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The proton ordering model for the KH2PO4 type ferroelectrics is modified by taking into account the depen-

dence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster ap-

proximation we calculate the crystal polarization and explore the electrocaloric effect. Smearing of the fer-

roelectric phase transition by a longitudinal electric field is described. A good agreement with experiment is

obtained.
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1. Introduction

The electrocaloric (EC) effect is the change of temperature of a dielectric at an adiabatic change of the

applied electric field. Research in this field is driven by a quest for materials that can be used for efficient,

environment-friendly, and compact (on-chip) solid-state cooling devices.

The current state of the art on the electrocaloric effect research for ferroelectrics is well summarized

in [1, 2]. At the moment, the largest effect is observed in perovskite ferroelectrics. Thus, in [3] in the

PbZr0.95Ti0.05O3 thin film with a thickness of 350 nm in a strong electric field (480 kV/cm) the obtained

electrocaloric temperature change is ∆T = 12 K. Ab initio molecular dynamics calculations [4] predict

∆T ≈ 20 K in LiNbO3. In the hydrogen bonded ferroelectrics of the KH2PO4 (KDP) type, the electrocaloric

effect was studied for relatively low fields only. Thus, it has been obtained that∆T ≈ 0.04 K at E ≈ 4 kV/cm

[5], ∆T ≈ 1 K at E ≈ 12 kV/cm [6], and ∆T ≈ 0.25 K at Tc and E ≈ 1.2 kV/cm [7].

Theoretical calculations of the electrocaloric effect in KDP have been made in [8] within the Slater

model [9] and in the paraelectric phase only. It is also known that the Slater model gives incorrect results

in the ferroelectric phase, and more complicated versions of the proton ordering model are required for

an adequate description of these crystals. Thus, the effect of electric field on the physical characteristics

of the KDP type crystals, such as polarization, dielectric permittivity, piezoelectric coefficients, elastic con-

stants, has been described within the proton ordering model with the piezoelectric coupling to the shear

strain ε6 [10–12] and with proton tunneling [13] taken into account. However, these theories required,

in particular, invoking two different values of the effective dipole moments for the paraelectric and fer-

roelectric phase [10, 12]. This made impossible a correct description of the system behavior in the fields

high enough to smear out the first order phase transition. There is an inner logical contradiction in the

model: while no physical characteristic of a crystal should exhibit any discontinuity in the fields above

the critical one, there is no smooth transition between the values of model parameters, rigidly set to be

different for the two phases.

In the present paper we suggest a way to remove this contradiction. Assuming that the difference

between the dipole moments is caused by non-zero values of the order parameter, we modify the proton

ordering model accordingly. The field dependences of polarization, smearing of the first order phase

transition, and the electrocaloric effect are described.
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2. Thermodynamic characteristics

We consider the KDP type ferroelectrics in the presence of an external electric field E3 applied along

the crystallographic axis c, inducing the strain ε6 and polarization P3. The total model Hamiltonian reads

Ĥ = N Ĥ0 + Ĥs , (1)

where N is the total number of primitive cells. The “seed” energy H0 corresponds to the sublattice of

heavy ions and does not explicitly depend on the proton subsystem configuration. It is expressed in terms

of the strain ε6 and electric field E3 and includes the elastic, piezoelectric, and dielectric contributions [11]

Ĥ0 = v

(

1

2
cE0

66 ε
2
6 −e0

36E3ε6 −
1

2
χε0

33E 2
3

)

, (2)

where v is the primitive cell volume; cE0
44

, e0
36
, χε0

33
are the “seed” elastic constant, piezoelectric coefficient,

and dielectric susceptibility, respectively.

The pseudospin part of the Hamiltonian reads

Ĥs =
1

2

∑

q f ,q ′ f ′

J f f ′ (qq ′
)
σq f

2

σq ′ f ′

2
+ Ĥsh+

∑

q f

2ψ6ε6

σq f

2
−

∑

q f

µ f E3

σq f

2
+ ĤE . (3)

Here, the first term describes the effective long-range interactions between protons, including also in-

direct lattice-mediated interactions [14, 15]; σq f is the operator of the z-component of a pseudospin,

corresponding to the proton on the f -th hydrogen bond ( f = 1, 2, 3, 4) in the q-th cell. Its eigenvalues

σq f =±1 are assigned to two equilibrium positions of a proton on this bond.

In (3), Ĥsh is the Hamiltonian of short-range interactions between protons, which includes terms lin-

ear over the strain [11]

Ĥsh =
∑

q

{

(

δs

8
ε6 +

δ1

4
ε6

)

(σq1 +σq2 +σq3 +σq4)

+

(

δs

8
ε6 −

δ1

4
ε6

)

(σq1σq2σq3 +σq1σq2σq4 +σq1σq3σq4 +σq2σq3σq4)

+
1

4
(V +δaε6)(σq1σq2 +σq3σq4)+

1

4
(V −δaε6)(σq2σq3 +σq4σq1)

+
U

4
(σq1σq3 +σq2σq4)+

Φ

16
σq1σq2σq3σq4

}

. (4)

Here,

V =−
1

2
w1 , U =

1

2
w1 −ε , Φ= 4ε−8w +2w1 ,

and ε, w , w1 are the energies of proton configurations.

The third term in (3) is a linear over the shear strain ε6 field due to the piezoelectric coupling;ψ6 is the

deformational potential. The fourth term effectively describes the system interaction with the external

electric field E3. Here, µ f is the effective dipole moment of the f -the hydrogen bond, and

µ1 =µ2 = µ3 =µ4 =µ.

The fifth term in (3) is introduced in the present paper for the first time. It takes into account the

assumed dependence of the effective dipole moment on the order parameter (pseudospin mean value)

ĤE =−

( 1

N

∑

q ′ f ′

σq ′ f ′

2

)2

µ′E3

∑

q f

σq f

2
. (5)

It is equivalent to a term proportional to P 3
3

E3 in a phenomenological thermodynamic potential. Note that

the terms like P 2
3

E3 are not allowed because of the symmetry considerations, and we keep the Hamilto-

nian to be linear in the field E3.
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In view of the crystal structure of the KDP type ferroelectrics, the four-particle cluster approximation

is most suitable for short-range interactions [15, 16]. Long-range interactions and the term ĤE are taken

into account in the mean field approximation. Thus,

ĤE ≈−12Nµ′E3η
2

4
∑

f =1

σq f

2
+16Nµ′E3η

3
. (6)

Combining the fourth term in (3) and the first term in (6), we obtain the following term in the Hamiltonian

−(µ+12µ′η2)E3

∑

q f σq f /2. Effectively, the term 12µ′η2 in (µ+12µ′η2) describes the jump of the dipole

moment at the first order phase transition, its different values for the paraelectric and ferroelectric phase,

and its smooth behavior in the fields above the critical one, when there is no jump of η. We can now use

a single value of µ for both phases and remove the logical contradiction of the earlier theories, described

in Introduction.

Proceeding with the standard calculations of the cluster approximation [10, 12, 16], we obtain the

following expression for the proton ordering parameter

η= 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉 =
m

D
,

where

m = sinh(2z +βδsε6)+2b sinh(z −βδ1ε6),

D = cosh(2z +βδsε6)+4b cosh(z −βδ1ε6)+2a coshβδaε6 +d ,

z =
1

2
ln

1+η

1−η
+βνcη−βψ6ε6 +

βµ

2
E3 +6βµ′η2E3 ,

a = e
−βε

, b = e
−βw

, d = e
−βw1 ;

4νc = J11(0)+2J12(0)+ J13(0) is the eigenvalue of the long-range interactions matrix Fourier transform

J f f ′ =
∑

Rq−Rq′
J f f ′(qq ′); β= 1/kBT .

The thermodynamic potential is then obtained in the following form

G =
v

2
cE0

66 ε
2
6 − ve0

36ε6E3 −
v

2
χε0

33E 2
3 +2νcη

2
+16µ′E3η

3 (7)

+
2

β
ln 2−

2

β
ln

(

1−η2
)

−
2

β
ln D − vσ6ε6 .

Here, σ6 is the formally introduced shear stress conjugate to the strain ε6. In numerical calculations we

put σ6 = 0. The condition of the thermodynamic potential minimum
(

∂G

∂ε6

)

T,E3 ,σ6

= 0

yields an equation for the strain ε6

σ6 = cE0
66 ε6 −e0

36E3 +
4ψ6

v
η+

2r

vD
. (8)

In the same way, we derive the expressions for polarization P3 and molar entropy of the proton subsys-

tem

P3 = −
1

v

(

∂G

∂E3

)

T,σ6

= e0
36ε6 +χε0

33E3 +2
µ

v
η+8

µ′

v
η3

, (9)

S = −
NA

2

(

∂G

∂T

)

E3,σ6

= R

[

− ln 2+ ln(1−η2
)+ lnD +2T zT η+

M

D

]

. (10)

Here, NA is the Avogadro number; R is the gas constant. The following notations are used:

r =−δs Ms −δa Ma +δ1M1 ,

zT =−
1

kBT 2
(νcη−ψ6ε6 +6µ′η2E3),
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M = 4bβw cosh(z −βδ1ε6)+βw1d +2aβεcoshβδaε6 +βε6r,

Ma = 2a sinhβδaε6, Ms = sinh(2z +βδsε6), M1 = 4b sinh(z −βδ1ε6).

Expressions for dielectric susceptibilities, piezoelectric coefficients, and elastic constants derived [17]

from equations (8), (9) are slightly different from the previous ones [10], where the dependence of the

effective dipole moment on the order parameter was not taken into account. Numerical calculations,

however, showed [17] that in zero electric field the difference is minor.

The molar specific heat of the subsystem described by the Hamiltonian (1) is

∆Cσ
= T

(

∂S

∂T

)

σ

= T (ST +SηηT +SεεT ). (11)

Here,

ST =

(

∂S

∂T

)

P3,ε6

=
R

DT

[

2T zT (q6 −ηM)+N6 −
M2

D

]

,

Sη =

(

∂S

∂η

)

ε6 ,T

=
2R

D

[

DT zT + (q6 −ηM)zη
]

,

Sε =

(

∂S

∂ε6

)

η,T

=
R

DT

[

−2
(

q6 −ηM
)

ψ6 −λ+
M

D
r

]

. (12)

Notations introduced here are described in appendix.

Then, the total specific heat is

C =∆Cσ
+Cregular . (13)

Here, ∆Cσ is assumed to describe all the anomalies of the specific heat at the phase transition, whereas

the regular background contribution to the specific heat, mostly from the lattice of heavy ions, is approx-

imated by a linear temperature dependence

Cregular =C0 +C1(T −Tc). (14)

As will be discussed later, this linear approximation agrees with the experimental data.

Finally, the electrocaloric temperature change is calculated using the known formula

∆T =

E3
∫

0

T V

C

(

∂P3

∂T

)

E

dE3 , (15)

where the pyroelectric coefficient is

(

∂P3

∂T

)

E

= e0
36εT +

2(µ+12µ′η2)

v
ηT , (16)

V = v NA/2 is the molar volume.

3. Numerical calculations

To perform the numerical calculations we need to set the values of the following theory parameters:

— the Slater energies ε, w , w1;

— the parameter of the long-range interactions νc;

— the effective dipole moment µ and the correction is due to proton ordering µ′;

— the deformation potentials ψ6, δs , δa , δ1;
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— the “seed” dielectric susceptibility χε0
33
, elastic constant cE0

66
, piezoelectric coefficient e0

36
;

— the parameters of the lattice specific heat C0 and C1.

They are chosen, obviously, by fitting the theoretical thermodynamic characteristics to the experimental

data, as described in [12]. The obtained optimum sets of the model parameters are given in table 1.

To describe crystals with different deuteration levels, we use the mean crystal approximation, where

the theory parameters are assumed to be linearly dependent on deuteron concentration (except for the

parameter νc, for which a small deviation from the linear dependence is assumed, as it is chosen from

the condition that the calculated transition temperature coincides with the experimental one, which is

also slightly non-linear). The dependence of the energy levels and interparticle interaction constants on

deuteration is caused by the corresponding geometrical changes in the crystal structure with deuteration

(elongation of the hydrogen bonds, changes in the distance between the equilibrium positions of H or D

on the bonds, changes in the lattice constants, etc).

Table 1. The optimum sets of the model parameters for different crystals. As KD2PO4 we denoted

K(H1−xDx )2PO4 with x = 0.89.

T 0
c ε/kB w/kB νc/kB µ µ′ χ0

33

(K) (K) (K) (K) (10−30 C·m) (10−30 C·m)

KH2PO4 122.22 56.00 430.0 17.55 5.6 −0.217 0.75

KD2PO4 211.73 85.33 730.4 39.26 6.8 −0.217 0.39

KH2AsO4 97 35.50 385.0 17.43 5.5 −0.033 0.7

KD2AsO4 162 56.00 690.0 31.72 7.3 −0.000 0.5

ψ6/kB δs /kB δa/kB δ1/kB cE0
66

e0
36

C0 C1

(K) (K) (K) (K) (109 N/m2) (C/m2) J/(mol K) J/(mol K2)

KH2PO4 −150.00 82.00 −500.00 −400.0 7.00 0.0033 60 0.32

KD2PO4 −139.89 48.64 −1005.68 −400.0 6.39 0.0033 93 0.32

KH2AsO4 −170.00 130.00 −500.0 −500.0 7.50 0.01 60 0.32

KD2AsO4 −160.00 120.00 −800.0 −500.0 6.95 0.01 98 0.40

The primitive cell volume is taken to be v = 0.1946 · 10−21 cm3 for K(H1−xDx )2PO4 and v = 0.202 ·

10−21 cm3 for K(H1−xDx )2AsO4, irrespectively of the deuteration. The energy w1 of proton configurations

with four or zero protons near the given oxygen tetrahedron should be much higher than ε and w .

Therefore, we take w1 =∞ (d = 0).

As we have already mentioned, when the dependence of the effective dipole moment on the order

parameter is taken into account, the agreement between the theory and experiment for most of the cal-

culated dielectric, piezoelectric, elastic characteristics, and specific heat of the studied crystals in the

absence of an external electric field is neither improved nor worsened (see [17]). However, the present

model allows us to describe more consistently the smearing of the first order phase in high electric fields.

The temperature dependence of the specific heat of KH2PO4 and KD2PO4 is shown in figure 1. The con-

tribution ∆Cσ is essential in the transition region and satisfactorily describes the experimental anoma-

lies. As one can see, the total specific heat above Tc can be well approximated by a linear temperature

dependence, thus justifying the linear dependence of Cregular , given by equation (14).

In figures 2 and 3 we plotted the temperature variation of polarization of K(H1−xDx )2PO4 in different

fields. The agreement with experiment is better at x = 0.89 (and 0.84, see [17]) than at x = 0. We believe

this is due to proton tunnelling, essential in non-deuterated samples, which is not included in our model.

The field E3, which in these crystals is the field conjugate to the order parameter, induces non-zero

polarization P3 above the transition point. Polarization has a jump at Tc, indicating the first order phase

transition. With an increasing field, the polarization jump decreases, whereas the transition temperature

Tc increases almost linearly. The corresponding ∂Tc/∂E3 slopes are 0.192 and 0.115 K cm/kV for x = 0
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Figure 1. The temperature dependence of the molar specific heat of K(H1−xDx )2PO4 at x = 0.0 — ◦ [18],

ä [19]; at x = 0.86 — △ [19]. Dashed lines 1’ and 2’: the theoretical results of [12].

and x = 0.89, respectively (c.f. 0.22 and 0.13 K cm/kV from our earlier calculations [10] and experimen-

tal 0.125 K cm/kV of [23] for x = 0.89). At some critical field E∗, the jump vanishes, and the transition

smears out. The calculated coordinates of the critical point are E∗ = 125 V/cm, T ∗
c =122.244 K for x = 0

and 7.1 kV/cm, 212.55 K for x = 0.89, which agrees well with the experiment [22, 23]. It should be noted

that in our previous calculations [12] it was impossible to obtain a correct description of the polariza-

tion behavior in the fields above the critical one, due to the necessity of using two different values of the

effective dipole moment µ in calculations.

The calculated electrocaloric changes of temperature ∆T of the K(H1−xDx )2PO4 and K(H1−xDx )2AsO4

crystals with the adiabatically applied electric field are shown in figures 4 and 5. The experimental data

of [7] were obtained at T = 121 K, which was very close to the transition temperature of the sample used

in the measurements.
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Figure 2. The temperature dependence of polariza-

tion of KH2PO4 at different E3(MV/m): 0.0 — 1, △

[5]; 0.581 — 2, ◦ [20]; 1.250 — 3, ä [20]; 2.031 — 4,

♦ [20]. Symbols are experimental points; solid lines:

the present theory; dashed lines: the theoretical re-

sults of [12].

Figure 3. The temperature dependence of polariza-

tion of K(H1−xDx )2PO4 at x = 0.89 and at different

E3 (MV/m): 0.0— 1; 0.282— 2, ◦; 0.564— 3,ä; 0.71—

4; 0.846— 5, ♦; 1.128— 6,△. Symbols are experimen-

tal points taken from [21]; lines: the present theory.
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Figure 4. The field dependence of the electrocaloric temperature change of K(H1−xDx )2PO4 for x = 0.0

(solid lines) and x = 0.89 (dashed lines) at T −T 0
c =−2.04 K— 1, 1′ ,ä; T = T 0

c — 2, 2′, ◦; T −T 0
c = 3.2 K —

3, 3′, ⋄. Experimental points are taken from [5] — ◦, ä and [7]— ⋄.

As one can see, at small fields (figures 4, 5, left-hand) the calculated electrocaloric temperature change

is a linear function of the field below T 0
c (curves 1, 1′) and a quadratic function above T 0

c (at 2, 2′). The

experimental behavior below T 0
c is not linear at E3 < 2 kV/cm due to the domains: The domains, whose

polarization is oriented along the field, are heated, whereas the domains, polarized in the opposite di-

rection are cooled, thus the resulting net change of the sample temperature is close to zero. The experi-

mental data for the electrocaloric temperature change at and above T 0
c available for KH2PO4, as well as

the ∆T /∆E ratio below T 0
c at fields above 2 kV/cm (when the sample is in a single-domain state), are well

reproduced by the theory.

At higher fields (figures 4, 5, right-hand) the calculated electrocaloric temperature changes at tem-

peratures above T 0
c are larger than below T 0

c . The obtained curves deviate from linear and quadratic

behavior and reach saturation at E ≫ 500 kV/cm. It should be mentioned, however, that these curves are

calculated with the linear over the field E3 pseudospin Hamiltonian (3). It would be very interesting to

compare our results at high fields with experiment, for instance, to find out when non-linear contribu-

tions to the Hamiltonian cannot be omitted any longer. Unfortunately, no experimental data for ∆T in
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Figure 5. The field dependence of the electrocaloric temperature change of KH2AsO4 (solid lines) and

KD2AsO4 (dashed lines) at T −T 0
c =−2.04 K— 1, 1′ ; T = T 0

c — 2, 2′ ; T −T 0
c = 3.2 K — 3, 3′.
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Figure 6. The temperature dependence of the electrocaloric temperature change of K(H1−xDx )2PO4 for

x = 0.0 (left-hand) and x = 0.89 (right-hand) in different fields.

the fields above 1 kV/cm are available. And, of course, possibilities for experimental measurements are

limited by the dielectric strength of the samples.

As one can see from the temperature dependence of ∆T (figure 6) for K(H1−xDx )2PO4 crystals, the

calculated electrocaloric temperature change is the largest at temperatures below T 0
c but close Tc and

can exceed 6 K; however, the fields required to reach ∆T that high are not accessible in reality, because

most likely they exceed the dielectric strength of the crystals.

4. Conclusions

Taking into account the dependence of the effective dipole moment on the order parameter within

the framework of the proton orderingmodel allows us to correctly describe the smearing of the ferroelec-

tric phase transition in high electric fields as well as the electrocaloric effect in the KDP family crystals.

The theory predicts the values of the electrocaloric temperature change of a few Kelvins in high fields.

Additional experimental measurements of ∆T in the fields above 2 kV/cm are necessary.

Appendix

The notations introduced in equations (11)–(12) are as follows:

N6 = 2a(βε)
2

coshβδaε6 +4b(βw)
2

cosh(z −βδ1ε6)+ (βw1)
2d +2ε6β

2
(−εδa Ma +wδ1M1)

+ε2
6

[

2a(βδa )
2

coshβδaε6 + (βδs )
2

cosh(2z +βδsε6)+4b(βδ1)
2

cosh(z −βδ1ε6)
]

,

q6 = 2bβw sinh(z −βδ1ε6)+ε6β
[

−δs cosh(2z +βδsε6)+2bδ1 cosh(z −βδ1ε6)
]

,

λ=−βεδa Ma +βwδ1M1 +ε6β
[

δ2
s cosh(2z +βδsε6)+2aδ2

a coshβδaε6 +4bδ2
1 cosh(z −βδ1ε6)

]

,

ηT = pε
6 +

v

2(µ+12µ′η2)
(e36 −e2

36)εT ,

εT =

[

2β

vD

(

2T zT f6 −λ+
Mr

D

)

−
4pε

6

v

(

ψ6 −
zη f6

D

)]

/

cE
66 .

In turn,

pε
6 =

1

T

2κT zT + [q6 −ηM]

D −2κzη
,
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cE
66

is the isothermal elastic constant at a constant field

cE
66 = cE0

66 +
8ψ6

v

β(−ψ6κ+ f6)

D −2zηκ
−

4βzη f 2
6

vD(D −2zηκ)

−
2β

vD

[

δ2
s cosh(2z +βδsε6)+2aδ2

a coshβδaε6 +4bδ2
1 cosh(z −βδ1ε6)

]

+
2βr 2

vD2
,

and e36 is the isothermal piezoelectric coefficient

e36 =−

(

∂σ6

∂E3

)

T,ε6

=

(

∂P3

∂ε6

)

T,E3

= e0
36 +

2(µ+12µ′η2)

v

βθ6

D −2zηκ
,

with

θ6 =−2κψ6 + f6 , f6 = δs cosh(2z +βδsε6)−2bδ1 cosh(z −βδ1ε6)+ηr,

zη =
1

1−η2
+βνc+12βµ′ηE3 .
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A.S. Vdovych et al.

Електрокалоричний ефект у кристалах типу KH2PO4

А.С. Вдович1, А.П. Моїна1, Р.Р. Левицький1, I.Р. Зачек2

1 Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна

2 Нацiональний унiверситет “Львiвська полiтехнiка”, вул. С. Бандери, 12, 79013 Львiв, Україна

В моделi протонного впорядкування для кристалiв типу KH2PO4 враховано залежнiсть ефективних ди-

польних моментiв вiд параметра протонного впорядкування. В наближеннi чотиричастинкового класте-

ра розраховано поляризацiю кристалiв та дослiджено електрокалоричний ефект у них. Описано розми-

вання сегнетоелектричного фазового переходу поздовжним електричним полем. Отримано добре узго-

дження з експериментальними даними.

Ключовi слова: електрокалоричний ефект, KDP, кластерне наближення, поляризацiя
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