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The proton ordering model for the KH2PO4 type ferroelectrics is modified by taking into account the depen-
dence of the effective dipole moments on the proton ordering parameter. Within the four-particle cluster ap-
proximation we calculate the crystal polarization and explore the electrocaloric effect. Smearing of the fer-
roelectric phase transition by a longitudinal electric field is described. A good agreement with experiment is
obtained.
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1. Introduction

The electrocaloric (EC) effect is the change of temperature of a dielectric at an adiabatic change of the
applied electric field. Research in this field is driven by a quest for materials that can be used for efficient,
environment-friendly, and compact (on-chip) solid-state cooling devices.

The current state of the art on the electrocaloric effect research for ferroelectrics is well summarized
in [1, 2]. At the moment, the largest effect is observed in perovskite ferroelectrics. Thus, in [3] in the
PbZr(.95Tip.0503 thin film with a thickness of 350 nm in a strong electric field (480 kV/cm) the obtained
electrocaloric temperature change is AT = 12 K. Ab initio molecular dynamics calculations [4] predict
AT =20 K in LiNbO3s. In the hydrogen bonded ferroelectrics of the KH,PO, (KDP) type, the electrocaloric
effect was studied for relatively low fields only. Thus, it has been obtained that AT = 0.04 K at E = 4 kV/cm
[5], AT = 1 Kat E=12kV/cm [6],and AT = 0.25 Kat T, and E = 1.2 kV/cm [7].

Theoretical calculations of the electrocaloric effect in KDP have been made in [8] within the Slater
model [9] and in the paraelectric phase only. It is also known that the Slater model gives incorrect results
in the ferroelectric phase, and more complicated versions of the proton ordering model are required for
an adequate description of these crystals. Thus, the effect of electric field on the physical characteristics
of the KDP type crystals, such as polarization, dielectric permittivity, piezoelectric coefficients, elastic con-
stants, has been described within the proton ordering model with the piezoelectric coupling to the shear
strain €g [10-12] and with proton tunneling [13] taken into account. However, these theories required,
in particular, invoking two different values of the effective dipole moments for the paraelectric and fer-
roelectric phase [10,[12]. This made impossible a correct description of the system behavior in the fields
high enough to smear out the first order phase transition. There is an inner logical contradiction in the
model: while no physical characteristic of a crystal should exhibit any discontinuity in the fields above
the critical one, there is no smooth transition between the values of model parameters, rigidly set to be
different for the two phases.

In the present paper we suggest a way to remove this contradiction. Assuming that the difference
between the dipole moments is caused by non-zero values of the order parameter, we modify the proton
ordering model accordingly. The field dependences of polarization, smearing of the first order phase
transition, and the electrocaloric effect are described.
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2. Thermodynamic characteristics

We consider the KDP type ferroelectrics in the presence of an external electric field E; applied along
the crystallographic axis ¢, inducing the strain £ and polarization P3. The total model Hamiltonian reads

H=NHy+ Hs, (1)

where N is the total number of primitive cells. The “seed” energy Hy corresponds to the sublattice of
heavy ions and does not explicitly depend on the proton subsystem configuration. It is expressed in terms
of the strain €4 and electric field E3 and includes the elastic, piezoelectric, and dielectric contributions [11]

N 1
Hy=v zcgé)sé egGngg - )(3211"3 2)

where v is the primitive cell volume; c4 o 636, )(33 are the “seed” elastic constant, piezoelectric coefficient,
and dielectric susceptibility, respectively.
The pseudospin part of the Hamiltonian reads

Z ]fff(qq) qf Zf +Hsh+ZZW65GT_Z,U EsTf'*‘HE 3)
qqu’ qf

Here, the first term describes the effective long-range interactions between protons, including also in-
direct lattice-mediated interactions [14, [15]; Oqf is the operator of the z-component of a pseudospin,
corresponding to the proton on the f-th hydrogen bond (f = 1, 2, 3,4) in the g-th cell. Its eigenvalues
04r = %1 are assigned to two equilibrium positions of a proton on this bond.

In @3, Plsh is the Hamiltonian of short-range interactions between protons, which includes terms lin-
ear over the strain [11]

. Os 01
Hy, = Xq:{ §£6+I£6 (0q1+0q2+0q3+0q4)
s

!
gé‘ﬁ— Zb‘g (O'qlo'qgaqg +0q10q20q4 t0q10430 g4 +0q20'q30'q4)

+

1 1
+Z(V+ 04€6)(01002+0g30q4) + Z(V_ 0a€6)(0 42043+ 0440 q1)
U O
+Z(O'q10'q3+0'q20'q4)+1—60q10q20q30q4}. 4

Here,

1
V:_Ewl’ U:Ewl—g, d=4e-8w+2w,,

and &, w, w are the energies of proton configurations.

The third term in (3) is a linear over the shear strain &g field due to the piezoelectric coupling; ¥ is the
deformational potential. The fourth term effectively describes the system interaction with the external
electric field E3. Here, uy is the effective dipole moment of the f-the hydrogen bond, and

H1=p2=H3=Hs = [

The fifth term in @) is introduced in the present paper for the first time. It takes into account the
assumed dependence of the effective dipole moment on the order parameter (pseudospin mean value)

o (L TV e T
%_(N%,z)”&%z' ®

Itis equivalent to a term proportional to PgEg in a phenomenological thermodynamic potential. Note that
the terms like P§E3 are not allowed because of the symmetry considerations, and we keep the Hamilto-
nian to be linear in the field E3.
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In view of the crystal structure of the KDP type ferroelectrics, the four-particle cluster approximation
is most suitable for short-range interactions [15,16]. Long-range interactions and the term a £ are taken
into account in the mean field approximation. Thus,

4

Hp =~ -12NY'Esn* Y. + 16Ny E3n®. (6)

f=1

Combining the fourth term in @) and the first term in (6), we obtain the following term in the Hamiltonian

—(u+12u'n"Es ¥ g 0 47 /2. Effectively, the term 12u/n? in (u+ 124/n?) describes the jump of the dipole

moment at the first order phase transition, its different values for the paraelectric and ferroelectric phase,

and its smooth behavior in the fields above the critical one, when there is no jump of 7. We can now use

a single value of u for both phases and remove the logical contradiction of the earlier theories, described
in Introduction.

Proceeding with the standard calculations of the cluster approximation [10, [12, [16], we obtain the
following expression for the proton ordering parameter

9ar
2

m
N=(0q1) =(0g2) =(043) =(0q4) = D’
where
m =sinh(2z + Bs€6) + 2bsinh(z — B01¢€6),
D =cosh(2z+ Bdsep) + 4bcosh(z— f61e6) +2acosh o €6+ d,
1. 1+
z=3 In 1_’] +Pven — Pyses + ﬁ—'uEs +6pu'n’Es,
b=ehPw, d=ePw

4ve = J11(0) +2J12(0) + J13(0) is the eigenvalue of the long-range interactions matrix Fourier transform
Trr=XRr,Ry Jrr(qq); B=1/ksT.
The thermodynamic potential is then obtained in the following form

v v
G = 3 L0¢2 —vediesEs — E)(ggEg +2ven? + 16y Ezn® 7

2 2 2
+=In2-=In(1-9°)-=InD - voses.
B p ( ) p

Here, o is the formally introduced shear stress conjugate to the strain €¢. In numerical calculations we
put o6 = 0. The condition of the thermodynamic potential minimum
(50 ™"
0¢6 ) 1,85,0
yields an equation for the strain &g

4 6 2r
06265886_626E3+%U+E'

In the same way, we derive the expressions for polarization P3 and molar entropy of the proton subsys-
tem

®

/

1(0G

Py = ——|=— = s+ 10Es + 28, 9

3 V(aES)T,06 €36€6 T X33L3 UTI UTI 9
Ny (0G M

S = ——A(—) =R|-In2+In(l-np>) +InD+2Tzrn+— | . (10)
2 \0T g, D

Here, N, is the Avogadro number; R is the gas constant. The following notations are used:
r= —65M5 - 6(1Mu +61M1 ,

zr = (ven —wees + 6’0" Es),

1
kg T?
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M =4bBwcosh(z— Bd1€g) + Bund +2afecosh B ,e6 + PegT,
M, =2asinh 6 ze6, Mg = sinh(2z+ Bdse6), M1 = 4bsinh(z — 801 €6).

Expressions for dielectric susceptibilities, piezoelectric coefficients, and elastic constants derived [17]
from equations (@), @) are slightly different from the previous ones [10], where the dependence of the
effective dipole moment on the order parameter was not taken into account. Numerical calculations,
however, showed [17] that in zero electric field the difference is minor.

The molar specific heat of the subsystem described by the Hamiltonian () is

o 0S B
AC” =T a—T —T(ST+SnTIT+Sg£T). 1D
g
Here,
S —(68) = 2Tz ( M) + N Mz]
T2\oT ) pye, DT |7 AT |’
S (05) 2R[DT ¢ (G-
=|\o=| =75 [DTzr+(gs—nMzy,
K an EG,T D "
0S M
=|— =—|-2 -nM L . 12
Se (086)n,T DT (g6 —n M)y +DT] (12)

Notations introduced here are described in appendix.
Then, the total specific heat is
C = AC? + Cregular - (13)

Here, ACY is assumed to describe all the anomalies of the specific heat at the phase transition, whereas
the regular background contribution to the specific heat, mostly from the lattice of heavy ions, is approx-
imated by a linear temperature dependence

Cregular = Co + C1(T — T¢). (14)

As will be discussed later, this linear approximation agrees with the experimental data.
Finally, the electrocaloric temperature change is calculated using the known formula

3
ATZOj\?(ﬁ)EdEg, (15)

where the pyroelectric coefficient is

(%) =l +—2(”+12”lnz)nT (16)
E

eacET
orT 36 v

V = vNa/2 is the molar volume.

3. Numerical calculations

To perform the numerical calculations we need to set the values of the following theory parameters:
— the Slater energies ¢, w, wy;
— the parameter of the long-range interactions vc;
— the effective dipole moment y and the correction is due to proton ordering '

— the deformation potentials g, 65, 64, 01;
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0 elastic constant ¢£?

— the “seed” dielectric susceptibility ng: 562

. . . 0 .
piezoelectric coefficient egg;
— the parameters of the lattice specific heat Cy and Cj.

They are chosen, obviously, by fitting the theoretical thermodynamic characteristics to the experimental
data, as described in [12]. The obtained optimum sets of the model parameters are given in table[l

To describe crystals with different deuteration levels, we use the mean crystal approximation, where
the theory parameters are assumed to be linearly dependent on deuteron concentration (except for the
parameter v, for which a small deviation from the linear dependence is assumed, as it is chosen from
the condition that the calculated transition temperature coincides with the experimental one, which is
also slightly non-linear). The dependence of the energy levels and interparticle interaction constants on
deuteration is caused by the corresponding geometrical changes in the crystal structure with deuteration
(elongation of the hydrogen bonds, changes in the distance between the equilibrium positions of H or D
on the bonds, changes in the lattice constants, etc).

Table 1. The optimum sets of the model parameters for different crystals. As KD,PO4 we denoted
K(H1-xDy)2P0O4 with x = 0.89.

19 elksg | wiks | velkg U o X33
(K) (K) (K) K | (1073 Cc:m) | (1073° C-m)
KH,>PO4 122.22 | 56.00 | 430.0 17.55 5.6 -0.217 0.75
KD»POy 211.73 | 85.33 | 730.4 | 39.26 6.8 -0.217 0.39
KH»AsOy4 97 35.50 | 385.0 17.43 5.5 —-0.033 0.7
KDyAsQOy 162 56.00 | 690.0 31.72 7.3 —0.000 0.5
I/JG/ICB 63/’63 6a/kB 61/](?]3 Cgé) egﬁ Co C
(K) (K) (K) (K | 10°N/m?) | (C/m®) | J/(molK) | J/(mol K?)
KH>POy —-150.00 82.00 -500.00 -400.0 7.00 0.0033 60 0.32
KD2POy4 —-139.89 48.64 —-1005.68 | —400.0 6.39 0.0033 93 0.32
KH»AsO4 | —170.00 | 130.00 -500.0 -500.0 7.50 0.01 60 0.32
KD»AsO4 | —160.00 | 120.00 —-800.0 -500.0 6.95 0.01 98 0.40

The primitive cell volume is taken to be v = 0.1946-102! c¢m? for K(H;_,D),P0O, and v = 0.202 -
1072 cm3 for K(H;_xDy)2As04, irrespectively of the deuteration. The energy w; of proton configurations
with four or zero protons near the given oxygen tetrahedron should be much higher than ¢ and w.
Therefore, we take w; = oo (d = 0).

As we have already mentioned, when the dependence of the effective dipole moment on the order
parameter is taken into account, the agreement between the theory and experiment for most of the cal-
culated dielectric, piezoelectric, elastic characteristics, and specific heat of the studied crystals in the
absence of an external electric field is neither improved nor worsened (see [17]). However, the present
model allows us to describe more consistently the smearing of the first order phase in high electric fields.

The temperature dependence of the specific heat of KH,PO4 and KD, PO, is shown in figure[dl The con-
tribution ACY is essential in the transition region and satisfactorily describes the experimental anoma-
lies. As one can see, the total specific heat above T; can be well approximated by a linear temperature
dependence, thus justifying the linear dependence of Cregular, given by equation (4.

In figures2land 3 we plotted the temperature variation of polarization of K(H;-xDy)2POy in different
fields. The agreement with experiment is better at x = 0.89 (and 0.84, see [17]) than at x = 0. We believe
this is due to proton tunnelling, essential in non-deuterated samples, which is not included in our model.

The field E3, which in these crystals is the field conjugate to the order parameter, induces non-zero
polarization P3 above the transition point. Polarization has a jump at T, indicating the first order phase
transition. With an increasing field, the polarization jump decreases, whereas the transition temperature
T, increases almost linearly. The corresponding 07T./0Es slopes are 0.192 and 0.115 K cm/kV for x = 0
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Figure 1. The temperature dependence of the molar specific heat of K(H;_,Dyx)2P0O4 at x = 0.0 — o [18],
O [19]; at x = 0.86 — A [19]. Dashed lines 1’ and 2’: the theoretical results of [12].

and x = 0.89, respectively (c.f. 0.22 and 0.13 K cm/kV from our earlier calculations [10] and experimen-
tal 0.125 K cm/kV of [23] for x = 0.89). At some critical field E*, the jump vanishes, and the transition
smears out. The calculated coordinates of the critical point are E* = 125 V/cm, T7=122.244 K for x =0
and 7.1 kV/cm, 212.55 K for x = 0.89, which agrees well with the experiment [22,23]. It should be noted
that in our previous calculations [12] it was impossible to obtain a correct description of the polariza-
tion behavior in the fields above the critical one, due to the necessity of using two different values of the
effective dipole moment p in calculations.

The calculated electrocaloric changes of temperature AT of the K(H;_xD,)2P0O4 and K(H;_;Dy)2As04
crystals with the adiabatically applied electric field are shown in figuresland Bl The experimental data
of [7] were obtained at T = 121 K, which was very close to the transition temperature of the sample used
in the measurements.

P, cim? P, CIm’
0.06 : 0.05
E=0.000 MV/m (1)
0058 — — — — _ 0.282 MV/m (2)
0.04¢ 0.564 MV/m (3) 1
0.710 MV/m (4)
0.04f 0.846 MV/m (5)
0.03f 1.128 MV/m (6) 1
E=0.000 MV/m (1)
0.03f 0.581 MV/m (2) 1
0w (3
0.02f .
8
0.01} 0.01r R
0 : : : : 0 ‘ ‘ ‘
90 100 110 120 130 T.K 211 212 213 214 T.K

Figure 2. The temperature dependence of polariza-
tion of KHoPO, at different E3(MV/m): 0.0 — 1, A
[5]; 0.581 — 2, o [20]; 1.250 — 3, O [20]; 2.031 — 4,
¢ [20]. Symbols are experimental points; solid lines:
the present theory; dashed lines: the theoretical re-
sults of [12].

Figure 3. The temperature dependence of polariza-
tion of K(H;-,Dy)2P0,4 at x = 0.89 and at different
E3 (MV/m): 0.0 —1;0.282 — 2, 0;0.564 — 3,;0.71 —
4;0.846 —5, ¢; 1.128 — 6, A. Symbols are experimen-
tal points taken from [21]; lines: the present theory.
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g AT.K
AT, K / _ -7 -
/ - _ -
/ 0 T -7 -
0.251 , T-T.=-2.04K (1,1] P
7
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Figure 4. The field dependence of the electrocaloric temperature change of K(Hj_,Dy)2PO4 for x = 0.0
(solid lines) and x = 0.89 (dashed lines) at T—T9 = ~2.04 K— 1,1/, ; T=T? —2,2/,0; T-T? =32 K—
3,3, 0. Experimental points are taken from [5] — o, O and [7] — o.

As one can see, at small fields (figures[d][5] left-hand) the calculated electrocaloric temperature change
is a linear function of the field below Tc0 (curves 1, 1') and a quadratic function above Tc0 (at 2, 2). The
experimental behavior below Tc0 is not linear at E5 < 2 kV/cm due to the domains: The domains, whose
polarization is oriented along the field, are heated, whereas the domains, polarized in the opposite di-
rection are cooled, thus the resulting net change of the sample temperature is close to zero. The experi-
mental data for the electrocaloric temperature change at and above TCO available for KH,POy4, as well as
the AT/AE ratio below Tc0 at fields above 2 kV/cm (when the sample is in a single-domain state), are well
reproduced by the theory.

At higher fields (figures [4] [B] right-hand) the calculated electrocaloric temperature changes at tem-
peratures above T? are larger than below T.. The obtained curves deviate from linear and quadratic
behavior and reach saturation at E > 500 kV/cm. It should be mentioned, however, that these curves are
calculated with the linear over the field E5 pseudospin Hamiltonian @). It would be very interesting to
compare our results at high fields with experiment, for instance, to find out when non-linear contribu-
tions to the Hamiltonian cannot be omitted any longer. Unfortunately, no experimental data for AT in

‘ ‘ ‘ ‘ AT, K
AT, K | 8
012} ! . ] 71
2! T-T.=-2.04K (1,1) e — ===
I -===Z
0.1} ) 2 0.00K (2,2) | 6f T
; 3.28K (3,3) -7
5t Ve 7 4
0.08} ! - 2‘1/ / T-T9=-2.04K (1,1)
!
/ ar " 24 0.00K (2,2") T
0.06[ 1 /1 3.28K (3,3)
I 31,/ 13 /3 |
0.04} !
! 1 — AN |
/ — I’ - [/ , 1
0.02} === 3 ] 1 . S—
0 - — 3] e/ v
0 0.1 0.2 0.3 0.4 E,MV/m 0 10 20 30 40 E,MV/m

Figure 5. The field dependence of the electrocaloric temperature change of KHpAsO4 (solid lines) and
KD2AsOy (dashed lines) at T—T? = —2.04 K— 1,15, T=T9 —2,2"; T-T? =32K—3,3'.
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0 : 0
100 110 120 130 140 T,K 190 200 210 220

Figure 6. The temperature dependence of the electrocaloric temperature change of K(Hj_,Dx)2PO4 for
x =0.0 (left-hand) and x = 0.89 (right-hand) in different fields.

the fields above 1 kV/cm are available. And, of course, possibilities for experimental measurements are
limited by the dielectric strength of the samples.

As one can see from the temperature dependence of AT (figure [6) for K(H;-,D,)2PO4 crystals, the
calculated electrocaloric temperature change is the largest at temperatures below Tc0 but close T, and
can exceed 6 K; however, the fields required to reach AT that high are not accessible in reality, because
most likely they exceed the dielectric strength of the crystals.

4. Conclusions

Taking into account the dependence of the effective dipole moment on the order parameter within
the framework of the proton ordering model allows us to correctly describe the smearing of the ferroelec-
tric phase transition in high electric fields as well as the electrocaloric effect in the KDP family crystals.
The theory predicts the values of the electrocaloric temperature change of a few Kelvins in high fields.
Additional experimental measurements of AT in the fields above 2 kV/cm are necessary.

Appendix

The notations introduced in equations (I1)—(12) are as follows:

2a(ﬁ£)2 cosh B0 €6 + 4b(ﬁw)2 cosh(z— B61€6) + (B wl)zd + 2£6ﬁ2(—£6aMa + wd1 M)
+ 8(23 [Za(ﬁé‘a)z cosh B8 &6 + (8 5)? cosh(2z + BSse6) + 4b(B51)? cosh(z — Bé1€6)],

Ng =

gs = 2bPwsinh(z— $61€6) + €60 [0 cosh(2z + B8 s€6) + 261 cosh(z — $61€6)],
A =—Bed oMy + Bwd) My + 68|62 cosh(2z + B se6) + 2ad% cosh B8 4e6 +4b67 cosh(z — 51 €6)],

£ v 2
= + - —_ s
T =Ps 2(u+12p'n2) (36~ e5e)e
_[2B Mr\ 4pg 2 fo E
“r=10p (ZTZTfG‘“ ?) T (%‘ 7) / i
In turn,
e _ i 2nTzr + g6 —M]
Pe T D-2xz,
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056 is the isothermal elastic constant at a constant field

2
E = ok, BWe BEYer+ fo) 4Bz f
66 " v D-2zx  vD(D-2z,%)

2

2
_£ (65 cosh(2z + 3 se6) +2ady cosh S5 qe6 +4b5T cosh(z — fo1€6)] + v[;)r2 ’

and esg is the isothermal piezoelectric coefficient

with

e z_(%) z(aﬁ) o0, 2ur12u'n’) Pl
36 6E3 Teq 686 T,E3 v D—ZZn%,

06 = —2xys + f5, foe=065cosh(2z+ B6e6) —2bd cosh(z— o1 €6) + 11,

1
Zn = - +Bve +128u'nEs.
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EnexkTpokanopuuHunin epexrt y kpuctanax tuny KH,PO,

A.C. BAOBMLF], A.l. Mo'l'Ham, P.P. J'IeBmu,bKMl?F], 1.P. 3aue?

1 IHCTUTYT $i3nKkm KoHAeHcoBaHMX cuctem HAH YkpaiHu, Byn. I. CBeHuiybkoro, 1, 79011 JibBiB, YkpaiHa
2 HauioHanbHuii yHiBepcuTeT “/IbBiBCbKa NoniTexHika”, Bya. C. baHgepu, 12, 79013 JlbBiB, YkpaiHa

B mMogeni npoToHHOro BnopsigkyBaHHs Anst kpuctanis Tuny KHoPO4 BpaxoBaHO 3anexHicTb edpekTUBHUX AW-
MoJIbHUX MOMEHTIB Bij, MapamMeTpa NPOTOHHOrO BNOPAAKYBaHHA. B HabAVXeHHi YHOTMPUYACTUHKOBOrO KiacTe-
pa po3paxoBaHO MOAAPM3aL,ilo KpucTanis Ta AOCAIAKEHO eneKTPOKanopuYHUA edekT y HUX. OnmncaHo po3mu-
BaHHS CerHeToeneKTpUYHOro ¢pa3oBoro nepexody No3A0BXHUM enekTpuyHUM nonem. OTpuMaHo Aobpe y3ro-
[PKEHHA 3 eKcnepyuMeHTaNbHUMUN JaHUMU.

KntouoBi cnoBa: esiektpokanopuyHuii egekt, KDP, knactepHe HabavKeHHS, Noaspu3ais
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