The generalized dihedral groups $\operatorname{Dih}\left(\mathbb{Z}^{n}\right)$ as groups generated by time-varying automata

Adam Woryna

Communicated by V. I. Sushchansky

Abstract

Let \mathbb{Z}^{n} be a cubical lattice in the Euclidean space \mathbb{R}^{n}. The generalized dihedral group $\operatorname{Dih}\left(\mathbb{Z}^{n}\right)$ is a topologically discrete group of isometries of \mathbb{Z}^{n} generated by translations and reflections in all points from \mathbb{Z}^{n}. We study this group as a group generated by a $(2 n+2)$-state time-varying automaton over the changing alphabet. The corresponding action on the set of words is described.

Introduction

For any abelian group A the generalized dihedral group $\operatorname{Dih}(A)$ is defined as a semidirect product of A and \mathbb{Z}_{2} with \mathbb{Z}_{2} acting on A by inverting elements, i.e.

$$
\operatorname{Dih}(A)=A \rtimes_{\phi} \mathbb{Z}_{2}
$$

with $\phi(0)$ the identity and $\phi(1)$ inversion. If A is cyclic, then $\operatorname{Dih}(A)$ is called a dihedral group. The subgroup of $\operatorname{Dih}(A)$ of elements $(a, 0)$ is a normal subgroup of index 2 , isomorphic to A, while the elements $(a, 1)$ are all their own inverse. This property in fact characterizes generalized dihedral groups, in the sense that if a group G has a subgroup N of index 2 such that all elements of the complement $G-N$ are of order two, then N is abelian and $G \simeq \operatorname{Dih}(N)$.

Let \mathbb{Z}^{n} be a free abelian group of rank n. We may look on it as a cubical lattice in the Euclidean space \mathbb{R}^{n}. The corresponding generalized

[^0]dihedral group $\operatorname{Dih}\left(\mathbb{Z}^{n}\right)$ is a topologically discrete group of isometries of \mathbb{Z}^{n} generated by translations and reflections in all points from \mathbb{Z}^{n}. In case $n=1$ this is the isometry group of \mathbb{Z}, which is called the infinite dihedral group and is isomorphic to the free product of two cyclic groups of order two. For $n=2$ it is a type of the so-called wallpaper group - the mathematical concept to classify repetitive designs on two-dimensional surfaces. For $n=3$ this is the so-called space group of a crystal. Our new look on the group $\operatorname{Dih}\left(\mathbb{Z}^{n}\right)$ is via the time-varying automata theory. Namely, we realize this group as a group defined by a $(2 n+2)$-state time-varying automaton over the changing alphabet.

1. Time-varying automata and groups generated by them

Let $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ be a set of nonnegative integers. A changing alphabet is an infinite sequence

$$
X=\left(X_{t}\right)_{t \in \mathbb{N}_{0}}
$$

where X_{t} are nonempty, finite sets (sets of letters). A word over the changing alphabet X is a finite sequence $x_{0} x_{1} \ldots x_{l}$, where $x_{i} \in X_{i}$ for $i=0,1, \ldots, l$. We denote by X^{*} the set of all words (including the empty word \emptyset). By $|w|$ we denote the length of the word $w \in X^{*}$. The set of words of the length t we denote by $X^{(t)}$. For any $t \in \mathbb{N}_{0}$ we also consider the set $X_{(t)}$ of finite sequences in which the i-th letter $(i=1,2, \ldots)$ belongs to the set X_{t+i-1}. In particular $X_{(0)}=X^{*}$.

Definition 1. A time-varying Mealy automaton is a quintuple

$$
A=(Q, X, Y, \varphi, \psi)
$$

where:

1. $Q=\left(Q_{t}\right)_{t \in \mathbb{N}_{0}}$ is a sequence of sets of inside states,
2. $X=\left(X_{t}\right)_{t \in \mathbb{N}_{0}}$ is a changing input alphabet,
3. $Y=\left(Y_{t}\right)_{t \in \mathbb{N}_{0}}$ is a changing output alphabet,
4. $\varphi=\left(\varphi_{t}\right)_{t \in \mathbb{N}_{0}}$ is a sequence of transitions functions of the form

$$
\varphi_{t}: Q_{t} \times X_{t} \rightarrow Q_{t+1}
$$

5. $\psi=\left(\psi_{t}\right)_{t \in \mathbb{N}_{0}}$ is a sequence of output functions of the form

$$
\psi_{t}: Q_{t} \times X_{t} \rightarrow Y_{t}
$$

We say that an automaton A is finite if the set

$$
S=\bigcup_{t \in \mathbb{N}_{0}} Q_{t}
$$

of all its inside states is finite. If $|S|=n$, we say that A is an n-state automaton.

It is convenient to present a time-varying Mealy automaton as a labelled, directed, locally finite graph with vertices corresponding to the inside states of the automaton. For every $t \in \mathbb{N}_{0}$ and every letter $x \in X_{t}$ an arrow labelled by x starts from every state $q \in Q_{t}$ to the state $\varphi_{t}(q, x)$. Each vertex $q \in Q_{t}$ is labelled by the corresponding state function

$$
\begin{equation*}
\sigma_{t, q}: X_{t} \rightarrow Y_{t}, \quad \sigma_{t, q}(x)=\psi_{t}(q, x) \tag{1}
\end{equation*}
$$

To make the graph of the automaton clear, the sets of vertices V_{t} and $V_{t^{\prime}}$ corresponding to the sets Q_{t} and $Q_{t^{\prime}}$ respectively, are disjoint whenever $t \neq t^{\prime}$ (in particular, different vertices may correspond to the same inside state). Moreover, we will substitute a large number of arrows connecting two fixed states and having the same direction for a one multiarrow labelled by suitable letters and if the labelling of such a multi-arrow is obvious we will omit this labelling.

For instance Figure 1 presents a 2 -state time-varying automaton in which $Q_{t}=\{0,1\}, X_{t}=Y_{t}=\{0,1, \ldots, t+1\}$ and the state functions $\sigma_{t, 0}=\sigma_{t}$ and $\sigma_{t, 1}=1$ are respectively a cyclical permutation $(0,1, \ldots, t+$ 1) and the identity permutation of the set X_{t}.

Figure 1: an example of a 2-state time-varying automaton
A time-varying automaton may be interpreted as a machine, which being at a moment $t \in \mathbb{N}_{0}$ in a state $q \in Q_{t}$ and reading on the input tape a letter $x \in X_{t}$, goes to the state $\varphi_{t}(q, x)$, types on the output tape the letter $\psi_{t}(q, x)$, moves both tapes to the next position and then proceeds further to the next moment $t+1$.

The automaton A with a fixed initial state $q \in Q_{0}$ is called the initial automaton and is denoted by A_{q}. The above interpretation defines a
natural action of A_{q} on the words. Namely, the initial automaton A_{q} defines a function $f_{q}^{A}: X^{*} \rightarrow Y^{*}$ as follows:

$$
f_{q}^{A}\left(x_{0} x_{1} \ldots x_{l}\right)=\psi_{0}\left(q_{0}, x_{0}\right) \psi_{1}\left(q_{1}, x_{1}\right) \ldots \psi_{l}\left(q_{l}, x_{l}\right)
$$

where the sequence $q_{0}, q_{1}, \ldots, q_{l}$ of inside states is defined recursively:

$$
\begin{equation*}
q_{0}=q, \quad q_{i}=\varphi_{i-1}\left(q_{i-1}, x_{i-1}\right) \quad \text { for } \quad i=1,2, \ldots, l \tag{2}
\end{equation*}
$$

This action may be extended in a natural way on the set X^{ω} of infinite words over X.

The function f_{q}^{A} is called the automaton function defined by A_{q}. The image of a word $w=x_{0} x_{1} \ldots x_{l}$ under a map f_{q}^{A} can be easily found using the graph of the automaton. One must find a directed path starting in a vertex $q \in Q_{0}$ and with consecutive labels $x_{0}, x_{1}, \ldots, x_{l}$. Such a path will be unique. If $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{l}$ are the labels of consecutive vertices in this path, then the word $f_{q}^{A}(w)$ is equal to $\sigma_{0}\left(x_{0}\right) \sigma_{1}\left(x_{1}\right) \ldots \sigma_{l}\left(x_{l}\right)$.

In the set of words over a changing alphabet we consider for any $k \in \mathbb{N}_{0}$ the equivalence relation \sim_{k} as follows:
$w \sim_{k} v$ if and only if w and v have a common prefix of the length k.
Let X and Y be changing alphabets and let f be a function of the form $f: X^{*} \rightarrow Y^{*}$. If f preserves the relation \sim_{k} for any k, then we say that f preserves beginnings of the words. If $|f(w)|=|w|$ for any $w \in X^{*}$, then we say that f preserves lengths of the words.

Theorem 1. [7] The function $f: X^{*} \rightarrow Y^{*}$ is an automaton function (defined by some initial automaton A_{q}) if and only if it preserves beginnings and lengths of the words.

Definition 2. Let $f: X^{*} \rightarrow Y^{*}$ be an automaton function and let $w \in X^{*}$ be a word of the length $|w|=n$. The function $f_{w}: X_{(n)} \rightarrow Y_{(n)}$ defined by the equality

$$
f(w v)=f(w) f_{w}(v)
$$

is called a remainder of f on the word w or simply a w-remainder of f.
Definition 3. Let $A=(Q, X, Y, \varphi, \psi)$ be a time-varying Mealy automaton. For any $t_{0} \in \mathbb{N}_{0}$ the automaton $\left.A\right|^{t_{0}}=\left(Q^{\prime}, X^{\prime}, Y^{\prime}, \varphi^{\prime}, \psi^{\prime}\right)$ defined as follows

$$
Q_{t}^{\prime}=Q_{t_{0}+t}, \quad X_{t}^{\prime}=X_{t_{0}+t}, \quad Y_{t}^{\prime}=Y_{t_{0}+t}, \quad \varphi_{t}^{\prime}=\varphi_{t_{0}+t}, \quad \psi_{t}^{\prime}=\psi_{t_{0}+t}
$$

is called a t_{0}-remainder of A.

If $f=f_{q}^{A}$ is defined by the initial automaton A_{q} and $w=x_{0} x_{1} \ldots x_{l}$, then the w-remainder f_{w} is an automaton function generated by the initial automaton $B_{q_{l}}$, where $B=\left.A\right|^{l}$ is an l-remainder of A and the initial state q_{l} is defined by (2).

Definition 4. An automaton A in which input and output alphabets coincide and every its state function $\sigma_{t, q}: X_{t} \rightarrow X_{t}$ is a permutation of X_{t} is called a permutational automaton.

If A is a permutational automaton, then for every $q \in Q_{0}$ the transformation $f_{q}^{A}: X^{*} \rightarrow X^{*}$ is a permutation of X^{*}.

The set $S A(X)$ of automaton functions defined by all initial automata over a common input and output alphabet X forms a monoid with the identity function as the neutral element. The subset $G A(X)$ of functions generated by permutational automata is a group of invertible elements in $S A(X)$. The group $G A(X)$ is an example of residually finite group (see [8]).

Definition 5. Let $A=(Q, X, X, \varphi, \psi)$ be a time-varying permutational automaton. The group of the form

$$
G(A)=\left\langle f_{q}^{A}: q \in Q_{0}\right\rangle
$$

is called the group generated by automaton A.
For any permutational automaton A the group $G(A)$ is residually finite, as a subgroup of $G A(X)$. It turns out that groups of this form include the class of finitely generated residually finite groups.

Theorem 2. [8] For any n-generated residually finite group G there is an n-state time-varying automaton A such that $G \cong G(A)$.

2. The embedding into the permutational wreath product

In this section we describe a close realtion between time-varying automata groups and permutational wreath products. Let K and H be finitely generated groups such that H is a permutation group of a finite set L. We define the permutational wreath product $K \imath_{L} H$ as a semidirect product

$$
(\underbrace{K \times K \times \ldots \times K}_{|L|}) \rtimes H
$$

where H acts on the direct product by permuting the factors.
Let G be any subgroup of $G A(X)$. For any $i \in \mathbb{N}_{0}$ we define the group

$$
G_{i}=\left\langle f_{w}: f \in G, w \in X^{(i)}\right\rangle
$$

which is a group generated by remainders f_{w} of functions $f \in G$ on all words $w \in X^{*}$ of the length $|w|=i$. In particular $G_{0}=G$.

Proposition 1. For any $f, g \in S A(X)$ and any word $w \in X^{*}$ we have

$$
\begin{equation*}
(f g)_{w}=f_{w} g_{f(w)} \tag{3}
\end{equation*}
$$

If $g \in G A(X)$, then

$$
\begin{equation*}
\left(g^{-1}\right)_{w}=\left(g_{g^{-1}(w)}\right)^{-1} \tag{4}
\end{equation*}
$$

Proof. For any $u \in X_{(|w|)}$ we have

$$
(f g)(w u)=(f g)(w)(f g)_{w}(u)
$$

On the other hand

$$
\begin{aligned}
(f g)(w u) & =g(f(w u))=g\left(f(w) f_{w}(u)\right)= \\
& =g(f(w)) g_{f(w)}\left(f_{w}(u)\right)=(f g)(w)\left(f_{w} g_{f(w)}\right)(u)
\end{aligned}
$$

what gives (3) from the previous equality. The formula (4) follows by substitution of f for g^{-1} in (3).

Proposition 2. Let us put the letters of the set X_{i} into the sequence

$$
x_{0}, x_{1}, \ldots, x_{m-1}
$$

Then the mapping

$$
\begin{equation*}
\Psi(g)=\left(g_{x_{0}}, g_{x_{1}}, \ldots, g_{x_{m-1}}\right) \sigma_{g} \tag{5}
\end{equation*}
$$

defines the embedding of the group G_{i} into the permutational wreath product $G_{i+1} 2_{X_{i}} S\left(X_{i}\right)$, where the permutation $\sigma_{g} \in S\left(X_{i}\right)$ is defined by $\sigma_{g}(x)=g(x)$.
Proof. The equalities

$$
g(x u)=\sigma_{g}(x) g_{x}(u), \quad x \in X_{i}, u \in X_{(i+1)}
$$

imply that Ψ is one-to-one. Next, by Proposition 1 we have:

$$
\begin{aligned}
\Psi(f g) & =\left((f g)_{x_{0}}, \ldots,(f g)_{x_{m-1}}\right) \sigma_{f g}= \\
& =\left(f_{x_{0}} g_{\sigma_{f}\left(x_{0}\right)}, \ldots, f_{x_{m-1}} g_{\sigma_{f}\left(x_{m-1}\right)}\right) \sigma_{f} \sigma_{g}= \\
& =\left(f_{x_{0}}, f_{x_{1}}, \ldots, f_{x_{m-1}}\right) \sigma_{f}\left(g_{x_{0}}, g_{x_{1}}, \ldots, g_{x_{m-1}}\right) \sigma_{g}=\Psi(f) \Psi(g)
\end{aligned}
$$

Hence Ψ is a homomorphism.
We will rewrite (5) in the form

$$
g=\left[g_{x_{0}}, g_{x_{1}}, \ldots, g_{x_{m-1}}\right] \sigma_{g}
$$

and call this the decomposition of g. In case $\sigma_{g}=1$ (the identity permutation) we will write $g=\left[g_{x_{0}}, g_{x_{1}}, \ldots, g_{x_{m-1}}\right]$.

3. $\operatorname{Dih}\left(\mathbb{Z}^{n}\right)$ as a time-varying automaton group

Let $m_{0}=2, m_{1}, m_{2}, \ldots$ be an infinite sequence of positive even numbers and let $a_{1}, a_{2}, \ldots, a_{k}$ be a sequence of positive odd numbers such that

$$
\begin{equation*}
\sup _{i}\left\{\frac{m_{i}}{a_{1}^{i}+a_{2}^{i}+\ldots+a_{k}^{i}}\right\}=\infty \tag{6}
\end{equation*}
$$

Lemma 1. Let $r_{1}, r_{2}, \ldots, r_{k}$ be integers such that the congruence

$$
a_{1}^{i} r_{1}+a_{2}^{i} r_{2}+\ldots+a_{k}^{i} r_{k} \equiv 0\left(\bmod m_{i}\right)
$$

holds for any $i \in \mathbb{N}_{0}$. Then $r_{1}=r_{2}=\ldots=r_{k}=0$.
Proof. There are integers q_{i}, such that $a_{1}^{i} r_{1}+\ldots+a_{k}^{i} r_{k}=q_{i} m_{i}$ for $i \in \mathbb{N}_{0}$. Let us denote $c=\max \left\{\left|r_{1}\right|, \ldots,\left|r_{k}\right|\right\}$. For any $i \in \mathbb{N}_{0}$ we have

$$
\left|q_{i} m_{i}\right|=\left|a_{1}^{i} r_{1}+\ldots+a_{k}^{i} r_{k}\right| \leq c\left(a_{1}^{i}+\ldots+a_{k}^{i}\right)
$$

We show that $q_{i}=0$ for infinitely many $i \in \mathbb{N}_{0}$. Otherwise, there is $i_{0} \in \mathbb{N}_{0}$ such that $q_{i} \neq 0$ for all $i \geq i_{0}$. Then

$$
c \geq \frac{\left|q_{i} m_{i}\right|}{a_{1}^{i}+\ldots+a_{k}^{i}} \geq \frac{m_{i}}{a_{1}^{i}+\ldots+a_{k}^{i}}
$$

for all $i \geq i_{0}$, what is contrary to the assumption (6). Let $i_{1}<i_{2}<\ldots$ be an infinite sequence for which $q_{i_{j}}=0, j \in \mathbb{N}_{0}$. Thus $\left(r_{1}, \ldots, r_{k}\right)$ is a solution of the homogeneous system of linear equations

$$
a_{1}^{i_{j}} x_{1}+\ldots+a_{k}^{i_{j}} x_{k}=0, \quad j=1, \ldots, k
$$

The matrix of this system is a generalized Vandermonde $k \times k$ matrix. It is known that its determinant is always positive. Hence all r_{i} are equal to zero.

We define a $2 k$-state time-varying, permutational automaton A in which (in point 4 below $x \pm_{m} y$ denotes an arithmetical operation modulo m):

1. $Q_{t}=\left\{a_{1},-a_{1}, a_{2},-a_{2}, \ldots, a_{k},-a_{k}\right\}$,
2. $X_{t}=\left\{0,1, \ldots, m_{t}-1\right\}$,
3. $\varphi_{t}\left(\pm a_{i}, x\right)=a_{i} \cdot(-1)^{x}$,
4. $\psi_{t}\left(\pm a_{i}, x\right)=x \pm_{m_{t}} a_{i}^{t}$.

We are going to show that the group $G(A)$ generated by the automaton A is isomorphic to the generalized dihedral group $\operatorname{Dih}\left(\mathbb{Z}^{k-1}\right)$.

The graph of A is a disjoint sum of k graphs of the form depicted in the Figure 2, each one defining a 2 -state time-varying automaton with the set $\left\{-a_{i}, a_{i}\right\}$ of its inside states (the labelling σ_{t} constitutes a cyclical permutation $\left(0,1, \ldots, m_{t}-1\right)$ of the set $\left.X_{t}\right)$. Directly from the above

Figure 2: the fragment of A corresponding to the states $\pm a_{i} \in Q_{0}$ graph we see that $f_{a_{i}}^{A}=f_{-a_{i}}^{A}$ for $i=1,2 \ldots, k$, and hence

$$
G(A)=\left\langle f_{a_{1}}^{A}, f_{a_{2}}^{A}, \ldots, f_{a_{k}}^{A}\right\rangle
$$

To simplify, we denote

$$
f_{i}=f_{a_{i}}^{A}
$$

for $i=1,2, \ldots, k$. For any $i \in\{1,2, \ldots, k\}$ and any $j \in \mathbb{N}_{0}$ we also denote by $f_{i, j}$ the remainder of f_{i} on a zero-word $00 \ldots 0$ of the length j. In particular $f_{i}=f_{i, 0}$.

Proposition 3. The decomposition of $f_{i, j}^{\varepsilon}, \varepsilon \in\{-1,1\}$ is as follows

$$
f_{i, j}^{\varepsilon}=\left[f_{i, j+1}, f_{i, j+1}^{-1}, f_{i, j+1}, f_{i, j+1}^{-1}, \ldots, f_{i, j+1}, f_{i, j+1}^{-1}\right] \sigma_{j}^{\varepsilon a_{i}^{j}}
$$

In particular $f_{i}^{2}=1$ for $i=1,2, \ldots, k$.
Proof. Let us denote by $f_{i, j}^{-}$the remainder of f_{i} on the word $11 \ldots 1$ of the length j. Directly from the graph of A we have

$$
\begin{aligned}
f_{i, j} & =\left[f_{i, j+1}, f_{i, j+1}^{-}, f_{i, j+1}, f_{i, j+1}^{-}, \ldots, f_{i, j+1}, f_{i, j+1}^{-}\right] \sigma_{j}^{a_{i}^{j}} \\
f_{i, j}^{-} & =\left[f_{i, j+1}, f_{i, j+1}^{-}, f_{i, j+1}, f_{i, j+1}^{-}, \ldots, f_{i, j+1}, f_{i, j+1}^{-}\right] \sigma_{j}^{-a_{i}^{j}}
\end{aligned}
$$

As a_{i} is an odd number, we obtain:

$$
f_{i, j} f_{i, j}^{-}=f_{i, j}^{-} f_{i, j}=\left[f_{i, j+1} f_{i, j+1}^{-}, f_{i, j+1}^{-} f_{i, j+1}, f_{i, j+1} f_{i, j+1}^{-}, \ldots, f_{i, j+1}^{-} f_{i, j+1}\right]
$$

Hence $f_{i, j}^{-} f_{i, j}=f_{i, j} f_{i, j}^{-}=1$ and in consequence $f_{i, j}^{-}=f_{i, j}^{-1}$. In particular

$$
f_{i}^{2}=f_{i, 0}^{2}=\left[f_{i, 1}, f_{i, 1}^{-1}\right] \sigma_{0}\left[f_{i, 1}, f_{i, 1}^{-1}\right] \sigma_{0}=\left[f_{i, 1} f_{i, 1}^{-1}, f_{i, 1}^{-1} f_{i, 1}\right]=1 .
$$

Since all the generators f_{i} are of order two, every element $g \in G(A)$ is of the form $g=f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}}$ for some $\nu_{1}, \nu_{2}, \ldots, \nu_{r} \in\{1,2, \ldots, k\}$ and $\nu_{j+1} \neq \nu_{j}$ for $j=1, \ldots, r-1$.

Proposition 4. Let g_{w} be a remainder of g on the word $w \in X^{(i)}$. Then

$$
g_{w}= \begin{cases}f_{\nu_{1}, i} f_{\nu_{2}, i}^{-1} \ldots f_{\nu_{r}, i}^{(-1)^{r-1}}, & \text { if } x \text { even } \\ f_{\nu_{1}, i}^{-1} f_{\nu_{2}, i}^{-1} f_{\nu_{r}, i}^{(-1)^{r}}, & \text { if } x \text { odd }\end{cases}
$$

where x is the last letter of w.
Proof. By Proposition 1 we may write

$$
g_{w}=\left(f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}}\right)_{w}=\left(f_{\nu_{1}}\right)_{w_{1}}\left(f_{\nu_{2}}\right)_{w_{2}} \ldots\left(f_{\nu_{r}}\right)_{w_{r}}
$$

where $\left(f_{\nu_{j}}\right)_{w_{j}}(j=1, \ldots, r)$ is a remainder of $f_{\nu_{j}}$ on the word

$$
w_{j}=f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{j-1}}(w) \in X^{(i)}
$$

From the graph of A and by Proposition 3, the remainder of any generator $f_{t}=f_{a_{t}}^{A}$ on an arbitrary word $v \in X^{(i)}$ is equal to $f_{t, i}^{\varepsilon}$ for some $\varepsilon \in\{-1,1\}$. In consequence

$$
g_{w}=f_{\nu_{1}, i}^{\varepsilon_{1}} f_{\nu_{2}, i}^{\varepsilon_{2}} \ldots f_{\nu_{r}, i}^{\varepsilon_{r}}
$$

for some $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r} \in\{-1,1\}$. Let $w^{\prime} \in X^{*}$ be a prefix of w of the length $|w|-1=i-1$. Then

$$
g_{w^{\prime}}=f_{\nu_{1}, i-1}^{\varepsilon_{1}^{\prime}} f_{\nu_{2}, i-1}^{\varepsilon_{2}^{\prime}} \ldots f_{\nu_{r}, i-1}^{\varepsilon_{r}^{\prime}}
$$

for some $\varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}, \ldots, \varepsilon_{r}^{\prime} \in\{-1,1\}$. By Proposition 1 the element $f_{\nu_{j}, i}^{\varepsilon_{j}}$ is equal to $\left(f_{\nu_{j}, i-1}^{\varepsilon_{j}^{\prime}}\right)_{x^{\prime}}$ - the remainder of $f_{\nu_{j}, i-1}^{\varepsilon_{j}^{\prime}}$ on a one-letter word x^{\prime}, where

$$
x^{\prime}=f_{\nu_{1}, i-1}^{\varepsilon_{1}^{\prime}} f_{\nu_{2}, i-1}^{\varepsilon_{2}^{\prime}} \ldots f_{\nu_{j-1}, i-1}^{\varepsilon_{j-1}^{\prime}}(x)=x+_{m_{i-1}}\left(\varepsilon_{1}^{\prime} a_{\nu_{1}}^{i-1}+\ldots+\varepsilon_{j-1}^{\prime} a_{\nu_{j-1}}^{i-1}\right)
$$

Since m_{i-1} is even and $a_{\nu_{1}}, \ldots, a_{\nu_{j-1}}$ are all odd, the parity of the letter x^{\prime} depends only on j and x in the following way: for x even the letter x^{\prime} is even only for j odd, and for x odd the letter x^{\prime} is even only for j even. Now, it suffices to see that by Proposition 3 the remainder $\left(f_{\nu_{j}, i-1}^{\varepsilon_{j}^{\prime}}\right)_{x^{\prime}}$ is equal to $f_{\nu_{j}, i}$ for x^{\prime} even, or to $f_{\nu_{j}, i}^{-1}$ for x^{\prime} odd.

Let $g \in G(A)$ be represented by a group-word

$$
\begin{equation*}
f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}} \tag{7}
\end{equation*}
$$

(now, we do not assume that $\nu_{j+1} \neq \nu_{j}$). With the group-word (7) we associate the sequence of integers $r_{1}, r_{2}, \ldots, r_{k}$ in which

$$
r_{i}=r_{i}^{-}-r_{i}^{+}
$$

and $r_{i}^{+}\left(r_{i}^{-}\right)$denotes the number of occurrences of the generator f_{i} in even (odd) positions in (7).

Remark 1. Removing in (7) any subword of the form $f_{j} f_{j}$ does not change the value of any r_{i}.

Proposition 5. Any word $w=x_{0} x_{1} \ldots x_{t} \in X^{*}$ is mapped by g on the word $g(w)=y_{0} y_{1} \ldots y_{t} \in X^{*}$, where

$$
y_{i}=x_{i}+m_{i}(-1)^{x_{i-1}}\left(a_{1}^{i} r_{1}+a_{2}^{i} r_{2}+\ldots+a_{k}^{i} r_{k}\right)
$$

for $i=0,1, \ldots, t$ (we assume $x_{-1}=0$).
Proof. By Remark 1 we may assume that $\nu_{j+1} \neq \nu_{j}$ for $j=1, \ldots, r-$ 1. Now, the thesis follows by the equality $y_{i}=g_{x_{0} x_{1} \ldots x_{i-1}}\left(x_{i}\right)$ and by Proposition 4.

Let r be the length of the group-word (7). In case r even the number of all the symbols in even positions in (7) is equal to the number of all the symbols in odd positions, and in case r odd these numbers differ by one. Hence the sum

$$
\varepsilon=r_{1}+r_{2}+\ldots+r_{k}
$$

is equal to $(r)_{2}$ - the remainder of r modulo 2 .
Theorem 3. The mapping

$$
\Psi(g)=\left(r_{1}, r_{2}, \ldots, r_{k-1}\right) \varepsilon
$$

defines the isomorphism between the groups $G(A)$ and $\operatorname{Dih}\left(\mathbb{Z}^{k-1}\right)$.
Proof. First we show that Ψ is a well-defined, one-to-one mapping from $G(A)$ to $\operatorname{Dih}\left(\mathbb{Z}^{k-1}\right)$. Let $g=f_{\nu_{1}} \ldots f_{\nu_{r}}$ and $g^{\prime}=f_{\mu_{1}} \ldots f_{\mu_{s}}$ be any elements of $G(A)$. Let

$$
\begin{aligned}
& r_{1}, \ldots, r_{k}, \quad \varepsilon=r_{1}+\ldots+r_{k} \\
& r_{1}^{\prime}, \ldots, r_{k}^{\prime}, \quad \varepsilon^{\prime}=r_{1}^{\prime}+\ldots+r_{k}^{\prime}
\end{aligned}
$$

be sequences corresponding to the group-words $f_{\nu_{1}} \ldots f_{\nu_{r}}$ and $f_{\mu_{1}} \ldots f_{\mu_{s}}$ respectively. By Proposition 5 we have: $g=g^{\prime}$ if and only if
$x_{i}+m_{i}(-1)^{x_{i-1}}\left(a_{1}^{i} r_{1}+\ldots+a_{k}^{i} r_{k}\right)=x_{i}+m_{i}(-1)^{x_{i-1}}\left(a_{1}^{i} r_{1}^{\prime}+\ldots+a_{k}^{i} r_{k}^{\prime}\right)$
for any $x_{i-1} \in X_{i-1}, x_{i} \in X_{i}$ and any $i \in \mathbb{N}_{0}$. This condition is equivalent to the congruences:

$$
a_{1}^{i}\left(r_{1}-r_{1}^{\prime}\right)+\ldots+a_{k}^{i}\left(r_{k}-r_{k}^{\prime}\right) \equiv 0\left(\bmod m_{i}\right)
$$

for any $i \in \mathbb{N}_{0}$. By Lemma 1 this is equivalent to the equalities: $r_{i}=r_{i}^{\prime}$ for $i=1,2, \ldots, k$. In particular $\varepsilon=\varepsilon^{\prime}$. As a result we have: $g=g^{\prime}$ if and only if $\Psi(g)=\Psi\left(g^{\prime}\right)$. To show Ψ is a homomorphism, let us denote $\Psi\left(g g^{\prime}\right)=\left(R_{1}, \ldots, R_{k-1}\right) \varepsilon^{\prime \prime}$. Since $g g^{\prime}=f_{\nu_{1}} \ldots f_{\nu_{r}} f_{\mu_{1}} \ldots f_{\mu_{s}}$, we have:

$$
\varepsilon^{\prime \prime}=(r+s)_{2}=(r)_{2}+2(s)_{2}=\varepsilon+2 \varepsilon^{\prime} .
$$

If $\varepsilon=0$, then r is even. Thus for any $i \in\{1,2, \ldots, k-1\}$ the position of any symbol f_{i} in the group-word $f_{\mu_{1}} \ldots f_{\mu_{s}}$ has the same parity as in the group-word $f_{\nu_{1}} \ldots f_{\nu_{r}} f_{\mu_{1}} \ldots f_{\mu_{s}}$. In consequence $R_{i}^{+}=r_{i}^{+}+r_{i}^{\prime+}$ and $R_{i}^{-}=r_{i}^{-}+r_{i}^{\prime-}$. Thus for $i=1,2, \ldots, k-1$ we have in this case

$$
R_{i}=R_{i}^{-}-R_{i}^{+}=\left(r_{i}^{-}-r_{i}^{+}\right)+\left(r_{i}^{\prime-}-r_{i}^{\prime+}\right)=r_{i}+r_{i}^{\prime}
$$

If $\varepsilon=1$, then r is odd and the positions of any f_{i} in group-words $f_{\mu_{1}} \ldots f_{\mu_{s}}$ and $f_{\nu_{1}} \ldots f_{\nu_{r}} f_{\mu_{1}} \ldots f_{\mu_{s}}$ are of different parity. In consequence $R_{i}^{+}=r_{i}^{+}+r_{i}^{\prime-}$ and $R_{i}^{-}=r_{i}^{-}+r_{i}^{\prime+}$. Thus for $i=1,2, \ldots, k-1$ we have in this case

$$
R_{i}=R_{i}^{-}-R_{i}^{+}=\left(r_{i}^{-}-r_{i}^{+}\right)-\left(r_{i}^{\prime-}-r_{i}^{\prime+}\right)=r_{i}-r_{i}^{\prime} .
$$

Hence $\Psi\left(g g^{\prime}\right)=\Psi(g) \Psi\left(g^{\prime}\right)$. Tho show Ψ is onto we take any sequence of integers $r_{1}, r_{2}, \ldots, r_{k}$ with the sum $\varepsilon=r_{1}+r_{2}+\ldots+r_{k} \in\{0,1\}$. Then there is a group-word $f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}}$ in the symbols $f_{1}, f_{2}, \ldots, f_{k}$ for which:
(i) $r=\left|r_{1}\right|+\left|r_{2}\right|+\ldots+\left|r_{k}\right|$,
(ii) the symbol $f_{i}(i=1,2, \ldots, k)$ occurs $\left|r_{i}\right|$ times in this word,
(iii) if $r_{i}>0\left(r_{i}<0\right)$, then each f_{i} occurs in the odd (even) position.

Then $\Psi(g)=\left(r_{1}, r_{2}, \ldots, r_{k-1}\right) \varepsilon$ for the element $g=f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}}$.

Corollary 1. Let $\|g\|$ be the length of the shortest presentation of any $g \in G(A)$ as a product of generators f_{1}, \ldots, f_{k}. If

$$
\Psi(g)=\left(r_{1}, r_{2}, \ldots, r_{k-1}\right) \varepsilon
$$

then

$$
\|g\|=\left|r_{1}\right|+\left|r_{2}\right|+\ldots+\left|r_{k-1}\right|+\left|r_{1}+r_{2} \ldots+r_{k-1}-\varepsilon\right|
$$

Proof. Any group-word $f_{\nu_{1}} f_{\nu_{2}} \ldots f_{\nu_{r}}$ satisfying the conditions (i)-(iii) in the proof of Theorem 3 constitutes the shortest representative of g.

Using Theorem 3 one may derive the following algorithms solving the word problem (WP) and the conjugacy problem (CP) in $G(A)$.

ALGORITHMS: Let $f_{\nu_{1}} \ldots f_{\nu_{r}}$ and $f_{\mu_{1}} \ldots f_{\mu_{s}}$ be any group-words in f_{1}, \ldots, f_{k}. Calculate their sequences: $r_{1}, \ldots, r_{k}, \varepsilon$ and $r_{1}^{\prime}, \ldots, r_{k}^{\prime}, \varepsilon^{\prime}$. Then
(WP) the group-words define the same element if and only if $r_{i}=r_{i}^{\prime}$ for $i=1, \ldots, k$,
(CP) the group-words define the conjugate elements if and only if $\varepsilon=0$ and $r_{i}=-r_{i}^{\prime}$ for $i=1, \ldots, k$, or if $\varepsilon=1$ and $r_{i} \equiv r_{i}^{\prime}(\bmod 2)$ for $i=1, \ldots, k$.

4. The action on the set of words

With the group $G=G(A)$ we associate the following subgroups:

1. $S t_{G}(w)=\{g \in G: g(w)=w\}$ - the stabilizer of the word $w \in X^{*}$,
2. $S t_{G}(n)=\bigcap_{w \in X^{(n)}} S t_{G}(w)$ - the stabilizer of the n-th level, which is the intersection of the stabilizers of the words of the length n,
3. P_{u} - the stabilizer of an infinite word $u \in X^{\omega}$ (the so called parabolic subgroup).

Theorem 4. Let $n \in \mathbb{N}, w \in X^{(n)}$ and $u \in X^{\omega}$. Then

$$
S t_{G}(w)=S t_{G}(n) \simeq \mathbb{Z}^{k-1}
$$

and the parabolic subgroup P_{u} is a trivial group.

Proof. Let $\Psi(g)=\left(r_{1}, \ldots, r_{k-1}\right) \varepsilon$. By proposition 5 we have $g \in S t_{G}(w)$ if and only if $g \in S t_{G}(n)$ if and only if $\varepsilon=0$ and

$$
\left(a_{1}^{i}-a_{k}^{i}\right) r_{1}+\left(a_{2}^{i}-a_{k}^{i}\right) r_{2}+\ldots+\left(a_{k-1}^{i}-a_{k}^{i}\right) r_{k-1} \equiv 0\left(\bmod m_{i}\right)
$$

for $0<i<n$. Thus in case $n=1$ we have: $g \in S t_{G}(w)$ if and only if $g \in S t_{G}(n)$ if and only if $\varepsilon=0$. Hence $S t_{G}(w)=S t_{G}(1) \simeq \mathbb{Z}^{k-1}$ in this case. Thus for $n \geq 1$ the stabilizer $S t_{G}(w)=S t_{G}(n)<S t_{G}(1)$ is isomorphic with a free abelian group of $\operatorname{rank} l \leq k-1$. On the other hand, if each r_{i} is divisible by the product $m_{1} m_{2} \ldots m_{n-1}$, then the element g with $\Psi(g)=\left(r_{1}, \ldots, r_{k-1}\right) 0$ is an element of the stabilizer $S t_{G}(n)$. In consequence $S t_{G}(n)$ contains \mathbb{Z}^{k-1} as a subgroup. Thus $S t_{G}(n)$ must be isomorphic with \mathbb{Z}^{k-1}. The triviality of any parabolic subgroup is a direct consequence of Lemma 1 .

Let $w=x_{0} x_{1} \ldots x_{t} \in X^{*}$ be any word over the changing alphabet X, and let

$$
\operatorname{Orb}(w)=\{g(w): g \in G\}
$$

be its orbit. From Proposition 5 and Theorem 3 we see that the word $v=y_{0} y_{1} \ldots y_{t} \in X^{*}$ belongs to $\operatorname{Orb}(w)$ if and only if there are integers $r_{1}, r_{2}, \ldots, r_{k-1}, \varepsilon$ with $\varepsilon \in\{0,1\}$ such that

$$
\begin{equation*}
y_{i}=x_{i}+m_{i}(-1)^{x_{i-1}} \varepsilon a_{k}^{i}+m_{i}(-1)^{x_{i-1}} \sum_{j=1}^{k-1}\left(a_{j}^{i}-a_{k}^{i}\right) r_{j} \tag{8}
\end{equation*}
$$

for $i=0,1, \ldots, t$. Since, all m_{i} are even and all a_{i} are odd, this implies: $y_{i}-y_{0} \equiv x_{i}-x_{0}(\bmod 2)$ for $i=0,1, \ldots t$. In particular the action of the group $G(A)$ on the set X^{*} is not spherically transitive. By adding some additional assumption on m_{i}, we may obtain a nice description of this action.

Theorem 5. Let $p_{1}<p_{2}<p_{3}<\ldots$ be a sequence of odd primes such that $p_{i}>i\left(a_{1}^{i}+\ldots+a_{k}^{i}\right)$ and let $m_{i}=2 p_{i}$ for $i=1,2 \ldots$ Then the words $w=x_{0} x_{1} \ldots x_{t}$ and $v=y_{0} y_{1} \ldots y_{t}$ belong to the same orbit if and only if

$$
\begin{equation*}
y_{i}-y_{0} \equiv x_{i}-x_{0}(\bmod 2) \tag{9}
\end{equation*}
$$

for $i=0,1, \ldots, t$. In particular

$$
\left[G: S t_{G}(t+1)\right]=m_{0} m_{1} \ldots m_{t} / 2^{t}
$$

for $t=0,1,2, \ldots$.

Proof. The equalities $p_{i}>i\left(a_{1}^{i}+\ldots+a_{k}^{i}\right)$ assure that the condition (6) holds. Thus, it suffices to prove, that if w and v satisfy (9), then there is a sequence $r_{1}, r_{2}, \ldots, r_{k-1}, \varepsilon$ with $\varepsilon \in\{0,1\}$ which satisfies (8). Let us denote: $\varepsilon=\left(y_{0}-x_{0}\right)_{2}$ and $z_{i}=\left(y_{i}-x_{i}\right) \cdot(-1)^{x_{i-1}}-\varepsilon a_{k}^{i}, b_{i}=\left(a_{1}^{i}-a_{k}^{i}\right) / 2$ for $i=0,1, \ldots, t$. Then all z_{i} are even, and for $i=1,2, \ldots, t$ the numbers b_{i} and p_{i} are coprime. Using the Chinese Remainder Theorem we can find an integer r such that

$$
z_{i} / 2 \equiv r b_{i}\left(\bmod p_{i}\right)
$$

for $i=1,2, \ldots, t$. Then the sequence $r_{1}, r_{2}, \ldots, r_{k-1}, \varepsilon$ in which $r_{1}=r$ and $r_{2}=\ldots=r_{k-1}=0$ satisfies (8). As a consequence we obtain

$$
\left[G: S t_{G}(t+1)\right]=\left[G: S t_{G}(w)\right]=|\operatorname{Orb}(w)|=m_{0} m_{1} \ldots m_{t} / 2^{t}
$$

References

[1] L. Bartholdi, R. I. Grigorchuk, V. Nekrashevych. From fractal groups to fractal sets. Fractal in Graz 2001. Analysis-Dynamics-Geometry-Stochastics (P. Grabner and W. Woess, eds.), Trends in Mathematics, vol. 19, Birkhäuser, 2003, pp. 25-118.
[2] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii. Automata, Dynamical Systems and Groups. Proseedings of Steklov Institute of Mathematics, 231:128-203, 2000.
[3] R. I. Grigorchuk, A. Ïuk. Advanced Course on Automata Groups. Notes of the Course, Centre de Recerca Matematica Bellaterra (Spain), July 2004.
[4] D. E. Joyce: http://www.clarku.edu/ djoyce/wallpaper
[5] V. I. Sushchansky. Group of Automatic Permutations. Dopovidi NAN Ukrainy, N6:47-51, 1998 (in Ukrainian).
[6] V. I. Sushchansky. Group of Finite Automatic Permutations. Dopovidi NAN Ukrainy, N2:48-52, 1999 (in Ukrainian).
[7] A. Woryna. On the transformations given by the Mealy time varying automata. Zesz. Nauk. Pol. Њl., Seria: Automatyka 138(1581):201-215, 2003 (in Polish).
[8] A. Woryna. On permutation groups generated by time-varying Mealy automata. Publ. Math. Debrecen, vol. 67/1-2 (2005), 115-130.

Contact information

Adam Woryna

Received by the editors: 23.09.2006
and in final form 14.10.2008.

[^0]: 2000 Mathematics Subject Classification: 20E22, 20E08, $20 F 65$.
 Key words and phrases: generalized dihedral groups, time-varying automaton, group generated by time-varying automaton.

