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A dependence of a relaxation rate on the shape of the demagnetized region for a longitudinal evolution of total
magnetization to its equilibrium value following the ultrafast demagnetization is demonstrated. This shape-
dependence is caused by a motion of the wave front inside the demagnetized region. The contribution of the
wave front for spherically symmetric shape of the demagnetized region is up to 3 times and for cylindrically
symmetric shape up to 2 times stronger than for one dimensional demagnetized region. This effect can be
observed after the demagnetization by a tightly focused femtosecond laser pulse.
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1. Introduction

Recently, in the works where for a tightly focused (up to 1 µm) femtosecond laser pulse it was possible

to observe the real picture of the spatial-temporal evolution under the action of a solitary pulse, the

authors reported on the development of strongly inhomogeneous states. Along with the propagation of

spin waves far away from the light spot [1, 2], the authors observed the formation of domains [3] and

ring structures localized near the spot [2]. Strongly inhomogeneous distributions of the magnetization

appear in the framework of superdiffusive mechanism of action of the laser pulse on magnetic metals

[4, 5] and the existence of these distributions is established for magnetic heterostructures [6, 7]. Thus,

the analysis of the picosecond, longitudinal evolution of inhomogeneous, nonequilibrium distributions

of magnetization has become increasingly important.

The analysis of such states can be performed using the Landau-Lifshitz equation with a relaxation

term proposed by Bar’yakhtar [8–10], also referred to as LLBar equations [11]. LLBar equations were

derived using general principles (Onsager’s relations, symmetry of the exchange interaction), and they

have no alternatives for the study of the highly non-linear, nonequilibrium, non-uniform states with

strong reduction of magnetization mentioned above. LLBar equations are well suited for a description

of non-uniform states, such as magnetic solitons [12, 13] and Bloch points [14], and give the explanation

of the reversal effects [15, 16]. These equations provide an explanation [7] of recent experiments [6] on

magnetization recovery in laser-pumped Ni-Ru-Fe heterostructures, where the importance of the nonlo-

cal character of the magnetization recovery is established [7].

A longitudinal relaxation of a total magnetization of ferromagnets following the ultrafast demagne-

tization within one dimensional (1d) model is determined by two effects: a homogeneous evolution of

a magnetization inside the demagnetized region and the motion of the wave front from the outside to

within the demagnetized region [17]. For a sufficiently large diameter of the demagnetized region, a ho-

mogeneous evolution dominates. However, for a smaller demagnetized region, a relative contribution of
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the wave front increases and for tightly focused femtosecond laser pulse the motion of the wave front

can significantly enhance the relaxation [17, 18].

In this paper, the effect of the size and shape of the demagnetized region on the relaxation rate of the

total magnetization is analyzed. In order to demonstrate this effect, we consider the nonlinear, longitu-

dinal evolution of the total magnetization following the ultrafast demagnetization for two limiting cases,

namely, for the demagnetized region of cylindrical (CS) and spherical (SS) symmetries. Then, we compare

these results with the results found within 1d model.

A strongly non-equilibrium state created by the laser pulse plays the role of the initial condition for

LLBar equations [7]. For our case, since the motion of the wave front is associated with the change in the

total magnetization of the ferromagnet, and the size of a transition region between demagnetized and

non-perturbed regions is much larger than nanometers, the exchange (nonlocal) term, which retains the

total magnetization of a sample, can be disregarded (compare with [7, 15]) and the main contribution to

the equations of motion is determined by relativistic processes. Since during the relaxation of magneti-

zation toward an equilibrium value the effective field is parallel to the magnetization, only the modulus

of the magnetization M = |M| enters the equation. Adopting the Landau model for the free energy and
introducing dimensionless variables, the nonlinear diffusion equation (NDE) is derived for the evolution

ofM [7, 18]

∂m

∂τ
=∇2m +m

(
1−m2) , (1.1)

where m (ξ,τ) = M/M0 is a dimensionless magnetization, M0 is an equilibrium value (temperature-

dependent) of the magnetization of a bulk material, ξ is a dimensionless radius in cylindrical or spherical

coordinates measured in units of r0 =
√

2Aχ|| (as we consider cylindrically and spherically symmetric
problems, only ξ enters the problem), A is an inhomogeneous exchange constant, χ|| = dM/dH is a longi-
tudinal magnetic susceptibility of a material in the equilibrium state and at zero magnetic field and τ is a

dimensionless time measured in units of t0 = 2χ||/γλrMS, γ is the gyromagnetic ratio, λr is a dimension-

less relaxation constant of the relativistic nature, MS is the saturation magnetization. Simple estimates

for nickel show that the value r0 is of the order of a lattice constant, the characteristic time t0 is of the

order of a few picoseconds and the characteristic velocity r0/t0 ≈ 0.1 nm/ps = 100 m/s, see for details
[18]. Note that the use of the continuum approximation for distributions with characteristic sizes of the

order of the lattice constant does not lead to qualitative errors, which can be seen from comparison of the

results obtained numerically for discrete models and for their continual counterpart, see, e.g., [19, 20]. It

is worth noting that this kind of NDE was first studied in the pioneering work by Kolmogorov, Petrovsky

and Piskunov [21] and by Fisher [22] and stationary diffusive front propagations into unstable state have

been found for this problem.

After the pulse action, the demagnetized region (spot) is formed in a sample with a characteristic

size of the order of a diameter of the laser beam. The value of magnetization is reduced inside the spot,

m = m0 < 1, and outside the spot the magnet is non-perturbed, m = 1. We consider two cases, when
the demagnetized region has a cylindrical and spherical symmetries. To model such a situation, NDE is

numerically solved for the following initial conditions

m (ξ,τ= 0) = m0 + 1−m0

1+exp[−4(ξ−R0)/a]
, (1.2)

where R0 is the radius of the demagnetized region, a parameter a = (1−m0) (dm/dξ)−1|m=(1+m0)/2 de-

scribes the characteristic width of the transition region in the initial conditions. In the region of the ac-

tion of the laser pulse (ξ< R0), the magnetization tends tom0 and outside this region (ξ> R0) m (ξ,τ= 0)
tends to its equilibrium value 1.

For a numerical analysis we consider the limiting case, when the laser pulse is focused to a diffraction

limited spot of the order of 1 µm [2]. The following values of the parameters (in the dimensionless units)

correspond to the following situation: a radius of the demagnetized region (laser pump) R0 = 1250, the
width of transition region a = 300 and the radius of the sample R = 1850. We consider the evolution
of the initial state (1.2) for the following minimal values of magnetization in the demagnetized region:

m0 = 0.9, 0.5, 10−2, 10−4, 0. The values m0 = 0.5, 0.9 can be realized for a weak intensity of the laser
pulse and correspond to the effective temperature of the spin system lower than the Curie temperature

TC. The valuesm0 = 10−2, 10−4, 0 can be realized for a high power of the laser pulse.
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2. Cylindrically symmetric initial distribution of magnetization

Figure 1 (a) presents the time evolution of the relative change of magnetization per unit length of the

sampleMΣ (τ)
∆MΣ (τ)

∆MΣ
= MΣ (τ)−MΣ (0)

MΣ (+∞)−MΣ (0)
, (2.1)

calculated in the time domain from τ = 0 to τ = T = 15 (in the dimensionless units t0), for the above
chosen parameters and for the initial conditions (1.2). Figure 1 (b) demonstrates an example of the cor-

responding evolution of magnetizationm (ξ,τ) on the time form0 = 10−2
.

Figure 1 (a) shows that the fastest regime of relaxation of the total magnetization to its equilibrium

value is realized for m0 = 0.9. The relaxation time of ∆MΣ (τ)/∆MΣ, as for 1d model [17], decays with a

decrease of m0 and takes its minimum value at m0 = 0. However, the dependence of ∆MΣ (τ)/∆MΣ on

time is not linear form0 = 0 in CS case. The analysis of the evolution ofm (ξ,τ) [figure 1 (b)] demonstrates
that similarly to 1d model [17, 18], the evolution of the total magnetization to its equilibrium value is

determined by two effects: the homogeneous evolution of the magnetization and the motion of the wave

front within the demagnetized region.

Let us derive an approximate analytical formula for the evolution of MΣ (τ) for CS case, which takes
into account both the motion of the wave front and the homogeneous evolution of the magnetization and

estimate the contribution of the wave front compared to 1d model. Following [17], the evolution of the

wave front can be cast in the form

m (ξ,τ) ≈ m0 (τ)+ [1−m0 (τ)]mf (ξ−ξ0 −V τ,ξ) , (2.2)

wherem0 (τ) does not depend on the coordinate and describes the homogeneous evolution of magnetiza-
tion within the demagnetized region. The second term in the right-hand side of (2.2) corresponds to the

wave front, which moves within the demagnetized region with an amplitude 1−m0 (τ) and the velocity
V . The functionmf describes the shape of this front; the value ofmf tends to 1 if one moves outside the
demagnetized region from the wave front andmf tends to 0within the demagnetized region. Both V and
the shape of the wave front depend on the distance from the center of the demagnetized region ξ. How-

ever, this problem can be simplified by the following observation: figure 1 (b) shows that the contribution

of the wave front is essential only at the initial stage of the evolution. This means that: (i) one can neglect

the term (1/ξ)∂m/∂ξ∝ 1/(a ·ξ) ¿ 1/a2
and (1.1) transforms to 1d NDE; (ii) we can suppose that within

the demagnetized regionm (ξ,τ) ' m0 (τ) ¿ 1 and the terms of the order ofm0 (τ) ¿ 1 can be neglected
in this approximation. Then, the shape mf coincides with the shape of the wave front at m0 = 0 in 1d
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Figure 1. (a) The time evolution of ∆MΣ (τ)/∆MΣ, derived from the numerical solution of NDE for the

above chosen numerical parameters, different values of m0 and for CS initial conditions. Full lines rep-

resent numerical calculations and dashed lines are an approximation with the analytical equation (2.4).

(b) A corresponding to figure 1 (a) evolution of the magnetization m(ξ, t ) for m0 = 10−2
on a time do-

main from τ = 0 to τ = T = 15, taken step-by step after an interval of time T /10. Dashed lines show the
contributions of the wave front and the homogeneous evolution of magnetization. The arrow indicates a

direction of motion of the wave front.

44701-3



I.A. Yastremsky

NDE and the velocity of the wave front V formed from the initial conditions can be found by equating

the asymptotic of (1.2) within the demagnetized region and that of the wave front: V = a/4+4/a [23]. For
the chosen numerical parameters V ≈ 75.01. Neglecting dispersion in (1.1) and integrating this equation,
the dependence of the magnetization on time m0(τ) within the demagnetized region can be present as
follows [7]:

m0(τ) = m0√
m2

0 +
(
1−m2

0

)
exp(−2τ)

. (2.3)

Thus, atm0 (τ) ¿ 1 the homogeneous evolution of magnetization leads to a decrease of the amplitude of
the wave front [1−m0 (τ)], and the motion of the wave front leads a decrease of the characteristic radius
of the demagnetized region, which is equal to (R0 −V τ).
Integrating (2.2) over the unit length of the cylinder, the estimating formula for the evolution ofMΣ (τ)

is derived

MΣ (τ) ≈ MΣ (0)+πR2
0 m0 (τ)+π [1−m0 (τ)] (2R0 −V τ)V τ, (2.4)

where m0 (τ) is defined by (2.3). Equation (2.4) takes into account both the homogeneous evolution of
magnetization and the motion of the wave front.

Figure 1 (a) shows a good agreement between the analytical equation (2.4) and the numerical results

even in the regime, at which the magnetization within the demagnetized regionm0 (τ) is not small, when
both the shape and the velocity of the wave front depend onm0 (τ). The reason here is that for this regime
the contribution of the wave front becomes small.

Let us estimate the relative contribution of the wave front and the homogeneous evolution of magne-

tization for differentm0 for CS case. We present

dMΣ (τ)

dτ
= dMwave

Σ (τ)

dτ
+ dMflat

Σ (τ)

dτ
, (2.5)

where Mwave

Σ (τ) and Mflat

Σ (τ) are contributions of the wave front and the homogeneous evolution, re-
spectively [these contributions are schematically depicted in figure 1 (b) by dashed lines]. Differentiating

(2.4) with respect to time and comparing the result with (2.5), one can see that

dMwave

Σ

dτ
' 2π (R0 −V τ) [1−m0 (τ)]V ,

dMflat

Σ

dτ
'π (R0 −V τ)2 [

m0 (τ)−m0 (τ)3] . (2.6)

Here, [1−m0 (τ)] is the amplitude of the wave front, (R0 −V τ) is the characteristic radius of the demag-
netized region at the moment τ.

Thus, dMwave

Σ (τ)/dτ takes its maximum value at the initial stage of the evolution. However, further,
the the relaxation rate caused by the wave front decreases with a decrease of both the amplitude and the

length of the wave front.

The relative contribution of the wave front can be defined as Mwave

Σ (τ)/∆MΣ at τ → +∞, where
Mwave

Σ (τ) can be found by integrating (2.6). Table 1 presents Mwave

Σ (τ)/∆MΣ for different m0, for 1d

model [17], CS and SS cases. Table 1 demonstrates that the contribution of the wave front for CS is

stronger than for 1d model (almost two times stronger for not small m0). To understand this observa-

tion one should note that the wave front gives the main contribution at the initial stage. Then, estimating

dMwave

Σ /(∆MΣdτ) at τ = 0 (initial stage), we see that this value is two times larger in CS case than that
found within 1d model. With a decrease ofm0,Mwave

Σ /∆MΣ increases and takes its maximum value 1 for
m0 = 0.

m0 0.5 10−2 10−4 0
Mwave

Σ /∆MΣ(1d) 0.05 0.24 0.51 1
Mwave

Σ /∆MΣ(CS) 0.09 0.41 0.75 1
Mwave

Σ /∆MΣ(SS) 0.13 0.53 0.85 1

Table 1. The relative contribution of the wave front for 1d, CS and SS cases for the above chosen values of

the parameters.
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To estimate the value of magnetization in the demagnetized region mCS

eq
(for CS case), for which

the relaxation rates for the wave front and the homogeneous evolution become comparable, we equate

dMwave

Σ /dτ= dMflat

Σ /dτ. This is a nonlinear, transcendental equation. However, a simple estimating for-
mula can be derived by noting that the wave front gives the main contribution at the initial stage, that is

mCS

eq
¿ 1. Then, neglecting the terms like (mCS

eq
)2
, we get

mCS

eq
' 2V /R0 . (2.7)

Thus, if the initial value of magnetization in the demagnetized region for CS situationm0 ¿ mCS

eq
, the

wave front gives a substantial contribution to the relaxation of the total magnetization. Note, thatmCS

eq
is

two times larger than for 1d modelm1d

eq
'V /R0 [17].

3. Spherically symmetric initial distribution of magnetization

The evolution of the wave front for SS case can be also presented in the form (2.2). Using the assump-

tions similar to the CS case and integrating (2.2) over the volume of the sample, the estimating formulae

are derived

MΣ (τ) ≈ MΣ (0)+ 4π

3
R3

0 m0 (τ)+4πV τ [1−m0 (τ)]

(
R2

0 −R0V τ+ V 2τ2

3

)
, (3.1)

wherem0 (τ) is also defined by (2.3),MΣ (τ) is the total magnetization of the sample and

dMwave

Σ

dτ
' 4π (R0 −V τ)2 [1−m0 (τ)]V ,

dMflat

Σ

dτ
' 4π

3
(R0 −V τ)3 [

m0 (τ)−m0 (τ)3] . (3.2)

These formulae well describe the results of the numerical calculations. Table 1 demonstrates that the

contribution of the wave front for SS case is stronger than for CS case (almost 1.5 times for not smallm0).

Estimating dMwave

Σ /(∆MΣdτ) at the initial stage, we see that dMwave

Σ /(∆MΣdτ) at τ= 0 for SS case is 1.5
times larger than in the CS case, thus giving the explanation of the numerical data. Comparing different

contributions in 3.2, we get

mSS

eq
' 3V /R0. (3.3)

So,mSS

eq
is 1.5 times larger than for the CS case.

4. Conclusion

The relaxation of highly nonequilibrium, nonuniform states created by the femtosecond laser pulse

in the relativistic relaxation approximation is governed by two scenarios: the motion of the wave front

within the demagnetized region and the homogeneous evolution of magnetization within the demagne-

tized region. The relativistic relaxation approximation is valid for widths of the transition regions be-

tween the demagnetized and non-perturbed regions exceeding a few dozens nanometers (compare with

[7]). The contribution of the wave front for the SS shape of the demagnetized region is up to 3 times and
for CS case is up to 2 times stronger than for 1d model [17]; thus, the motion of the wave front within the
demagnetized region leads to the dependence of the relaxation rate on the shape of the demagnetized

region. For a sufficiently large diameter of the demagnetized region (laser spot), the homogeneous evo-

lution dominates and the evolution of the total magnetization is the same for 1d model, CS and SS cases.

However, with a decrease of the diameter of the demagnetized region and with an increase of the power

of the laser impulse, the relative contribution of the wave front increases and for m0 < (mCS

eq
,mSS

eq
) the

wave front can significantly enhance the relaxation and, consequently, the shape dependent effects can

also be observed. This situation could be realized after demagnetization by a tightly focused femtosecond

laser impulse.
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Поздовжня еволюцiя намагнiченостi феромагнетика пiсля

надшвидкого розмагнiчування: роль розмiру та форми

розмагнiченої облаcтi

I.О. Ястремський
Київський нацiональний унiверситет iменi Тараса Шевченка,
вул. Володимирська, 64, 01601 Київ, Україна
Продемонстровано залежнiсть швидкостi релаксацiї поздовжньої еволюцiї повної намагнiченостi феро-
магнетика пiсля надшвидкого розмагнiчування вiд форми розмагнiченої областi. Ця залежнiсть обумов-
лена рухом хвильового фронту вглиб розмагнiченої областi. Внесок хвильового фронту для сферично-
симетричної форми розмагнiченої областi до 3 раз та для цилiндрично-симетричної областi до 2 раз
бiльший, нiж для одновимiрного випадку. Цей ефект може спостерiгатись пiсля розмагнiчування силь-
но сфокусованим лазерним iмпульсом.
Ключовi слова: надшвидке розмагнiчування, феромагнетик, фемтосекундний лазер
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