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A dependence of a relaxation rate on the shape of the demagnetized region for a longitudinal evolution of total
magnetization to its equilibrium value following the ultrafast demagnetization is demonstrated. This shape-
dependence is caused by a motion of the wave front inside the demagnetized region. The contribution of the
wave front for spherically symmetric shape of the demagnetized region is up to 3 times and for cylindrically
symmetric shape up to 2 times stronger than for one dimensional demagnetized region. This effect can be
observed after the demagnetization by a tightly focused femtosecond laser pulse.
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1. Introduction

Recently, in the works where for a tightly focused (up to 1 um) femtosecond laser pulse it was possible
to observe the real picture of the spatial-temporal evolution under the action of a solitary pulse, the
authors reported on the development of strongly inhomogeneous states. Along with the propagation of
spin waves far away from the light spot [1} 2], the authors observed the formation of domains [3] and
ring structures localized near the spot [2]. Strongly inhomogeneous distributions of the magnetization
appear in the framework of superdiffusive mechanism of action of the laser pulse on magnetic metals
[4} 5] and the existence of these distributions is established for magnetic heterostructures [6] [7]. Thus,
the analysis of the picosecond, longitudinal evolution of inhomogeneous, nonequilibrium distributions
of magnetization has become increasingly important.

The analysis of such states can be performed using the Landau-Lifshitz equation with a relaxation
term proposed by Bar’yakhtar [8-10], also referred to as LLBar equations [11]. LLBar equations were
derived using general principles (Onsager’s relations, symmetry of the exchange interaction), and they
have no alternatives for the study of the highly non-linear, nonequilibrium, non-uniform states with
strong reduction of magnetization mentioned above. LLBar equations are well suited for a description
of non-uniform states, such as magnetic solitons [12}[13] and Bloch points [14], and give the explanation
of the reversal effects [15| [16]. These equations provide an explanation [7] of recent experiments [6] on
magnetization recovery in laser-pumped Ni-Ru-Fe heterostructures, where the importance of the nonlo-
cal character of the magnetization recovery is established [7].

A longitudinal relaxation of a total magnetization of ferromagnets following the ultrafast demagne-
tization within one dimensional (1d) model is determined by two effects: a homogeneous evolution of
a magnetization inside the demagnetized region and the motion of the wave front from the outside to
within the demagnetized region [17]. For a sufficiently large diameter of the demagnetized region, a ho-
mogeneous evolution dominates. However, for a smaller demagnetized region, a relative contribution of
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the wave front increases and for tightly focused femtosecond laser pulse the motion of the wave front
can significantly enhance the relaxation [17,[18].

In this paper, the effect of the size and shape of the demagnetized region on the relaxation rate of the
total magnetization is analyzed. In order to demonstrate this effect, we consider the nonlinear, longitu-
dinal evolution of the total magnetization following the ultrafast demagnetization for two limiting cases,
namely, for the demagnetized region of cylindrical (CS) and spherical (SS) symmetries. Then, we compare
these results with the results found within 1d model.

A strongly non-equilibrium state created by the laser pulse plays the role of the initial condition for
LLBar equations [7]. For our case, since the motion of the wave front is associated with the change in the
total magnetization of the ferromagnet, and the size of a transition region between demagnetized and
non-perturbed regions is much larger than nanometers, the exchange (nonlocal) term, which retains the
total magnetization of a sample, can be disregarded (compare with [7,[15]) and the main contribution to
the equations of motion is determined by relativistic processes. Since during the relaxation of magneti-
zation toward an equilibrium value the effective field is parallel to the magnetization, only the modulus
of the magnetization M = |M| enters the equation. Adopting the Landau model for the free energy and
introducing dimensionless variables, the nonlinear diffusion equation (NDE) is derived for the evolution
of M [7,[18] 5

m_ o2 2

3 =V'm+m(l-m?), 1.1)
where m(£,7) = M/M, is a dimensionless magnetization, My is an equilibrium value (temperature-
dependent) of the magnetization of a bulk material, ¢ is a dimensionless radius in cylindrical or spherical
coordinates measured in units of rg = \/TX“ (as we consider cylindrically and spherically symmetric
problems, only ¢ enters the problem), A is an inhomogeneous exchange constant, y| = dM/dH is a longi-
tudinal magnetic susceptibility of a material in the equilibrium state and at zero magnetic field and 7 is a
dimensionless time measured in units of #, = 2y,/yA:Ms, v is the gyromagnetic ratio, A, is a dimension-
less relaxation constant of the relativistic nature, Ms is the saturation magnetization. Simple estimates
for nickel show that the value ry is of the order of a lattice constant, the characteristic time f is of the
order of a few picoseconds and the characteristic velocity ry/f = 0.1 nm/ps = 100 m/s, see for details
[18]. Note that the use of the continuum approximation for distributions with characteristic sizes of the
order of the lattice constant does not lead to qualitative errors, which can be seen from comparison of the
results obtained numerically for discrete models and for their continual counterpart, see, e.g., [19,20]. It
is worth noting that this kind of NDE was first studied in the pioneering work by Kolmogorov, Petrovsky
and Piskunov [21] and by Fisher [22] and stationary diffusive front propagations into unstable state have
been found for this problem.

After the pulse action, the demagnetized region (spot) is formed in a sample with a characteristic
size of the order of a diameter of the laser beam. The value of magnetization is reduced inside the spot,
m = mg < 1, and outside the spot the magnet is non-perturbed, m = 1. We consider two cases, when
the demagnetized region has a cylindrical and spherical symmetries. To model such a situation, NDE is
numerically solved for the following initial conditions

1—m0

1T exp[-4(—Rp)/a)’ .2)

m(&,T=0)=mg

where Ry is the radius of the demagnetized region, a parameter a = (1 — my) (dM/df)71|m=(1+mO)/2 de-
scribes the characteristic width of the transition region in the initial conditions. In the region of the ac-
tion of the laser pulse (¢ < Ry), the magnetization tends to mg and outside this region (¢ > Rg) m (£,7 =0)
tends to its equilibrium value 1.

For a numerical analysis we consider the limiting case, when the laser pulse is focused to a diffraction
limited spot of the order of 1 um [2]. The following values of the parameters (in the dimensionless units)
correspond to the following situation: a radius of the demagnetized region (laser pump) Ry = 1250, the
width of transition region a = 300 and the radius of the sample R = 1850. We consider the evolution
of the initial state for the following minimal values of magnetization in the demagnetized region:
mg = 0.9, 0.5, 1072, 1074, 0. The values mg = 0.5, 0.9 can be realized for a weak intensity of the laser
pulse and correspond to the effective temperature of the spin system lower than the Curie temperature
Tc. The values mgy = 1072, 1074, 0 can be realized for a high power of the laser pulse.

44701-2



Longitudinal evolution of magnetization

2. Cylindrically symmetric initial distribution of magnetization

Figure[T](a) presents the time evolution of the relative change of magnetization per unit length of the
sample My (1)
AMs(r) = Ms(1)-M;5(0)
AMs — Ms (+00) — Ms (0)

calculated in the time domain from 7 =0 to 7 = T = 15 (in the dimensionless units t,), for the above
chosen parameters and for the initial conditions (1.Z). Figure [I](b) demonstrates an example of the cor-
responding evolution of magnetization m (¢, T) on the time for mg = 1072,

Figure [1| (a) shows that the fastest regime of relaxation of the total magnetization to its equilibrium
value is realized for mg = 0.9. The relaxation time of AMs (7)/AMs, as for 1d model [17], decays with a
decrease of m( and takes its minimum value at m( = 0. However, the dependence of AMs (7)/AMs on
time is not linear for my = 0 in CS case. The analysis of the evolution of m (¢, 1) [ﬁgure(b)] demonstrates
that similarly to 1d model [17, (18], the evolution of the total magnetization to its equilibrium value is
determined by two effects: the homogeneous evolution of the magnetization and the motion of the wave
front within the demagnetized region.

Let us derive an approximate analytical formula for the evolution of M5 (7) for CS case, which takes
into account both the motion of the wave front and the homogeneous evolution of the magnetization and
estimate the contribution of the wave front compared to 1d model. Following [17], the evolution of the
wave front can be cast in the form

2.1

m(&, 1) = mp (1) +[1—mo (@) me(§ —&0—-V7,8), (2.2)

where mg (1) does not depend on the coordinate and describes the homogeneous evolution of magnetiza-
tion within the demagnetized region. The second term in the right-hand side of corresponds to the
wave front, which moves within the demagnetized region with an amplitude 1 — my (1) and the velocity
V. The function m; describes the shape of this front; the value of mys tends to 1 if one moves outside the
demagnetized region from the wave front and m; tends to 0 within the demagnetized region. Both V' and
the shape of the wave front depend on the distance from the center of the demagnetized region ¢. How-
ever, this problem can be simplified by the following observation: figure[T](b) shows that the contribution
of the wave front is essential only at the initial stage of the evolution. This means that: (i) one can neglect
the term (1/&)dm/0¢ o 1/(a-¢&) < 1/a? and (1.1) transforms to 1d NDE; (ii) we can suppose that within
the demagnetized region m (¢, 7) = mg (r) < 1 and the terms of the order of m (7) < 1 can be neglected
in this approximation. Then, the shape my coincides with the shape of the wave front at mp = 0 in 1d

1.2
1ol m(1§ , T)
]
0.8 0.75 i
0.6 05 !
0.4 numeric ' Mo = 10°2 :
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0 2 4 6 8 10 12 14 T 0 250 500 750 1000 1250 §

@ (b)

Figure 1. (a) The time evolution of AMsy (t)/AMsy, derived from the numerical solution of NDE for the
above chosen numerical parameters, different values of 7 and for CS initial conditions. Full lines rep-
resent numerical calculations and dashed lines are an approximation with the analytical equation (2.4).
(b) A corresponding to figure |1f (a) evolution of the magnetization m(¢, ) for mg = 1072 on a time do-
main from 7 =0 to 7 = T = 15, taken step-by step after an interval of time 7/10. Dashed lines show the
contributions of the wave front and the homogeneous evolution of magnetization. The arrow indicates a
direction of motion of the wave front.
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NDE and the velocity of the wave front V formed from the initial conditions can be found by equating
the asymptotic of within the demagnetized region and that of the wave front: V = a/4+4/a [23]. For
the chosen numerical parameters V = 75.01. Neglecting dispersion in and integrating this equation,
the dependence of the magnetization on time 1, () within the demagnetized region can be present as
follows [7]:

my
\/m(z] +(1—m3) exp (-21)

Thus, at m (1) < 1 the homogeneous evolution of magnetization leads to a decrease of the amplitude of
the wave front [1 — mg (7)], and the motion of the wave front leads a decrease of the characteristic radius
of the demagnetized region, which is equal to (Ry — V7).

Integrating over the unit length of the cylinder, the estimating formula for the evolution of My (1)
is derived

mo(1) = 2.3)

Ms (1) = M3 (0) + JTRg mo(T)+n[l—-my(T)] 2Ry —VT) VT, 2.4)

where m (1) is defined by (2.3). Equation takes into account both the homogeneous evolution of
magnetization and the motion of the wave front.

Figure|l|(a) shows a good agreement between the analytical equation and the numerical results
even in the regime, at which the magnetization within the demagnetized region m (7) is not small, when
both the shape and the velocity of the wave front depend on m (). The reason here is that for this regime
the contribution of the wave front becomes small.

Let us estimate the relative contribution of the wave front and the homogeneous evolution of magne-
tization for different m for CS case. We present

dMs () _ dME™ (D) dMmat (1)

, 2.5
dr dr dr 23)

where M;Va"e (t) and Mgat (7) are contributions of the wave front and the homogeneous evolution, re-
spectively [these contributions are schematically depicted in figure[T](b) by dashed lines]. Differentiating
with respect to time and comparing the result with (2.5), one can see that

wave flat
T 27 (Ro— V1) [1 = mo (D] V, an
dr
Here, [1 — my ()] is the amplitude of the wave front, (Ry — V1) is the characteristic radius of the demag-
netized region at the moment 7.

Thus, dM;"'ﬁ1Ve (t)/dt takes its maximum value at the initial stage of the evolution. However, further,
the the relaxation rate caused by the wave front decreases with a decrease of both the amplitude and the
length of the wave front.

The relative contribution of the wave front can be defined as ME"aV‘* (t)/AMs at T — +oo, where
Mg"a"e (1) can be found by integrating . Table [1| presents M;"a"e (t)/AMs for different my, for 1d
model [17], CS and SS cases. Table [1| demonstrates that the contribution of the wave front for CS is
stronger than for 1d model (almost two times stronger for not small ). To understand this observa-
tion one should note that the wave front gives the main contribution at the initial stage. Then, estimating
sz""a"e/(AMzdr) at T = 0 (initial stage), we see that this value is two times larger in CS case than that
found within 1d model. With a decrease of g, My"*/AMs increases and takes its maximum value 1 for
mgy=0.

=1 (Ro— VT)? [mo (1) — my (1)*]. (2.6)

Mo 0.5 1072 1074 0
MY/ AMs (1d) 0.05 0.24 0.51 1
MY | A M5 (CS) 0.09 0.41 0.75 1
M3V | AMs (SS) 0.13 0.53 0.85 1

Table 1. The relative contribution of the wave front for 1d, CS and SS cases for the above chosen values of
the parameters.
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To estimate the value of magnetization in the demagnetized region mgg (for CS case), for which
the relaxation rates for the wave front and the homogeneous evolution become comparable, we equate
dMyeve/dr= dMg‘“/ dr. This is a nonlinear, transcendental equation. However, a simple estimating for-
mula can be derived by noting that the wave front gives the main contribution at the initial stage, that is

mgé <« 1. Then, neglecting the terms like (mgg)z, we get

meg =2V/Ry. 2.7

Thus, if the initial value of magnetization in the demagnetized region for CS situation g < mg, the

wave front gives a substantial contribution to the relaxation of the total magnetization. Note, that mgg is
two times larger than for 1d model még = V/Ry [T7].

3. Spherically symmetric initial distribution of magnetization

The evolution of the wave front for SS case can be also presented in the form (2.2). Using the assump-
tions similar to the CS case and integrating over the volume of the sample, the estimating formulae
are derived

4m 4 5 ver?
Ms (1) = M5 (0) + ?RO mo (T) +4nVT[1—mgo (1)] Ry —RoVT + 3 ) (3.1)

where my (1) is also defined by , Ms (1) is the total magnetization of the sample and

dpgwave dMﬂat A
—— = R-VD 1= mo @1V, =5 Ro-VD m@-m@?]. (2

These formulae well describe the results of the numerical calculations. Table [1| demonstrates that the
contribution of the wave front for SS case is stronger than for CS case (almost 1.5 times for not small m).
Estimating dM;"a"e/ (AMsdr) at the initial stage, we see that dM;"a"e/ (AMsdr) at T = 0 for SS case is 1.5
times larger than in the CS case, thus giving the explanation of the numerical data. Comparing different
contributions in[3.2] we get

mgy =3V /Ry (3.3)

So, mga is 1.5 times larger than for the CS case.

4. Conclusion

The relaxation of highly nonequilibrium, nonuniform states created by the femtosecond laser pulse
in the relativistic relaxation approximation is governed by two scenarios: the motion of the wave front
within the demagnetized region and the homogeneous evolution of magnetization within the demagne-
tized region. The relativistic relaxation approximation is valid for widths of the transition regions be-
tween the demagnetized and non-perturbed regions exceeding a few dozens nanometers (compare with
[Z]). The contribution of the wave front for the SS shape of the demagnetized region is up to 3 times and
for CS case is up to 2 times stronger than for 1d model [17]; thus, the motion of the wave front within the
demagnetized region leads to the dependence of the relaxation rate on the shape of the demagnetized
region. For a sufficiently large diameter of the demagnetized region (laser spot), the homogeneous evo-
lution dominates and the evolution of the total magnetization is the same for 1d model, CS and SS cases.
However, with a decrease of the diameter of the demagnetized region and with an increase of the power
of the laser impulse, the relative contribution of the wave front increases and for mg < (mgg, mgg) the
wave front can significantly enhance the relaxation and, consequently, the shape dependent effects can
also be observed. This situation could be realized after demagnetization by a tightly focused femtosecond
laser impulse.
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Mo3A0B)XHA eBO/OLIA HAaMarHiueHoOCTi epomarHeTuka nicns
HaALWBUAKOro po3MarHidyyBaHHS: posib po3Mipy Ta popmn
po3marHiueHoi o6nacri

1.O. AActpemcbkuii

KniBcbKkuii HauioHanbHWUIA yHiBepcuTeT imeHi Tapaca LLleByeHka,
BYy/. Bonognmupceka, 64, 01601 Kuis, YkpaiHa

MpoAeMOHCTPOBAHO 3aeXHiCTb LIBUAKOCTI penakcaLlii No340BXHbOI eBONOLLi NMOBHOI HamarHiveHocTi ¢pepo-
MarHeTmKa nicns HajLWBWAKOro po3MarHivyBaHHS Big ¢opmu po3marHiveHoi obnacri. Lis 3anexHictb 06ymoB-
NleHa pyXoM XBWIbOBOro GPOHTY BI/IM6 po3marHiueHoi 061acTi. BHecok XBUib0BOro GpoHTy AN ChepuyHo-
cMeTpuyHoi GopMM po3marHiveHoi obnacti Ao 3 pa3 Ta ANS LWAIHAPUYHO-CUMETPUYHOI obnacTi o 2 pa3
6inbLUWA, HiX AN OAHOBMMIpHOro BMNagky. Lleli epekT Moxe crnocTepiraTcb NicNs po3MarHivyyBaHHS CUb-
HO CPOKYCOBaHUM N1a3ePHUM iMMY/bCOM.

KntouoBi cnoBa: HajLwBuAKe po3marHidyBaHHs, epoMarHeTyK, emMToceKyHAHNI nasep

44701-6


http://dx.doi.org/10.1038/NPHOTON.2012.218
http://dx.doi.org/10.1103/PhysRevLett.110.097201
http://dx.doi.org/10.1103/PhysRevLett.108.157601
http://dx.doi.org/10.1103/PhysRevLett.105.027203
http://dx.doi.org/10.1103/PhysRevB.86.024404
http://dx.doi.org/10.1038/ncomms2029
http://dx.doi.org/10.1103/PhysRevB.90.024409
http://dx.doi.org/10.1016/S0921-4526(89)80047-X
http://dx.doi.org/10.1103/PhysRevB.88.054427
http://dx.doi.org/10.1016/0038-1098(89)90257-3
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1016/0304-8853(93)90441-4
http://dx.doi.org/10.1103/PhysRevLett.108.057202
http://dx.doi.org/10.1134/S0021364013180057
http://dx.doi.org/10.1063/1.4903339
http://dx.doi.org/10.1134/S1063783414060390
http://dx.doi.org/10.1103/PhysRevLett.76.511
http://dx.doi.org/10.1103/PhysRevB.65.134434
http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x

	Introduction
	Cylindrically symmetric initial distribution of magnetization
	Spherically symmetric initial distribution of magnetization
	Conclusion

