
Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.

Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 3. (2008). pp. 98 – 111

c© Journal “Algebra and Discrete Mathematics”

The generalized dihedral groups Dih(Zn) as

groups generated by time-varying automata

Adam Woryna

Communicated by V. I. Sushchansky

Abstract. Let Z
n be a cubical lattice in the Euclidean space

R
n. The generalized dihedral group Dih(Zn) is a topologically

discrete group of isometries of Z
n generated by translations and

reflections in all points from Z
n. We study this group as a group

generated by a (2n + 2)-state time-varying automaton over the

changing alphabet. The corresponding action on the set of words

is described.

Introduction

For any abelian group A the generalized dihedral group Dih(A) is defined
as a semidirect product of A and Z2 with Z2 acting on A by inverting
elements, i.e.

Dih(A) = A⋊φ Z2,

with φ(0) the identity and φ(1) inversion. If A is cyclic, then Dih(A) is
called a dihedral group. The subgroup of Dih(A) of elements (a, 0) is a
normal subgroup of index 2, isomorphic to A, while the elements (a, 1)
are all their own inverse. This property in fact characterizes generalized
dihedral groups, in the sense that if a group G has a subgroup N of index
2 such that all elements of the complement G−N are of order two, then
N is abelian and G ≃ Dih(N).

Let Z
n be a free abelian group of rank n. We may look on it as a

cubical lattice in the Euclidean space R
n. The corresponding generalized

2000 Mathematics Subject Classification: 20E22, 20E08, 20F65.
Key words and phrases: generalized dihedral groups, time-varying automaton,

group generated by time-varying automaton.
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dihedral group Dih(Zn) is a topologically discrete group of isometries of
Z

n generated by translations and reflections in all points from Z
n. In

case n = 1 this is the isometry group of Z, which is called the infinite
dihedral group and is isomorphic to the free product of two cyclic groups
of order two. For n = 2 it is a type of the so-called wallpaper group - the
mathematical concept to classify repetitive designs on two-dimensional
surfaces. For n = 3 this is the so-called space group of a crystal. Our
new look on the group Dih(Zn) is via the time-varying automata theory.
Namely, we realize this group as a group defined by a (2n + 2)-state
time-varying automaton over the changing alphabet.

1. Time-varying automata and groups generated by them

Let N0 = {0, 1, 2, . . .} be a set of nonnegative integers. A changing al-
phabet is an infinite sequence

X = (Xt)t∈N0 ,

where Xt are nonempty, finite sets (sets of letters). A word over the
changing alphabet X is a finite sequence x0x1 . . . xl, where xi ∈ Xi for
i = 0, 1, . . . , l. We denote by X∗ the set of all words (including the empty
word ∅). By |w| we denote the length of the word w ∈ X∗. The set of
words of the length t we denote by X(t). For any t ∈ N0 we also consider
the set X(t) of finite sequences in which the i-th letter (i = 1, 2, . . .)
belongs to the set Xt+i−1. In particular X(0) = X∗.

Definition 1. A time-varying Mealy automaton is a quintuple

A = (Q,X, Y, ϕ, ψ),

where:

1. Q = (Qt)t∈N0 is a sequence of sets of inside states,

2. X = (Xt)t∈N0 is a changing input alphabet,

3. Y = (Yt)t∈N0 is a changing output alphabet,

4. ϕ = (ϕt)t∈N0 is a sequence of transitions functions of the form

ϕt : Qt ×Xt → Qt+1,

5. ψ = (ψt)t∈N0 is a sequence of output functions of the form

ψt : Qt ×Xt → Yt.
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We say that an automaton A is finite if the set

S =
⋃

t∈N0

Qt

of all its inside states is finite. If |S| = n, we say that A is an n-state
automaton.

It is convenient to present a time-varying Mealy automaton as a la-
belled, directed, locally finite graph with vertices corresponding to the
inside states of the automaton. For every t ∈ N0 and every letter x ∈ Xt

an arrow labelled by x starts from every state q ∈ Qt to the state ϕt(q, x).
Each vertex q ∈ Qt is labelled by the corresponding state function

σt,q : Xt → Yt, σt,q(x) = ψt(q, x). (1)

To make the graph of the automaton clear, the sets of vertices Vt

and Vt′ corresponding to the sets Qt and Qt′ respectively, are disjoint
whenever t 6= t′ (in particular, different vertices may correspond to the
same inside state). Moreover, we will substitute a large number of arrows
connecting two fixed states and having the same direction for a one multi-
arrow labelled by suitable letters and if the labelling of such a multi-arrow
is obvious we will omit this labelling.

For instance Figure 1 presents a 2-state time-varying automaton in
which Qt = {0, 1}, Xt = Yt = {0, 1, . . . , t + 1} and the state functions
σt,0 = σt and σt,1 = 1 are respectively a cyclical permutation (0, 1, . . . , t+
1) and the identity permutation of the set Xt.

s
0

s
3s

2
s

1

1 32

1 1 1 1

Figure 1: an example of a 2-state time-varying automaton

A time-varying automaton may be interpreted as a machine, which
being at a moment t ∈ N0 in a state q ∈ Qt and reading on the input tape
a letter x ∈ Xt, goes to the state ϕt(q, x), types on the output tape the
letter ψt(q, x), moves both tapes to the next position and then proceeds
further to the next moment t+ 1.

The automaton A with a fixed initial state q ∈ Q0 is called the initial
automaton and is denoted by Aq. The above interpretation defines a
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natural action of Aq on the words. Namely, the initial automaton Aq

defines a function fA
q : X∗ → Y ∗ as follows:

fA
q (x0x1...xl) = ψ0(q0, x0)ψ1(q1, x1)...ψl(ql, xl),

where the sequence q0, q1, . . . , ql of inside states is defined recursively:

q0 = q, qi = ϕi−1(qi−1, xi−1) for i = 1, 2, . . . , l. (2)

This action may be extended in a natural way on the set Xω of infinite
words over X.

The function fA
q is called the automaton function defined by Aq. The

image of a word w = x0x1 . . . xl under a map fA
q can be easily found using

the graph of the automaton. One must find a directed path starting in
a vertex q ∈ Q0 and with consecutive labels x0, x1, . . . , xl. Such a path
will be unique. If σ0, σ1, . . . , σl are the labels of consecutive vertices in
this path, then the word fA

q (w) is equal to σ0(x0)σ1(x1) . . . σl(xl).
In the set of words over a changing alphabet we consider for any

k ∈ N0 the equivalence relation ∼k as follows:

w ∼k v if and only if w and v have a common prefix of the length k.

Let X and Y be changing alphabets and let f be a function of the
form f : X∗ → Y ∗. If f preserves the relation ∼k for any k, then we say
that f preserves beginnings of the words. If |f(w)| = |w| for any w ∈ X∗,
then we say that f preserves lengths of the words.

Theorem 1. [7] The function f : X∗ → Y ∗ is an automaton function
(defined by some initial automaton Aq) if and only if it preserves begin-
nings and lengths of the words.

Definition 2. Let f : X∗ → Y ∗ be an automaton function and let w ∈ X∗

be a word of the length |w| = n. The function fw : X(n) → Y(n) defined
by the equality

f(wv) = f(w)fw(v)

is called a remainder of f on the word w or simply a w-remainder of f .

Definition 3. Let A = (Q,X, Y, ϕ, ψ) be a time-varying Mealy automa-
ton. For any t0 ∈ N0 the automaton A|t0 = (Q′, X ′, Y ′, ϕ′, ψ′) defined as
follows

Q′
t = Qt0+t, X ′

t = Xt0+t, Y ′
t = Yt0+t, ϕ′

t = ϕt0+t, ψ′
t = ψt0+t,

is called a t0-remainder of A.
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If f = fA
q is defined by the initial automaton Aq and w = x0x1 . . . xl,

then the w-remainder fw is an automaton function generated by the
initial automaton Bql

, where B = A|l is an l-remainder of A and the
initial state ql is defined by (2).

Definition 4. An automaton A in which input and output alphabets co-
incide and every its state function σt,q : Xt → Xt is a permutation of Xt

is called a permutational automaton.

If A is a permutational automaton, then for every q ∈ Q0 the trans-
formation fA

q : X∗ → X∗ is a permutation of X∗.
The set SA(X) of automaton functions defined by all initial automata

over a common input and output alphabet X forms a monoid with the
identity function as the neutral element. The subset GA(X) of functions
generated by permutational automata is a group of invertible elements in
SA(X). The group GA(X) is an example of residually finite group (see
[8]).

Definition 5. Let A = (Q,X,X,ϕ, ψ) be a time-varying permutational
automaton. The group of the form

G(A) = 〈fA
q : q ∈ Q0〉

is called the group generated by automaton A.

For any permutational automaton A the group G(A) is residually
finite, as a subgroup of GA(X). It turns out that groups of this form
include the class of finitely generated residually finite groups.

Theorem 2. [8] For any n-generated residually finite group G there is
an n-state time-varying automaton A such that G ∼= G(A).

2. The embedding into the permutational wreath product

In this section we describe a close realtion between time-varying automata
groups and permutational wreath products. Let K and H be finitely
generated groups such that H is a permutation group of a finite set L.
We define the permutational wreath product K ≀L H as a semidirect
product

(K ×K × . . .×K
︸ ︷︷ ︸

|L|

) ⋊H,

where H acts on the direct product by permuting the factors.
Let G be any subgroup of GA(X). For any i ∈ N0 we define the group

Gi =
〈

fw : f ∈ G, w ∈ X(i)
〉

,
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which is a group generated by remainders fw of functions f ∈ G on all
words w ∈ X∗ of the length |w| = i. In particular G0 = G.

Proposition 1. For any f, g ∈ SA(X) and any word w ∈ X∗ we have

(fg)w = fwgf(w). (3)

If g ∈ GA(X), then
(
g−1

)

w
=

(
gg−1(w)

)−1
. (4)

Proof. For any u ∈ X(|w|) we have

(fg)(wu) = (fg)(w)(fg)w(u).

On the other hand

(fg)(wu) = g(f(wu)) = g(f(w)fw(u)) =

= g(f(w))gf(w)(fw(u)) = (fg)(w)(fwgf(w))(u),

what gives (3) from the previous equality. The formula (4) follows by
substitution of f for g−1 in (3).

Proposition 2. Let us put the letters of the set Xi into the sequence

x0, x1, . . . , xm−1.

Then the mapping

Ψ(g) = (gx0 , gx1 , . . . , gxm−1)σg (5)

defines the embedding of the group Gi into the permutational wreath prod-
uct Gi+1 ≀Xi

S(Xi), where the permutation σg ∈ S(Xi) is defined by
σg(x) = g(x).

Proof. The equalities

g(xu) = σg(x)gx(u), x ∈ Xi, u ∈ X(i+1)

imply that Ψ is one-to-one. Next, by Proposition 1 we have:

Ψ(fg) = ((fg)x0 , . . . , (fg)xm−1)σfg =

= (fx0gσf (x0), . . . , fxm−1gσf (xm−1)) σfσg =

= (fx0 , fx1 , . . . , fxm−1)σf (gx0 , gx1 , . . . , gxm−1)σg = Ψ(f)Ψ(g).

Hence Ψ is a homomorphism.

We will rewrite (5) in the form

g = [gx0 , gx1 , . . . , gxm−1 ]σg

and call this the decomposition of g. In case σg = 1 (the identity permu-
tation) we will write g = [gx0 , gx1 , . . . , gxm−1 ].
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3. Dih(Zn) as a time-varying automaton group

Let m0 = 2,m1,m2, . . . be an infinite sequence of positive even numbers
and let a1, a2, . . . , ak be a sequence of positive odd numbers such that

sup
i

{
mi

ai
1 + ai

2 + . . .+ ai
k

}

= ∞. (6)

Lemma 1. Let r1, r2, . . . , rk be integers such that the congruence

ai
1r1 + ai

2r2 + . . .+ ai
krk ≡ 0 (mod mi)

holds for any i ∈ N0. Then r1 = r2 = . . . = rk = 0.

Proof. There are integers qi, such that ai
1r1+. . .+ai

krk = qimi for i ∈ N0.
Let us denote c = max{|r1|, . . . , |rk|}. For any i ∈ N0 we have

|qimi| = |ai
1r1 + . . .+ ai

krk| ≤ c(ai
1 + . . .+ ai

k).

We show that qi = 0 for infinitely many i ∈ N0. Otherwise, there is
i0 ∈ N0 such that qi 6= 0 for all i ≥ i0. Then

c ≥
|qimi|

ai
1 + . . .+ ai

k

≥
mi

ai
1 + . . .+ ai

k

for all i ≥ i0, what is contrary to the assumption (6). Let i1 < i2 < . . .
be an infinite sequence for which qij = 0, j ∈ N0. Thus (r1, . . . , rk) is a
solution of the homogeneous system of linear equations

a
ij
1 x1 + . . .+ a

ij
k xk = 0, j = 1, . . . , k.

The matrix of this system is a generalized Vandermonde k×k matrix. It
is known that its determinant is always positive. Hence all ri are equal
to zero.

We define a 2k-state time-varying, permutational automaton A in
which (in point 4 below x±m y denotes an arithmetical operation mod-
ulo m):

1. Qt = {a1,−a1, a2,−a2, . . . , ak,−ak},

2. Xt = {0, 1, . . . ,mt − 1},

3. ϕt(±ai, x) = ai · (−1)x,

4. ψt(±ai, x) = x±mt a
t
i.
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We are going to show that the group G(A) generated by the automaton
A is isomorphic to the generalized dihedral group Dih(Zk−1).

The graph of A is a disjoint sum of k graphs of the form depicted in
the Figure 2, each one defining a 2-state time-varying automaton with
the set {−ai, ai} of its inside states (the labelling σt constitutes a cyclical
permutation (0, 1, . . . ,mt − 1) of the set Xt). Directly from the above

s
0

s
0 s

1

-a

s
2

-a

s
2

a

s
3

a

s
3

-a

s
1

a

1, 3, ..., -1m1
1, 3, ..., -1m2

0, 2, ..., -2m20, 2, ..., -2m10

1 2 3

32

i

i
i

i

i

i

Figure 2: the fragment of A corresponding to the states ±ai ∈ Q0

graph we see that fA
ai

= fA
−ai

for i = 1, 2 . . . , k, and hence

G(A) = 〈fA
a1
, fA

a2
, . . . , fA

ak
〉.

To simplify, we denote
fi = fA

ai

for i = 1, 2, . . . , k. For any i ∈ {1, 2, . . . , k} and any j ∈ N0 we also
denote by fi,j the remainder of fi on a zero-word 00 . . . 0 of the length j.
In particular fi = fi,0.

Proposition 3. The decomposition of fε
i,j, ε ∈ {−1, 1} is as follows

fε
i,j = [fi,j+1, f

−1
i,j+1, fi,j+1, f

−1
i,j+1, . . . , fi,j+1, f

−1
i,j+1]σ

εa
j
i

j .

In particular f2
i = 1 for i = 1, 2, . . . , k.

Proof. Let us denote by f−i,j the remainder of fi on the word 11 . . . 1 of
the length j. Directly from the graph of A we have

fi,j = [fi,j+1, f
−
i,j+1, fi,j+1, f

−
i,j+1, . . . , fi,j+1, f

−
i,j+1]σ

a
j
i

j ,

f−i,j = [fi,j+1, f
−
i,j+1, fi,j+1, f

−
i,j+1, . . . , fi,j+1, f

−
i,j+1]σ

−a
j
i

j .

As ai is an odd number, we obtain:

fi,jf
−
i,j = f−i,jfi,j = [fi,j+1f

−
i,j+1, f

−
i,j+1fi,j+1, fi,j+1f

−
i,j+1, . . . , f

−
i,j+1fi,j+1].
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Hence f−i,jfi,j = fi,jf
−
i,j = 1 and in consequence f−i,j = f−1

i,j . In particular

f2
i = f2

i,0 = [fi,1, f
−1
i,1 ]σ0[fi,1, f

−1
i,1 ]σ0 = [fi,1f

−1
i,1 , f

−1
i,1 fi,1] = 1.

Since all the generators fi are of order two, every element g ∈ G(A)
is of the form g = fν1fν2 . . . fνr for some ν1, ν2, . . . , νr ∈ {1, 2, . . . , k} and
νj+1 6= νj for j = 1, . . . , r − 1.

Proposition 4. Let gw be a remainder of g on the word w ∈ X(i). Then

gw =

{

fν1,if
−1
ν2,i . . . f

(−1)r−1

νr,i , if x even,

f−1
ν1,ifν2,i . . . f

(−1)r

νr,i , if x odd,

where x is the last letter of w.

Proof. By Proposition 1 we may write

gw = (fν1fν2 . . . fνr)w = (fν1)w1(fν2)w2 . . . (fνr)wr ,

where (fνj
)wj

(j = 1, . . . , r) is a remainder of fνj
on the word

wj = fν1fν2 . . . fνj−1(w) ∈ X(i).

From the graph of A and by Proposition 3, the remainder of any generator
ft = fA

at
on an arbitrary word v ∈ X(i) is equal to fε

t,i for some ε ∈ {−1, 1}.
In consequence

gw = fε1
ν1,if

ε2
ν2,i . . . f

εr

νr,i

for some ε1, ε2, . . . , εr ∈ {−1, 1}. Let w′ ∈ X∗ be a prefix of w of the
length |w| − 1 = i− 1. Then

gw′ = f
ε′1
ν1,i−1f

ε′2
ν2,i−1 . . . f

ε′r
νr,i−1

for some ε′1, ε
′
2, . . . , ε

′
r ∈ {−1, 1}. By Proposition 1 the element f

εj

νj ,i is

equal to (f
ε′j
νj ,i−1)x′ - the remainder of f

ε′j
νj ,i−1 on a one-letter word x′,

where

x′ = f
ε′1
ν1,i−1f

ε′2
ν2,i−1 . . . f

ε′j−1

νj−1,i−1(x) = x+mi−1 (ε′1a
i−1
ν1

+ . . .+ ε′j−1a
i−1
νj−1

).

Since mi−1 is even and aν1 , . . . , aνj−1 are all odd, the parity of the letter
x′ depends only on j and x in the following way: for x even the letter x′

is even only for j odd, and for x odd the letter x′ is even only for j even.

Now, it suffices to see that by Proposition 3 the remainder (f
ε′j
νj ,i−1)x′ is

equal to fνj ,i for x′ even, or to f−1
νj ,i for x′ odd.
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Let g ∈ G(A) be represented by a group-word

fν1fν2 . . . fνr (7)

(now, we do not assume that νj+1 6= νj). With the group-word (7) we
associate the sequence of integers r1, r2, . . . , rk in which

ri = r−i − r+i

and r+i (r−i ) denotes the number of occurrences of the generator fi in
even (odd) positions in (7).

Remark 1. Removing in (7) any subword of the form fjfj does not
change the value of any ri.

Proposition 5. Any word w = x0x1 . . . xt ∈ X∗ is mapped by g on the
word g(w) = y0y1 . . . yt ∈ X∗, where

yi = xi +mi
(−1)xi−1

(
ai

1r1 + ai
2r2 + . . .+ ai

krk
)

for i = 0, 1, . . . , t (we assume x−1 = 0).

Proof. By Remark 1 we may assume that νj+1 6= νj for j = 1, . . . , r −
1. Now, the thesis follows by the equality yi = gx0x1...xi−1(xi) and by
Proposition 4.

Let r be the length of the group-word (7). In case r even the number
of all the symbols in even positions in (7) is equal to the number of all
the symbols in odd positions, and in case r odd these numbers differ by
one. Hence the sum

ε = r1 + r2 + . . .+ rk

is equal to (r)2 - the remainder of r modulo 2.

Theorem 3. The mapping

Ψ(g) = (r1, r2, . . . , rk−1) ε

defines the isomorphism between the groups G(A) and Dih(Zk−1).

Proof. First we show that Ψ is a well-defined, one-to-one mapping from
G(A) to Dih(Zk−1). Let g = fν1 . . . fνr and g′ = fµ1 . . . fµs be any
elements of G(A). Let

r1, . . . , rk, ε = r1 + . . .+ rk,

r′1, . . . , r
′
k, ε′ = r′1 + . . .+ r′k
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be sequences corresponding to the group-words fν1 . . . fνr and fµ1 . . . fµs

respectively. By Proposition 5 we have: g = g′ if and only if

xi +mi
(−1)xi−1(ai

1r1 + . . .+ ai
krk) = xi +mi

(−1)xi−1(ai
1r

′
1 + . . .+ ai

kr
′
k)

for any xi−1 ∈ Xi−1, xi ∈ Xi and any i ∈ N0. This condition is equivalent
to the congruences:

ai
1(r1 − r′1) + . . .+ ai

k(rk − r′k) ≡ 0 (mod mi)

for any i ∈ N0. By Lemma 1 this is equivalent to the equalities: ri = r′i
for i = 1, 2, . . . , k. In particular ε = ε′. As a result we have: g = g′ if
and only if Ψ(g) = Ψ(g′). To show Ψ is a homomorphism, let us denote
Ψ(gg′) = (R1, . . . , Rk−1)ε

′′. Since gg′ = fν1 . . . fνrfµ1 . . . fµs , we have:

ε′′ = (r + s)2 = (r)2 +2 (s)2 = ε+2 ε
′.

If ε = 0, then r is even. Thus for any i ∈ {1, 2, . . . , k − 1} the position
of any symbol fi in the group-word fµ1 . . . fµs has the same parity as in
the group-word fν1 . . . fνrfµ1 . . . fµs . In consequence R+

i = r+i + r′i
+ and

R−
i = r−i + r′i

−. Thus for i = 1, 2, . . . , k − 1 we have in this case

Ri = R−
i −R+

i = (r−i − r+i ) + (r′i
−
− r′i

+
) = ri + r′i.

If ε = 1, then r is odd and the positions of any fi in group-words
fµ1 . . . fµs and fν1 . . . fνrfµ1 . . . fµs are of different parity. In consequence
R+

i = r+i + r′i
− and R−

i = r−i + r′i
+. Thus for i = 1, 2, . . . , k − 1 we have

in this case

Ri = R−
i −R+

i = (r−i − r+i ) − (r′i
−
− r′i

+
) = ri − r′i.

Hence Ψ(gg′) = Ψ(g)Ψ(g′). Tho show Ψ is onto we take any sequence
of integers r1, r2, . . . , rk with the sum ε = r1 + r2 + . . . + rk ∈ {0, 1}.
Then there is a group-word fν1fν2 . . . fνr in the symbols f1, f2, . . . , fk for
which:

(i) r = |r1| + |r2| + . . .+ |rk|,

(ii) the symbol fi (i = 1, 2, . . . , k) occurs |ri| times in this word,

(iii) if ri > 0 (ri < 0), then each fi occurs in the odd (even) position.

Then Ψ(g) = (r1, r2, . . . , rk−1) ε for the element g = fν1fν2 . . . fνr .
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Corollary 1. Let ||g|| be the length of the shortest presentation of any
g ∈ G(A) as a product of generators f1, . . . , fk. If

Ψ(g) = (r1, r2, . . . , rk−1)ε,

then

||g|| = |r1| + |r2| + . . .+ |rk−1| + |r1 + r2 . . .+ rk−1 − ε|.

Proof. Any group-word fν1fν2 . . . fνr satisfying the conditions (i)-(iii) in
the proof of Theorem 3 constitutes the shortest representative of g.

Using Theorem 3 one may derive the following algorithms solving the
word problem (WP) and the conjugacy problem (CP) in G(A).

ALGORITHMS: Let fν1 . . . fνr and fµ1 . . . fµs be any group-words in
f1, . . . , fk. Calculate their sequences: r1, . . . , rk, ε and r′1, . . . , r

′
k, ε

′. Then

(WP) the group-words define the same element if and only if ri = r′i for
i = 1, . . . , k,

(CP) the group-words define the conjugate elements if and only if ε = 0
and ri = −r′i for i = 1, . . . , k, or if ε = 1 and ri ≡ r′i (mod 2) for
i = 1, . . . , k.

4. The action on the set of words

With the group G = G(A) we associate the following subgroups:

1. StG(w) = {g ∈ G : g(w) = w} - the stabilizer of the word w ∈ X∗,

2. StG(n) =
⋂

w∈X(n)

StG(w)- the stabilizer of the n-th level, which is

the intersection of the stabilizers of the words of the length n,

3. Pu - the stabilizer of an infinite word u ∈ Xω (the so called parabolic
subgroup).

Theorem 4. Let n ∈ N, w ∈ X(n) and u ∈ Xω. Then

StG(w) = StG(n) ≃ Z
k−1

and the parabolic subgroup Pu is a trivial group.
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Proof. Let Ψ(g) = (r1, . . . , rk−1)ε. By proposition 5 we have g ∈ StG(w)
if and only if g ∈ StG(n) if and only if ε = 0 and

(ai
1 − ai

k)r1 + (ai
2 − ai

k)r2 + . . .+ (ai
k−1 − ai

k)rk−1 ≡ 0 (mod mi)

for 0 < i < n. Thus in case n = 1 we have: g ∈ StG(w) if and only
if g ∈ StG(n) if and only if ε = 0. Hence StG(w) = StG(1) ≃ Z

k−1 in
this case. Thus for n ≥ 1 the stabilizer StG(w) = StG(n) < StG(1) is
isomorphic with a free abelian group of rank l ≤ k−1. On the other hand,
if each ri is divisible by the product m1m2 . . .mn−1, then the element g
with Ψ(g) = (r1, . . . , rk−1)0 is an element of the stabilizer StG(n). In
consequence StG(n) contains Z

k−1 as a subgroup. Thus StG(n) must
be isomorphic with Z

k−1. The triviality of any parabolic subgroup is a
direct consequence of Lemma 1.

Let w = x0x1 . . . xt ∈ X∗ be any word over the changing alphabet X,
and let

Orb(w) = {g(w) : g ∈ G}

be its orbit. From Proposition 5 and Theorem 3 we see that the word
v = y0y1 . . . yt ∈ X∗ belongs to Orb(w) if and only if there are integers
r1, r2, . . . , rk−1, ε with ε ∈ {0, 1} such that

yi = xi +mi
(−1)xi−1εai

k +mi
(−1)xi−1

k−1∑

j=1

(ai
j − ai

k)rj (8)

for i = 0, 1, . . . , t. Since, all mi are even and all ai are odd, this implies:
yi − y0 ≡ xi − x0 (mod 2) for i = 0, 1, . . . t. In particular the action of
the group G(A) on the set X∗ is not spherically transitive. By adding
some additional assumption on mi, we may obtain a nice description of
this action.

Theorem 5. Let p1 < p2 < p3 < . . . be a sequence of odd primes such
that pi > i(ai

1 + . . .+ai
k) and let mi = 2pi for i = 1, 2 . . . . Then the words

w = x0x1 . . . xt and v = y0y1 . . . yt belong to the same orbit if and only if

yi − y0 ≡ xi − x0 (mod 2) (9)

for i = 0, 1, . . . , t. In particular

[G : StG(t+ 1)] = m0m1 . . .mt/2
t

for t = 0, 1, 2, . . . .
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Proof. The equalities pi > i(ai
1 + . . .+ ai

k) assure that the condition (6)
holds. Thus, it suffices to prove, that if w and v satisfy (9), then there
is a sequence r1, r2, . . . , rk−1, ε with ε ∈ {0, 1} which satisfies (8). Let us
denote: ε = (y0−x0)2 and zi = (yi−xi) · (−1)xi−1 −εai

k, bi = (ai
1−a

i
k)/2

for i = 0, 1, . . . , t. Then all zi are even, and for i = 1, 2, . . . , t the numbers
bi and pi are coprime. Using the Chinese Remainder Theorem we can find
an integer r such that

zi/2 ≡ rbi (mod pi)

for i = 1, 2, . . . , t. Then the sequence r1, r2, . . . , rk−1, ε in which r1 = r
and r2 = . . . = rk−1 = 0 satisfies (8). As a consequence we obtain

[G : StG(t+ 1)] = [G : StG(w)] = |Orb(w)| = m0m1 . . .mt/2
t.
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[2] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii. Automata, Dynamical
Systems and Groups. Proseedings of Steklov Institute of Mathematics, 231:128-203,
2000.

[3] R. I. Grigorchuk, A. Їuk. Advanced Course on Automata Groups. Notes of the
Course, Centre de Recerca Matematica Bellaterra (Spain), July 2004.

[4] D. E. Joyce: http://www.clarku.edu/ djoyce/wallpaper

[5] V. I. Sushchansky. Group of Automatic Permutations. Dopovidi NAN Ukrainy,
N6:47-51, 1998 (in Ukrainian).

[6] V. I. Sushchansky. Group of Finite Automatic Permutations. Dopovidi NAN
Ukrainy, N2:48-52, 1999 (in Ukrainian).

[7] A. Woryna. On the transformations given by the Mealy time varying automata.
Zesz. Nauk. Pol. Њl., Seria: Automatyka 138(1581):201-215, 2003 (in Polish).

[8] A. Woryna. On permutation groups generated by time-varying Mealy automata.
Publ. Math. Debrecen, vol. 67/1-2 (2005), 115-130.

Contact information

Adam Woryna Institute of Mathematics, Silesian Univer-
sity of Technology, 44-100 Gliwice
E-Mail: Adam.Woryna@polsl.pl

Received by the editors: 23.09.2006
and in final form 14.10.2008.


