λ

(0)

T
from equations of the order σ0

In the zeroth order in σ, equations (3.18) and additional conditions (3.19) give the equations for the

quantities A(0)
a (βεap ), λ(0)

T

λ(0)
T

A(0)
e

(

βεep

)

= K̂ (0)
ee A(0)

e

(

βεep

)

, λ(0)
T

A(0)
i

(

βεip
)

= 0;

〈A(0)
a

(

βεap

)

〉a = 0, 〈A(0)
e

(

βεep

)

εep〉e =
3

2
nz, 〈A(0)

i

(

βεip
)

εip〉i =−
3

2
nz (4.3)

(see the explicit expressions for the operators K̂ab in different orders in σ in the appendix).

The first and the fourth equations (4.3) give the following expression for λ(0)
T

λ(0)
T

=
2

3nz
{εep , A(0)

e (βεep )}(0)
ee = 0. (4.4)

The zero result follows from the definition of the integral bracket and the explicit expression for K̂ (0)
ee ,

because for an arbitrary function gp

{εep , gp }(0)
ee =

∫

d3pwepεep K̂ (0)
ee gp = 0. (4.5)

The solution of equations (4.3) is found in the form of a Sonine polynomial series

A(0)
e (βεep ) =

∑

mÊ0

g (0)
emS1/2

m (βεep ). (4.6)

The chosen polynomials S1/2
m (x) are convenient due to their orthogonality condition

〈S1/2
m (βεap )S1/2

m′ (βεap )〉a = na
2
p
π

Γ(m +3/2)

m!
δmm′ (4.7)

which, in particular, gives

S1/2
0 (x) ≡ 1, S1/2

1 (x) =−x +3/2, S1/2
2 (x) = (x2 −5x +15/4)/2. (4.8)

In matrix form, equations (4.3) are given by relations

∑

m′Ê2

G(0)
em,em′ g

(0)
em′ = 0 (m Ê 2); g (0)

e0 = 0, g (0)
e1 =−β, (4.9)

where the matrix Gam,bm′ is defined by integral bracket

Gam,bm′ ≡ {S1/2
m (βεap ),S1/2

m′ (βεbp )}ab (4.10)

(a straightforward calculation gives G(0)
e0,em = 0, G(0)

e1,em = 0, G(0)
em,e0 = 0, G(0)

em,e1 = 0 for ∀m). Equation (4.9)

shows that g (0)
em = 0 for m Ê 2 and, therefore,

A(0)
e (βεep ) =β(βεep −3/2). (4.11)

It is easy to see that the obtained expression (4.11) is an exact solution of the eigenvalue problem (4.3).

The given consideration, based on the Sonine polynomial expansion, can be considered as a proof of the

uniqueness of the solution. The obtained result for A(0)
e (βεip ) coincides with the Landau approximation

(3.12) [1]. However, the theory developed here allows one to find corrections of higher orders in σ to his

result.
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4.1.2. Calculation of A
(1)
e (x), A

(0)

i
(x), λ

(1)

T
from equations of the order σ1

In the first order in σ, equations (3.18) and additional conditions (3.19) give the equations for the

quantities A(1)
e (βεep ), A(0)

i
(βεip ), λ(1)

T

λ(1)
T

A(0)
e

(

βεep

)

= K̂ (0)
ee A(1)

e

(

βεep

)

, λ(1)
T

A(0)
i

(

βεip
)

= K̂ (1)
ii

A(0)
i

(

βεip
)

;

〈A(0)
i

(

βεip
)

〉i = 0, 〈A(0)
i

(

βεip
)

εip〉i =−
3

2
nz; 〈A(1)

e

(

βεep

)

〉e = 0, 〈A(1)
e

(

βεep

)

εep〉e = 0. (4.12)

Equations (4.12) give zero for λ(1)
T

λ(1)
T

=
2

3nz
{εep , A(1)

e (βεep )}(0)
ee = 0, (4.13)

where the identity (4.5) was taken into account. This expression leads to the equation K̂ (0)
ee A(1)

e

(

βεep

)

= 0

considered above in the main approximation but with zero additional conditions, which gives

A(1)
e (βεep ) = 0. (4.14)

Note that the operator K̂ (1)
ii

describes the collisions in a closed ion system [see expression (B.4) in the

appendix]. The second formula in (4.12) with (4.14) lead to the equation K̂ (1)
ii

A(0)
i

(

βεip
)

= 0 and, therefore,

A(0)
i

(

βεip
)

is a hydrodynamic scalar eigenfunction of the closed ion subsystem and has the structure

c1 +c2εip . Using additional conditions from (4.12) gives the constants c1, c2 and the result

A(0)
i

(βεip ) = zβ(3/2−βεip ). (4.15)

So, the spectral problem (4.12) is an exactly solvable one. The result for A(0)
i

(βεip ) coincides with the Lan-

dau approximation (3.12) [1]. However, the theory developed here allows one to find corrections of higher

orders in σ to his result.

4.1.3. Calculation of A
(1)

i
(x), A

(2)
e (x), λ

(2)

T
from equations of the order σ2

In the second order in σ, equations (3.18) and additional conditions (3.19) give the equations for the

quantities A(2)
e (βεep ), A(1)

i
(βεip ), λ(2)

T

λ(2)
T

A(0)
e

(

βεep

)

= K̂ (0)
ee A(2)

e

(

βεep

)

+ K̂ (2)
ee A(0)

e

(

βεep

)

+ K̂ (2)
ei

A(0)
i

(

βεip
)

,

λ(2)
T

A(0)
i

(

βεip
)

= K̂ (2)
ie

A(0)
e

(

βεep

)

+ K̂ (1)
ii

A(1)
i

(

βεip
)

+ K̂ (2)
ii

A(0)
i

(

βεip
)

;

〈A(2)
e (βεep )〉e = 0, 〈A(2)

e (βεep )εep〉e = 0; 〈A(1)
i

(βεip )〉i = 0, 〈A(1)
1 (βεip )εip〉i = 0. (4.16)

The contributions to operators K̂ab entering these equations are given in the appendix.

The first equation in (4.16) and additional condition for A(0)
e (βεep ) from (4.3) give the following for-

mula for λ(2)
T

λ(2)
T

=
2

3nz

(

{εep , A(0)
e (βεep )}(2)

ee + {εep , A(0)
i

(βεip )}(2)
ei

)

, (4.17)

where the identity (4.5) was taken into account. Now, using explicit expressions for the operators K̂ab , the

definition of the integral brackets (A.1), given in the appendix, and the functions A(0)
a (βεap ) from (4.11),

(4.15), we obtain from (4.17)

λ(2)
T

= 2z2(z +1)σ2
Λ, Λ≡

25/2π1/2

3

ne4L

m1/2
e T 3/2

. (4.18)

This expression for λ(2)
T

coincides with the Landau result [1] because it is based on the functions

A(0)
a (βεap ) of his approximation (3.12).
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The solution of equations (4.16) is found in the form of Sonine polynomial series

A(2)
e (βεep )=

∑

mÊ0

g (2)
emS1/2

m (βεep ), A(1)
i

(βεip ) =
∑

mÊ0

g (1)
im

S1/2
m (βεip ). (4.19)

In a matrix form, the equations (4.16) with account for (4.11), (4.15) are given by the relations

∑

m′Ê2

G(0)
em,em′ g

(2)
em′ + zβG(2)

em,i1
−βG(2)

em,e1 =−
3

2
nzβλ(2)

T
δm1; g (2)

e0 = 0, g (2)
e1 = 0;

∑

m′Ê2

G(1)
im,im′g

(1)
im′ + zβG(2)

im,i1
−βG(2)

im,e1
=

3

2
znβλ(2)

T
δm1; g (1)

i0
= 0, g (1)

i1
= 0, (4.20)

where the matrix Gam,bm′ is defined in (4.10). The first formula from (4.20) gives the relations

zβG(2)
e1,i1

−βG(2)
e1,e1 =−

3

2
znβλ(2)

T
,

∑

m′Ê2

G(0)
em,em′ g

(2)
em′ + zβG(2)

em,i1
−βG(2)

em,e1 = 0 (m Ê 2) (4.21)

because substitution of (4.8) into (4.10) with account for (4.5) gives

G(0)
e1,em = 0. (4.22)

The first relation coincides with the expression for λ(2)
T

from (4.17). The second one is a set of equations

for the coefficients g (2)
em (m Ê 2). In the one-polynomial approximation, it gives the following expression

for the function A(2)
e

(

βεep

)

A(2)
e

(

βεep

)

= 3
p

2z(z +1)βσ2S1/2
2 (βεep ). (4.23)

The fourth formula in (4.20) gives the relations

zβG(2)
i1,i1

−βG(2)
i1,e1

=
3

2
znβλ(2)

T
,

∑

m′Ê2

G(1)
im,im′ g

(1)
im′ = 0 (m Ê 2), (4.24)

where the identities

G(1)
im,i1

= 0 (m Ê 0); G(2)
im,i1

= 0, G(2)
im,e1

= 0 (m Ê 2)

are used. They come from the explicit expressions for the components of K̂ab , orthogonality condition

(4.7) of the polynomials S1/2
m (x) and formulas (4.8). The first relation in (4.24) is an expression for λ(2)

T

which is equivalent to the one from (4.21). The second relation shows that g (1)
im′ = 0 (m Ê 2) and, therefore,

A(1)
i

(

βεip
)

= 0. (4.25)

4.1.4. Calculation of A
(3)
e (x), A

(2)

i
(x), λ

(3)

T
from equations of the order σ3

Let us start with the formula (3.14) for λT using the expressions for K̂ab in the appendix, which in the

third order in σ gives

λ(3)
T

=
2

3nz

(

{εep , A(1)
e (εep )}(2)

ee + {εep , A(3)
e (εep )}(0)

ee + {εep , A(1)
i

(εip )}(2)
ei

)

= 0 (4.26)

[see (4.5), (4.14), (4.25)].

In the third order in σ, equations (3.18) and additional conditions (3.19) lead to equations

0 = K̂ (0)
ee A(3)

e

(

βεep

)

, 0 = K̂ (1)
ii

A(2)
i

(

βεip
)

;

〈A(3)
e

(

βεep

)

〉e = 0, 〈A(3)
e

(

βεep

)

εep〉e = 0; 〈A(2)
i

(

βεip
)

〉i = 0, 〈A(2)
i

(

βεip
)

εip〉i = 0. (4.27)

The solution of the integral equation for A(3)
e (βεep ) is similar to the one for A(0)

e (βεep ). The solution of the

integral equation for A(2)
i

(βεep ) is a linear combination of hydrodynamic modes of the ion subsystem. In

this situation, the additional conditions give

A(3)
e (βεep ) = 0, A(2)

i
(βεip ) = 0. (4.28)
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4.1.5. Calculation of A
(3)

i
(x), λ

(4)

T
from equations of the order σ4

Let us start with the formula (3.14) for λT using expressions for K̂ab in the appendix, which in the

fourth order in σ gives

λ(4)
T

=
2

3nz

(

{εep , A(0)
e (εep )}(4)

ee + {εep , A(2)
e (εep )}(2)

ee + {εep , A(0)
i

(εip )}(4)
ei

)

(4.29)

[see (4.5), (4.14), (4.28)]. The first and third terms here in λ(4)
T

correspond to the Landau approximation [1]

because they are based on the functions A(0)
a (βεap ) of the Landau approximation. The calculation gives

the following expression for λ(4)
T

λ(4)
T

=−3z2(z +1)σ4
Λ−9

p
2z3(z +1)σ4

Λ. (4.30)

The first summand coincides with the Spitzer result based on the Landau approximation (see, for exam-

ple, [23]). The second summand takes place due to our correction A(2)
e (βεep ) of the orderσ2 to the Landau

contribution A(0)
e (βεep ) (4.23).

In the fourth order in σ, equations (3.18) and additional conditions (3.19) give the equations for

A(3)
i

(βεip )

λ(4)
T

A(0)
i

(βεip ) = K̂ (2)
ie

A(2)
e (βεep )+ K̂ (4)

ie
A(0)
e (βεep )+ K̂ (1)

ii
A(3)
i

(βεip )+ K̂ (4)
ii

A(0)
i

(βεip ); (4.31)

〈A(3)
i

(

βεip
)

εip〉i = 0. (4.32)

The solution of this equation in the one-polynomial approximation gives the following expression

A(3)
i

(βεip ) = 23/2β(1+ z−1)S1/2
2 (βεip )σ3. (4.33)

4.1.6. The temperature relaxation: results

Finally, the above-described procedure of solution of equations in (3.18), (3.19) which are devoted to

the temperature relaxation leads to the formulas

Ae(βεep ) =β(βεep −3/2)+3
p

2z(z +1)βσ2S1/2
2 (βεep )+O(σ3),

Ai(βεip ) = zβ(3/2−βεip )+23/2β(1+ z−1)S1/2
2 (βεip )σ3 +O(σ4),

λT = z2(z +1)Λσ2
[

2−3(1+3z
p

2)σ2 +O(σ3)
]

. (4.34)

This procedure can also be conducted for a higher order of the developed perturbation theory in σ.

The functions Ae

(

βεep

)

and Ai

(

βεip
)

of the order σ0 are exact solutions of the obtained equations

and they coincidewith the corresponding functions (3.12) of the Landau approximation [1]. In his approx-

imation, the temperature relaxation rate is given by our expression λ(2)
T

. We calculated the corrections

A(2)
e (βεep ) and A(3)

i
(βεip ) to the Landau results and a correction to the Spitzer expression for λ(4)

T
.

4.2. The velocity relaxation

4.2.1. Calculation of B
(0)

i
(x) from equations of the order σ−1

Integral equations (3.18) for Bi (βεip ) contain on the left-hand side a momentum of the order σ−1. In

the order σ−1, these equations and additional conditions (3.19) give

λ(0)
u ps B (0)

i
(βεip ) = 0; 〈B (0)

i
(βεip )εip 〉i = 0. (4.35)

The physical meaning of electron-ion collision processes shows that the attenuation constant λ(0)
u , 0.

Therefore, equations (4.35) show that

B (0)
i

(βεip ) = 0. (4.36)
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4.2.2. Calculation of B
(0)
e (x), B

(1)

i
(x), λ

(0)
u from equations of the order σ0

In the zero order in σ, equations (3.18) and additional conditions (3.19) with (4.36) give

λ(0)
u psB (0)

e (βεep ) = (K̂eeps )(0)B (0)
e (βεep ), λ(0)

u psB (1)
i

(βεep ) = 0;

〈B (0)
e (βεep )εep〉e =

3

2
nz, 〈B (1)

i
(βεip )εip〉i = 0 (4.37)

(explicit expressions for the operators K̂ab ps in different orders in σ are given in the appendix).

The second equation in (4.37) shows that

B (1)
i

(βεip ) = 0. (4.38)

The solution of the first equation in (4.37) is found in the form of a Sonine polynomial series

B (0)
e (βεep ) =

∑

mÊ0

h(0)
emS3/2

m (βεep ). (4.39)

The chosen polynomials S3/2
m (x) are convenient due to their orthogonality condition

〈S3/2
m (βεap )S3/2

m′ (βεap )βεap 〉a = na
2
p
π

Γ(m +5/2)

m!
δmm′ (4.40)

which, in particular, gives

S3/2
0 (x) ≡ 1, S3/2

1 (x) =−x +5/2, S3/2
2 (x) = (x2 −7x +35/4)/2. (4.41)

Equations (4.37) for B (0)
e (βεep ) in a matrix form are given by the relations

∑

m′Ê0

Hmm′h(0)
em′ = 0, h(0)

e0 =β, (4.42)

where the notation

Hmm′ = H (0)
em,em′ −λ(0)

u nzmeβ
−1 4

p
π

Γ(m +5/2)

m!
δmm′ (4.43)

and the integral brackets Ham,bm′ :

Ham,bm′ ≡
{

psS3/2
m (βεap ), psS3/2

m′ (βεbp )
}

ab
(4.44)

are introduced. Equations (4.42) in the one-polynomial approximation give the following result

B (0)
e (βεep ) =β, λ(0)

u = z2
Λ, (4.45)

where the quantity Λ is defined in (4.17). These expressions coincide with the result obtained in the

Landau approximation (3.12) (see, for example, [13]). The theory developed in the present paper allows

one to find corrections of higher orders in σ to this result.

4.2.3. Calculation of B
(1)
e (x), B

(2)

i
(x), λ

(1)
u from equations of the order σ1

In the first order in σ, equations (3.18) and additional conditions (3.19) with account for the explicit

expressions for K̂ab ps in the appendix and (4.36) give the equations for B (1)
e (βεep ), λ(1)

u , B (2)
i

(βεip )

λ(1)
u psB (0)

e (βεep )+λ(0)
u ps B (1)

e (βεep ) = (K̂eeps)(0)B (1)
e (βεep ), 〈B (1)

e (βεep )εep〉e = 0;

λ(0)
u psB (2)

i
(βεip )= (K̂ieps)(1)B (0)

e (βεep ), 〈B (2)
i

(βεip )εip〉i =−
3

2
nzσ2. (4.46)

The solution of the first equation in (4.46) is found in the form a Sonine polynomial series

B (1)
e (βεep ) =

∑

mÊ0

h(1)
emS3/2

m (βεep ). (4.47)
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The equations for B (1)
e (βεep ) in (4.46) in a matrix notation have the form

∑

m′Ê0

Hmm′h(1)
em′ =λ(1)

u 3nzmeδm0 , h(1)
e0 = 0 (4.48)

which gives
∑

m′Ê1

H (0)
e0,em′h

(1)
em′ =λ(1)

u 3nzme ,
∑

m′Ê1

Hmm′h(1)
em′ = 0 (m Ê 1). (4.49)

The second equation here has only a trivial solution, therefore, formulas (4.46), (4.47) lead to the expres-

sions

B (1)
e

(

βεep

)

= 0, λ(1)
u = 0. (4.50)

The third and the fourth relations in (4.46) with account for expressions (4.45) obtained in the one-

polynomial approximation give

B (2)
i

(βεip ) =−zβσ2. (4.51)

According to (3.12), this expression corresponds to the Landau approximation.

4.2.4. Calculation of B
(2)
e (x), B

(3)

i
(x), λ

(2)
u from equations of the order σ2

In the second order inσ, equations (3.18) and additional conditions (3.19) with account for the expres-

sions for K̂ab ps in the appendix and (4.36) give equations for the quantities B (2)
e (βεep ), λ(2)

u , B (3)
i

(βεip )

λ(2)
u ps B (0)

e (βεep )+λ(0)
u psB (2)

e (βεep ) = (K̂eeps )(2)B (0)
e (βεep )+ (K̂eeps)(0)B (2)

e (βεep )+ (K̂eips)(0)B (2)
i

(βεip ),

〈B (2)
e (βεep )εep〉e = 0;

λ(0)
u ps B (3)

i
(βεip ) = (K̂iips)(0)B (2)

i
(βεip ), 〈B (3)

i
(βεip )εip〉i = 0. (4.52)

The third relation here with the explicit expression for (K̂iips)(0) shows that

B (3)
i

(βεip ) = 0. (4.53)

We seek the solution of the first equation in (4.52) as a Sonine polynomial series

B (2)
e (βεep ) =

∑

mÊ0

h(2)
emS3/2

m (βεep ). (4.54)

The first and the second equations in (4.52) in a matrix form with the notation (4.43) are given by

∑

m′Ê0

Hmm′h(2)
em′ =λ(2)

u 3nzmeδm0 + zβσ2H (0)
em,i0

−βH (2)
em,e0, h(2)

e0 = 0 (4.55)

which leads to the relations

∑

m′Ê1

H (0)
e0,em′h

(2)
em′ =λ(2)

u 3nzme+ zβσ2H (0)
e0,i0

−βH (2)
e0,e0,

∑

m′Ê1

Hmm′h(2)
em′ = zβσ2H (0)

em,i0
−βH (2)

em,e0 (m Ê 1). (4.56)

The second relation here is a set of equations for the coefficients h(2)
em , the first equation allows one to

calculate λ(2)
u . In the one-polynomial approximation, they lead to the expressions for B (2)

e (βεep )

B (2)
e (βεep ) =−

3z(2z −1)

3z +4
p

2
β

(

5/2−βεep

)

σ2, (4.57)

and λ(2)
u

λ(2)
u =

1

2
z2(2z −1)σ2

Λ−
9

2

z3(2z −1)

3z +25/2
σ2

Λ. (4.58)
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4.2.5. Calculation of B
(3)
e (x), B

(4)

i
(x), λ

(3)
u from equations of the order σ3

In the third order in σ, equations (3.18) and additional conditions (3.19) with account for the explicit

expressions for K̂ab ps in the appendix and (4.36) give the equations for the quantities B (3)
e (βεep ), λ(3)

u ,

B (4)
i

(βεip )

λ(3)
u psB (0)

e (βεep )+λ(0)
u ps B (3)

e (βεep ) = (K̂eeps)(0)B (3)
e (βεep ), 〈B (3)

e (βεep )εep〉e = 0;

λ(0)
u ps B (4)

i
(βεip )+λ(2)

u psB (2)
i

(βεip ) = (K̂iips )(1)B (2)
i

(βεip )+ (K̂ieps )(3)B (0)
e (βεep )+ (K̂ieps )(1)B (2)

e (βεep ),

〈B (4)
i

(βεip )εip〉i = 0. (4.59)

By analogy with the calculation of B (1)
e (βεep ), λ(1)

u , the first equation here gives

B (3)
e

(

βεep

)

= 0, λ(3)
u = 0. (4.60)

The second equation in (4.59) with account for the above calculated quantities in the one-polynomial

approximation gives

B (4)
i

(

βεip
)

=−
3

5
zβ

(

5/2−βεip
)

σ4. (4.61)

4.2.6. The velocity relaxation: results

Finally, the above-described procedure of the solution of the equations in (3.18), (3.19) which are

devoted to the velocity relaxation leads to the formulas

Be(βεep ) =β−
3z(2z −1)

3z +4
p

2
β

(

5/2−βεep

)

σ2 +O(σ3),

Bi(βεip ) =−zβσ2 −
3

5
zβ

(

5/2−βεip
)

σ4 +O(σ5),

λu = z2
Λ

[

1+
1

2
(2z −1)σ2 −

9

2

z(2z −1)

3z +25/2
σ2 +O

(

σ3
)

]

= z2
Λ

[

1+ (2z −1)
23/2 −3z

3z +25/2
σ2 +O

(

σ3
)

]

. (4.62)

This procedure can be conducted for a higher order of the developed perturbation theory in σ.

The functions B (0)
e

(

βεep

)

and B (2)
i

(

βεip
)

given by (4.45), (4.51) were calculated in the one-polynomial

approximation from integral equations (3.18). They coincide with the ones that follow from the Landau

approximation (3.12). Our theory gives corrections to these functions of the orderσ2 andσ4, respectively.

These corrections are calculated in the one-polynomial approximation. In the principal order in σ, the

expression for λu (4.45) coincides with the result [13] obtained in the Landau approximation. Our theory

gives a correction to this result of the order σ2. The first term in the contribution (4.58) to the velocity

relaxation rate λ(2)
u [the second term in (4.62)] can be obtained in the Landau approximation by an addi-

tional expansion in σ of the Landau collision integral, the second term [the third term in (4.62)] is due to

the account for our correction B (2)
e

(

βεep

)

of the order σ2 to B (0)
e

(

βεep

)

.

5. Conclusion

The relaxation of the temperatures and velocities of the components of a quasi-equilibrium two-

component homogeneous fully ionized plasma described by the Landau kinetic equation is investigated.

The Chapman-Enskog method is generalized to take into account the kinetic modes of the system. The

generalization was made on the basis of the idea of Bogoliubov functional hypothesis.

In the approximation of a small difference of the component temperatures and velocities it is shown

that relaxation really exists (the relaxation rates are positive). This proof is based on the arguments that

are valid for an arbitrary two-component system because they rely on the general properties of kinetic

equations.
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The integral equations for the functions Aa(βεap ) describing the temperature kinetic mode of the

system are solved approximately in a σ = (me/mi)
1/2 perturbation theory (i.e., in the small electron-to-

ion mass ratio) up to the fourth order in σ. The equations of each order are solved with the help of a

truncated expansion in the Sonine polynomials.

It is shown that the equations for the zero order in σ contributions A(0)
a (βεap ) are exactly solvable

and A(0)
a (βεap ) coincide with the distribution functions of the Landau theory [1]. The developed theory

gives the main corrections A(2)
e (βεep ), A(3)

i
(βεip ) of the orders σ2 and σ3 to the functions A(0)

a (βεap ).

The corrections are calculated in the one-polynomial approximation. The temperature relaxation rate

λT is found. The main contribution λ(2)
T

to λT coincides with the Landau result. The developed theory

corrects the σ4 term λ(4)
T

of the Spitzer result for λT due to the account for our correction A(2)
e (βεep ) to

the function A(0)
e (βεep ). The Spitzer contribution toλ(4)

T
is related to the Landau functions A(0)

a (βεap ) with

an additional expansion in σ-powers of the Landau collision integral.

The integral equations for the functions Ba (βεap ) describing the velocity kinetic mode of the system

are solved approximately in aσ perturbation theory. Themain inσ contributions B (0)
e (βεep ), B (2)

i
(βεip ) to

Ba (βεap ) are calculated in the one-polynomial approximation. They coincide with the results of the the-

ory [13] based on the Landau approximation. The developed theory gives themain corrections B (2)
e (βεep ),

B (4)
i

(βεip ) to B (0)
e (βεep ), B (2)

i
(βεip ), respectively. The corrections are calculated in the one-polynomial

approximation. The velocity relaxation rate λu is obtained. The principal order in σ contribution λ(0)
u

calculated in the one-polynomial approximation coincides with the result of the theory [13] based on

the Landau approximation. The developed theory gives the correction λ(2)
u of the order σ2 to this result

calculated in the one-polynomial approximation too.

The obtained results show that in the hydrodynamic theory of the system, the violation of local equi-

librium in the presence of relaxation processes should be taken into account.

A. The integral brackets and the linearized collision operator

The integral bracket {gp ,hp }ab for arbitrary functions gp , hp is defined by the formula

{gp ,hp }ab =−
∫

d3pd3p ′Mab (p, p ′)wbp′ gp hp′ , (A.1)

where the kernel Mab(p, p ′) of this form is given by the linearized Landau collision integral (3.17). To

simplify the calculations, it is convenient to introduce the linearized collision operator K̂ab

K̂abhp =
∫

d3p ′Kab(p, p ′)hp′ , wap Kab(p, p ′) ≡−Mab(p, p ′)wbp′ (A.2)

which allows one to rewrite the form (A.1) as

{gp ,hp }ab = 〈gp K̂abhp 〉a

[see (3.10)]. An explicit expression for the operator K̂ab is given by the formula

K̂abhp = 2πe2
a L w−1

ap

∂

∂pn

∑

c
e2

c

∫

d3p ′
(

δcb

∂hp′

∂p ′
l

−δab

∂hp

∂pl

)

Dnl

(

p

ma
−

p ′

mc

)

wap wcp′ (A.3)

following from the Landau collision integral (2.2).

Bilinear form (A.1) has important properties

∑

a

{εap , gp }ab = 0,
∑

a

{pn , gp }ab = 0, {1, gp }ab = 0; (A.4)

∑

b

{gp ,εbp }ab = 0,
∑

b

{gp , pn}ab = 0, {gp ,1}ab = 0. (A.5)

Formulas (A.4) follow from the relations (2.7), (2.8); formulas (A.5) are true because the Maxwell distri-

bution is an equilibrium distribution: Iap ( f )
∣

∣

fbp=wb,p−mbυ(T )
= 0.
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An important tool of our investigation is the total integral bracket defined by the formula

{gp ,hp } ≡
∑

a,b

{gp ,hp }ab , (A.6)

where the forms {gp ,hp }ab are given by relation (A.1). A simple calculation leads to the relation

{gp ,hp } =πL
∑

a,b

e2
ae2

b

∫

d3p d3p ′Dnl

(

p

ma
−

p ′

mb

)

wap wbp′

(

∂gp

∂pn
−
∂gp′

∂p ′
n

)

(

∂hp

∂pl
−
∂hp′

∂p ′
l

)

(A.7)

which shows that this form has the properties

{gp , gp } Ê 0, {gp ,hp } = {hp , gp }. (A.8)

B. Explicit expressions for the linearized collision operator in the

σ-perturbation theory

The explicit expressions for the functions K̂ab Ab

(

βεbp

)

are

∑

b

K̂eb Ab

(

βεbp

)

= 2πe4meLw−1
ep

∂

∂pn

∫

d3p ′wep wep′Dnl (p −p ′)

[

∂Ae

(

βεep′
)

∂p ′
l

−
∂Ae

(

βεep

)

∂pl

]

+2πz2e4meLw−1
ep

∂

∂pn

∫

d3p ′wep wip′Dnl (p −p ′σ2)

[

∂Ai

(

βεip′
)

∂p ′
l

−
∂Ae

(

βεep

)

∂pl

]

,

∑

b

K̂ib Ab

(

βεbp

)

= 2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′Dnl (p ′−pσ2)

[

∂Ae

(

βεep′
)

∂p ′
l

−
∂Ai

(

βεip
)

∂pl

]

+2πz4e4miLw−1
ip

∂

∂pn

∫

d3p ′wip wip′Dnl (p −p ′)

[

∂Ai

(

βεip′
)

∂p ′
l

−
∂Ai

(

βεip
)

∂pl

]

. (B.1)

These expressions show that expansion in the σ-powers of the operators K̂ab acting on the even func-

tions has the structure

K̂ee = K̂ (0)
ee + K̂ (2)

ee +O(σ4), K̂
ei
= K̂ (2)

ei
+ K̂ (4)

ei
+O(σ6),

K̂
ie
= K̂ (2)

ie
+ K̂ (4)

ie
+O(σ6), K̂

ii
= K̂ (1)

ii
+ K̂ (2)

ii
+O(σ4). (B.2)

The explicit expressions for the operators entering here are

K̂ (0)
ee gp = 2πe4meLw−1

ep

∂

∂pn

∫

d3p ′wep wep′Dnl (p −p ′)

(

∂gp′

∂p ′
l

−
∂gp

∂pl

)

−2πz2e4meLnw−1
ep

∂

∂pn
wep Dnl (p)

∂gp

∂pl
, (B.3)

K̂ (1)
ii

gp = 2πz4e4miLw−1
ip

∂

∂pn

∫

d3p ′wip wip′Dnl (p −p ′)

(

∂gp′

∂p ′
l

−
∂gp

∂pl

)

, (B.4)

K̂ (2)
ie

gp =−2πz2e4meσ
2Lw−1

ip

∂

∂pn

∫

d3p ′wip wep′ ps
∂Dnl (p ′)

∂p ′
s

∂gp′

∂p ′
l

, (B.5)

K̂ (2)
ei

gp =−2πz2e4meσ
2Lw−1

ep

∂

∂pn

∫

d3p ′wep wip′ p ′
s

∂Dnl (p)

∂ps

∂gp′

∂p ′
l

, (B.6)

K̂ (2)
ee gp =−2πz2e4meσ

4Lw−1
ep

∂

∂pn

∫

d3p ′wep wip′ p ′
s p ′

r

∂2Dnl (p)

∂ps∂pr

∂gp

∂pl

=−2πz2e4nL Tσ2m2
ew−1

ep

∂

∂pn
wep

∂2Dnl (p)

∂ps∂ps

∂gp

∂pl
, (B.7)

K̂ (2)
ii

gp =−2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′Dnl (p ′)
∂gp

∂pl
=−z3TmeΛw−1

ip

∂

∂pn
wip

∂gp

∂pn
. (B.8)
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The explicit expressions for the functions K̂ab psBb

(

βεbp

)

are

∑

b

K̂eb ps Bb

(

βεbp

)

= 2πe4meLw−1
ep

∂

∂pn

∫

d3p ′wep wep′Dnl (p −p ′)

[

∂p ′
s Be

(

βεep′
)

∂p ′
l

−
∂ps Be

(

βεep

)

∂pl

]

+2πz2e4meLw−1
ep

∂

∂pn

∫

d3p ′wep wip′Dnl (p −p ′σ2)

[

∂p ′
sBi

(

βεip′
)

∂p ′
l

−
∂ps Be

(

βεep

)

∂pl

]

,

∑

b

K̂ib psBb

(

βεbp

)

= 2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′Dnl (p ′−pσ2)

[

∂p ′
sBe

(

βεep′
)

∂p ′
l

−
∂ps Bi

(

βεip
)

∂pl

]

+2πz4e4miLw−1
ip

∂

∂pn

∫

d3p ′wip wip′Dnl (p −p ′)

[

∂p ′
sBi

(

βεi p′
)

∂p ′
l

−
∂psBi

(

βεip
)

∂pl

]

. (B.9)

These expressions show that expansion in the σ-powers of the operators K̂ab ps acting on the even func-

tions has the form

K̂eeps = (K̂eeps)(0) + (K̂eeps)(2) +O(σ4), K̂
ei

ps = (K̂eips )(0) + (K̂eips )(2) +O(σ4),

K̂
ie

ps = (K̂ieps )(1) + (K̂ieps )(3) +O(σ5), K̂
ii

ps = (K̂iips )(0) + (K̂iips)(1) +O(σ3). (B.10)

The explicit expressions for the operators K̂ab ps are as follows:

(K̂eeps)(0)gp = 2πe4meLw−1
ep

∂

∂pn

∫

d3p ′wep wep′Dnl (p −p ′)

(

∂p ′
s gp′

∂p ′
l

−
∂ps gp

∂pl

)

−2πnz2e4meLw−1
ep

∂

∂pn
wep Dnl (p)

∂ps gp

∂pl
, (B.11)

(K̂ieps)(1)gp = 2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′Dnl (p ′)
∂p ′

s gp′

∂p ′
l

, (B.12)

(K̂eeps)(2)gp =−2πz2e4Lmew−1
ep

∂

∂pn

∫

d3p ′wep wip′

(

Dnl (p −p ′σ2)
)(2) ∂ps gp

∂pl

=−2πz2e4m2
enTσ2Lw−1

ep

∂

∂pn
wep

∂2Dnl (p)

∂pm∂pm

∂ps gp

∂pl
, (B.13)

(K̂iips)(0)gp = 2πz4e4miLw−1
ip

∂

∂pn

∫

d3p ′wip wip′Dnl (p −p ′)

(

∂p ′
s gp′

∂p ′
l

−
∂ps gp

∂pl

)

, (B.14)

(K̂eips)(0)gp = 2πz2e4meLw−1
ep

∂

∂pn

∫

d3p ′wep wip′Dnl (p)
∂p ′

s gp′

∂p ′
l

, (B.15)

(K̂iips)(1)gp =−2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′Dnl (p ′)
∂ps gp

∂pl

=−z3
ΛmeT w−1

ip

∂

∂pn
wip

∂ps gp

∂pl
, (B.16)

(K̂ieps)(3)gp = 2πz2e4meLw−1
ip

∂

∂pn

∫

d3p ′wip wep′

(

Dnl (p ′−pσ2)
)(2) ∂p ′

s gp′

∂p ′
l

. (B.17)

The operators K̂aa take into account the collisions between the particles of the species a both with the

particles of the species a and the particles of the species b; the operators K̂ab take into account only the

collisions between the particles of the species a with the particles of the species b. The leading order in

σ of K̂ee contains both the electron-electron and electron-ion collisions, but the leading order in σ of K̂ii

contains only the ion-ion collisions — this fact is in good accordance with the discussion of the problem

by Braginsky [8, 9].
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До релаксацiйних явищ у двокомпонентнiй плазмi

В.М. Горєв, О.Й. Соколовський, З.Ю. Челбаєвський

Днiпропетровський нацiональний унiверситет iменi Олеся Гончара,
пр. Гагарiна, 72, 49010 Днiпропетровськ, Україна

Релаксацiя температур та швидкостей компонент квазiрiвноважної двокомпонентної повнiстю iонiзова-
ної просторово-однорiдної плазми вивчається на основi узагальненого методу Чемпена-Енскога, застосо-
ваного до кiнетичного рiвняння Ландау. Узагальнення базується на iдеї функцiональної гiпотези Боголю-
бова з метою врахувати кiнетичнi моди системи. Показано, що в наближеннi малої рiзницi швидкостей
та температур компонент системи релаксацiя дiйсно iснує (швидкостi релаксацiї додатнi). Доведення ба-
зується на аргументах, якi придатнi для довiльної двокомпонентної системи. Рiвняння, якi описують тем-
пературну та швидкiсну кiнетичну моди системи, дослiджуються у теорiї збурень за квадратним коренем
малого вiдношення мас електрона та iона. Рiвняння будь-якого порядку в цiй теорiї збурень розв’язу-
ються методом розвинення за полiномами Сонiна. Отримано корекцiї до вiдомих результатiв Ландау,
стосовних функцiй розподiлу компонент плазми та швидкостей релаксацiї. Гiдродинамiчна теорiя, яка
базується на цих результатах, повинна враховувати порушення локальної рiвноваги при наявностi рела-
ксацiйних процесiв.

Ключовi слова: функцiя розподiлу, метод Чепмена-Енскога, швидкiсть релаксацiї, полiноми Сонiна,
кiнетичне рiвняння, кiнетичнi моди, повнiстю iонiзована плазма
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