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We analyze the resistance between two nodes in a cobweb network of resistors. Based on an exact expression,
we derive the asymptotic expansions for the resistance between the center node and a node on the boundary of
the M x N cobweb network with resistors r and s in the two spatial directions. All coefficients in this expansion
are expressed through analytical functions.
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1. Introduction

The classic problem in electrical circuit theory, first studied by Kirchhoff in 1847, is the calculation of
the resistance between two arbitrary nodes in a resistor network [1]. Besides its long-standing importance
in electric circuit theory, the computation of resistances is also connected to a wide range of problems
as diverse as random walks [2, 3], first-passage processes [4], lattice Green’s functions [5] and classical
transport in disorder media [6-8].

In 2004 Wu [9] derived a closed-form expression for the two-point resistance in terms of the eigen-
values and eigenvectors of the Laplacian matrix associated with the network. Quite recently, Izmailian,
Kenna and Wu [10] revisited the problem of two-point resistance and derived a new and simpler expres-
sion for the resistance between two arbitrary nodes for finite networks with resistors r and s in the two
spatial directions. The new expression was then applied to the cobweb resistor network [10].

Essam and Wu [11] used one of the results [9] to derive the asymptotic expansion for the corner-to-
corner resistance R(r, s) on an M x N rectangular resistor network under free boundary conditions. This
was extended by Izmailian and Huang [12] to other boundary conditions. In recent decades, the finite-
size scaling and finite-size corrections in finite critical systems and their boundary effects have attracted
much attention [11-30]. Of particular importance in such studies are exact results wherein the analysis
can be carried out without numerical errors.

In this paper we derive the exact asymptotic expansion for the resistance between the central node
and a node on the boundary of the cobweb network. We show that this expansion can be written in the
form

o0 h,
%R(r,s) = c(h)lns+c0(h,§)+z%pa, (1)
p=1

with h =s/r, S=(M+1/2)N and ¢ = (M +1/2)/N. Note that, instead of the actual length M, we have
used effective length (M +1/2). All coefficients in this expansion [c(h), co(h, ), c2p(h,§)] are expressed
through analytical functions. The computation of the asymptotic expansion of the resistance between two
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maximally separated nodes of a rectangular resistor network has been of interest for some time, because
its value provides a lower bound to the resistance of compact percolation clusters in the Domany-Kinzel
model of a directed percolation [31].

The organization of this paper is as follows. Based on the exact expression for the resistance between
two arbitrary nodes for a finite cobweb resistor network obtained in [10] we express the resistance
between the central node and a node on the boundary of the network in terms of Ga,ﬁ(h, M, N) with
(a, B) = (0,1/2) (section 2). We then extend the algorithm of Ivashkevich, Izmailian and Hu [13] to derive
exact asymptotic expansions for the resistance between the central node and a node on the boundary of
the cobweb resistor network and write down the expansion coefficients (section 3). Finally, we discuss
our results in section 4.

2. Two-dimensional resistor networks

The resistor network can be regarded as a graph consisting of T nodes and let R; ; = R;; be the
resistance of the resistor connecting the nodes i and j. Denote the nonzero eigenvalues and eigenvectors
of the Laplacian of that network by A; and ¥; = (vi1,%¥;2,...,W;T), respectively. Then, the resistance
between the nodes i and j can be written as [9]

T a2
Ry =y Waval

2.1

k=2 Ak @
Let us consider the cobweb network. The cobweb lattice £ qp is an M x N rectangular lattice with peri-
odic boundary conditions in one direction and nodes on one of the two boundaries in the other direction
connected to an external common node. Therefore, there is a total of M N + 1 nodes. The example of an
M =3, N = 8 cobweb with resistors s and r in the two directions is shown in figure 1. Topologically Z.op
is of the form of a wheel consisting of N spokes and M concentric circles. We use the term Dirichlet-
Neumann to describe the boundary conditions along the innermost apex and outermost arc. There has
been a considerable recent interest in studying the resistance in a cobweb network (see for example
[10,132,133D).

Figure 1. An M x N cobweb network with M =3 and N = 8. Bonds in the radial and circular directions
comprise resistors s and r. The center point is denoted by O, A denotes any point on the boundary of the
cobweb network.

The closed-form expression for the resistance R(r;,r2) between two arbitrary nodes r; = (x1, y1) and
r2 = (X2, y2) for the cobweb network was obtained in [10]. In what follows, we will show that the resis-
tance R(O, A) between the central node O = (0,0) and a node on the boundary of the network A = (x, M)
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can be expressed in terms of Go 1/2(4,./) only,

R%P(0,4) = —g + 4£;"G0,1/2(2M+ 1,N), (2.2)

where S = (M +1/2)N and Gq (4, N) is given by

Go p(M, N) =M ReJ:Z_Olf(n n;Va) coth [le (n n;Va) +inﬁ] , (2.3)

for (a, B) # (0,0). The function w(y) is given by:
w(y) = arcsinh Vhsin y 2.4)

and the function f(y) is given by

\/1+ hsin?y
fo = ey (2.5)

2.1. Cobweb network

The resistance between the central node O = (0,0) and the other node C = (x, y) of the cobweb net-
worKk is given by (see second line of equation (33) of [10])

M-1N-1

2
Cypm)
R (0,0) = = . y=12,..,M, 2.6
©.0 N(2M+ 1) mZO nzo h(1-cos20,) + (1 —cos2¢;) y @6

where h = s/r and
0 :ﬂ :n(m+1/2) @.7)
" Y VORI ‘
Note that the result is independent of the position x as it should be.
In the special case of the resistance between the center O and a point A = {x, N} on the outer boundary

of the cobweb network, we use y = M and obtain from

M-1N-1 2
s cos
RCOb(O, A) — 3 (pm > , (28)
N@2M+1) ;20 n=o sin® @, + hsin® 6,
where use has been made of the identity
Sin2M @) = (-1)" cos@,, (2.9)
which is a consequence of the fact 2M@, + @ = (m+3) 7
Equation (Z.8) can be transformed as follows:
M-1N-1 2
s 1+ hsin“ 0
R0,4) = ——— Y Y |-1+—; —— |, (2.10)
N@M+1) =0 =0 sin“ @, + hsin“ 0,
sM s M-IN-1 14 psin?6,
_ + _ 2.11)

2M+1 NQ@CM+1) ;= /= sin? @, + hsin? 8,
We can extend the summation over m in equation (2.11) from M — 1 up to 2M and obtain the expression

cob s 2M N-1 14 psin26,
R®°®(0,4) = S (2.12)
2 2N(2M+l)m 0 =0 Sin% @ + hsin?0,,

The sum over m in the equation (2.12) can be carried out using the identity [12]

M1 am+4H]™" coth L« w(®,) +in/2]
hsin?6, +sin® ——2- | =24 1 , 2.13
S Fp TSI M sinh2w(6,) ( )

m=0
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with .4 =2M +1 and w(x) given by equation 2.4). It is easy to see that
1+ hsin? 0, = cosh? w(@y). (2.14)

Plugging equations (ZI3) and (ZI4) back in equation (ZI2) we obtain that R°°° (O, A) can be written
in the form
s s N=lcoth[CM+ 1) w(6,) +in/2]

R°P0,4) = -2+ . 2.15
©4 22N ,;0 tanhw(6y) @19

Using identity
VI sin® n

V' 1+ hsin?0, ,

equation can be finally written in the form given by equation (2.2).

tanhw(0,) = (2.16)

3. Asymptotic expansion

In section 2 we have shown that the resistance between the central node and a node on the bound-
ary of the cobweb resistor network can be expressed in terms of the function Gy,1/2(x, 4,4 only, [see
equations (2.2)]. Using the method proposed in [13], Izmailian and Huang [12] derived the asymptotic ex-
pansion of G (4, /) in terms of the so-called Kronecker double series [34], which are directly related
to elliptic 6 functions. We next need the asymptotic expansion of G 1/2(#,./), which can be found in
Appendix[Al

After reaching this point, one can easily write down all the terms of the exact asymptotic expan-
sion for the resistance between the central node and a node on the boundary of the cobweb network
[R°°P(0, A)] using equations and (A.JD. We have found that the exact asymptotic expansion of the
R (0, A) can be written as equation (@.1D.

3.1. Asymptotic expansion for the resistance between the central node and a node on
the boundary of the cobweb network

For the cobweb network we obtain

1 1 8
;RCOb(O,A) - = |In§+2In - +2Cs —1-Ing(1+ 1) +2 vharctan Vi —41n6, (21\/%5)]

2n
1 ] 2\ P Q
-—— ”—'5) LK) (2iVRe). (3.1)
2nvVh s\ S ) p@p)t 7P
Thus, the coefficients ¢z (h,§) (p = 1,2,...) in the expansion are explicitly given by
wPlep 0,1/2
Cop(h, &) = —————Qy, KOV2 (2i VRE), (3.2)
2 2ppVR TP ( )

where the differential operators Q, are given by equation and KZOI';/ 2(2i V'hé) is Kronecker’s double

series which can all be expressed in terms of the elliptic 0 (2i \/ﬁf ) (k =2,3,4) functions only.
Here, we list the first few coefficients in the expansion given by equation (.1):

1
ch) = pwyL (3.3)
T
1 8
co(h&) = -~ ZIn;+2CE—1—1n§(1+h)+2\/ﬁarctan\/ﬁ—4ln62 ) (3.4)
Ty 0
e (hé) = 288h{(1+3h)(9§+9§)+2ro(1+h) n9§93+2(9§+93)6—mln92 }
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To simplify the notation we have used the short hand
O =0 (iTo), k=2,3,4, (3.5)

where 7 = 2¢ Vh.
We have also used the following relations between derivatives of the elliptic functions:

0 b4 0 0 b4 0
—Inf3==07+—1nb d —InfOs==60%+—1nb,.
nos 1 4+a‘[0 nos an aTO nos 1 3+a‘[0 nos

Note that elliptic functions 6,,03,0,4 can be expressed through the complete elliptic integral of the first
kind K = K (k) and second kind E = E(k) as follows:

/
0, = /2kK(k), 05 = /2K(k), 0, = [2K'K (k) (3.6)
T T T

where
/2 dx
Kk = f —_, 3.7)
0 1-k?sin? x
/2
E(k) = f V1-k2?sin® xdx. (3.8)
0

With the help of the identities

] 1
a—TOlnezz—EH%E, and

0E n? T
— = —0503 - =04E
R
one can express all derivatives of the elliptic functions in terms of the elliptic functions 6,, 603,64 and the
complete elliptic integral of the second kind E = E(k).

Thus, we have obtained explicit analytic formulas for all corrections to scaling terms cz,(h,¢) in the
form of elliptic functions. For the case ¢ =1 and h = 1, we have the following results:

1 1 c
—R(0,A)= ~InN+cp+ —= +... (3.9)
S T N2

with ¢p = 0.9286495235004523 ... and ¢ = 0.3572873939981 ... .

4. Discussion

In the present paper, we study the two-point resistor problem on the cobweb network. Using the
exact expression for the resistance between two arbitrary nodes for a finite cobweb network obtained
in [10] and the ITH’s algorithm [13], we derive the exact asymptotic expansion of the resistance between
the central node and a node on the boundary of the cobweb resistor networks. All coefficients in this
expansion are expressed through analytical functions.
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A. Asymptotic expansion of Gy ;/2(2M + 1, N)

The asymptotic expansion of Ga,ﬁ(dﬂ , &) for (a, B) # (0,0) has been obtained in [12]. Here, we will
reproduce the result of the paper [12] for the case (a,f) = (0,1/2), 4 =2M +1 and A = N. After little
algebra, the asymptotic expansion of Gg 1/2(2M + 1, N) can be written as follows:

4S8

1. S
Go,122M+1,N) = -

1
ElnE +Cg +In% - 51n(1+ h) + Vharctan \/ﬁ—21n|62(21<f \/ﬁ)”

—2n5§(”—25)p_1 2p ReKO’l/z(Zif\/ﬁ) A1)
=il S pep)t P ’ ’

where S = (M +1/2)N, { = (M +1/2)/N, Cg is the Euler constant, 8, (7) is elliptic theta function and

KZO plﬁ (1) is Kronecker’s double series [34].

The differential operators Qo that have appeared here can be expressed via coefficients wzp, = €2 +
A2p % as

Qy = w,
Q4 = w4+3035, (A.2)

where 1., and x», are the coefficients in the Taylor expansion of w(y), given by equation 2.4) and f(y)
given by equation (2.5), respectively

w(y) = A+§Aﬂ 2p A3)
y)=y = p) y .
with A= Vh, Ay = =3 Vh(L+h), Ay = £ Vh(1 +10h+9k?), etc., and
1 > K2p o
»=—11+ P, (A4)
fly " p; e’
with x5 = —% —h, k4= —1—75 +2h + 3H2, etc. Note that function f(y) can be represented as
1 o £2p o
(y) = — ex Pe, (A.5)
Tm=y p{,; epn” }

and the coefficients £3;, and k3, are related to each other through the relation between moments and
cumulants

K2 = &2,

Kyg E4+ 38% ,

The Kronecker’s double series Kg";/ 2

Equations for Kg’” 2 () with p = 2,3,4,5 and other useful relations for elliptic 8-functions and Kronecker’s
double series can be found in [13-16].

(7) can all be expressed in terms of the elliptic 6(7) functions only.
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TOUHUIA ACMMNTOTUYHNIA PO3KANaAA 4SS ONOPY MidK
LeHTPa/IbHUM BY3/IOM i By3/I0M Ha rpaHuULi NaByTUHHOI MepeXi

H. IamainaH 2 p. Kenna?

L €peBaHCbKUA Gi3NYHUIA IHCTUTYT, M. EpeBaH, BipmeHis
2 LleHTp npuKknagHmux MateMaTUUHNUX AOCNiAXKeHb, yHiBepcuTeT M. KoBeHTpi, M. KoBeHTpi, AHris

Mwu aHaniyemo onip MixXX ABOMa By3naMun B NaBYTUHHI Mepexi pe3uncTopiB. Ha oCHOBI TOYHOro BMpasy My
BMBOAMMO aCUMNTOTWUYHI PO3KNagn ANS ONOPY MiX LeHTPaAbHNM BY3/0M i BY3/IOM Ha rpaHuLi NaByTWHHOI
mepexi M x N 3 peauctopamu r i s y ABOX NPOCTOPOBUX HanpsiMkax. Bci koediLieHTn B LiboMy po3knagi Brpa-
XaoTbCA Yepes aHaNniTUUHI GyHKLT.

KntouoBi cioBa: pesucTopHa Mepexa, aCuMnTOTUYHWUIA PO3KAa4

33008-8



	Introduction
	Two-dimensional resistor networks
	Cobweb network 

	Asymptotic expansion
	Asymptotic expansion for the resistance between the central node and a node on the boundary of the cobweb network

	Discussion
	Acknowledgements
	Asymptotic expansion of G0,1/2(2M+1,N)

