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UNITARY COLLIGATIONS
AND PARAMETRIZATION FORMULAS

YHITAPHI OIIEPATOPHI BY3JIH
TA ®OPMYJIA NAPAMETPH3ALIL

This paper aims to describe, in a rather sketchy but relatively selfcontained way, some relations between
the unitary colligations, which are regarded as linear systems, and the parametrization formulas for the
solutions of some interpolation problems.

HabeeHo onuc /e AKHX CTiBBiIHOIMIEHE MK YHITADHHMH ONMEpPATOPHHMH BY3JIaMH, K1 po3risnaloTh-
cA K NinifHi cHeTemH, Ta copMysiaMH napaMeTpHaanii ANA po3p’A3KiB NEAKHX IHTEPNONAUIAHHX
3asav.

1. Preliminary Constructions. 1. Unless otherwise specified, all spaces are assumed
to be separable complex Hilbert spaces and all subspaces are assumed to be closed;

L (X, Y) denotes the set of all bounded linear operators from a space X to a space Y,
L(X) is the same as X(X, X), and “v” means a “closed linear span™; Pg = Pp de-
notes the orthogonal projection onto the subspace E of X and ifg‘ = ip denotes the
inclusion of E in X.

Let Te Q(BI,BZ) be a contraction (i.e., ||T||<1). There exist a space F and
two isometries p;: By — F and p;: By — F, which are essentially unique and such
that T= p5p, and F=(p;B,) v (p,B,). Moreover, if U;e L(B;) is a unitary oper-
ator, j= 1,2, and U,T = TU,, then there exists an essentially unique unitary
operator W e L(F) such that Wp;=p, U}, j=1,2.

In fact, let F be the Hilbert space generated by the linear space B;x B, and a
positive semidefinite form ((by, by), (b{, b3)) = (b}, b{)g,+ (Tby, b3)g, + (by, T by)p,+
+(by, b3)p,, and let p;: By — F and p,: B, — F be the isometries generated by
b, — (b},0) and by — (0, by), respectively. This implies the first assertion and, for
U,,U, asabove, W is defined in F by setting Wp;b = p;U;b Vbe B;, j=1,2.

2. We say that V is an isometry acting in the space H if there exist subspaces D
and R of H such that V is an isometry from D onto R. In several interpolation

problems, H and V are naturally defined so that there exists a bijection between the
set of all the solutions of the problem and the set 1l of all (essentially different) mini-

mal unitary extensions of V. We say that (U, G) defines an element in Uy (and we
simply write (U,G)e ly) if Ue L(G) is a unitary operator, H € G, V =U|p,
and the minimality condition G = Vv {U"H: ne€ 2} holds. We set (U, G) = (U’, G")
in 1, iff there exists a unitary operator Te€ (G, G’) such that tU=U"1 and
Ty =1y, where Iy is the identity in H.

The defect subspaces of V' are the orthogonal complements N=H6D and M =
=HOR of D and R in H. If (U,G)e lly, then a unitary operator A e K(N® X,
M @ X) is defined by setting X=GO0H and A = U|ggp. The minimality condition
guarantees that T :=PyAly is a completely nonunitary (c.n. u.) contraction, i.e., that
there is no nontrivial subspace ¥ of X suchthat T'|y is a unitary operator in Y. This
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148 R. AROCENA

shows how to obtain each element in 1l,: Let X’ be such that N@® X" and N ® X’
have the same dimension as the Hilbert spaces and let A’e S(W® X, M ®X) bea
unitary operator. Weset G'=H® X', U'=V®A', G=Vv{U"H: ne Z}, and
U = U’|g. With obvious notation, (U, G) = (U’,G") in Uy iff there exists a unitary
operator A € K(X, X) suchthat A’(Iy®A) = A’ (I3 ® L) A.

3. We have just seen that the problem of extending an isometry leads naturally to
the consideration of the sets & :={E|, E,, X; A}, where A is a bounded operator from
the space X ® E, to the space E, @ X and the associated operator matrix is denoted
by [Ajy); t=1,2 The set & is called an operator colligation; & is unitary if A isa
unitary operator; it is simple if, in addition, the contraction A,, =PyA |y is c.n.u.
The colligation &' = {E,, E,, X"; A"} is equivalentto & iff there exists a unitary oper-
ator A € L(X, X") such that A’(A ® Ig)=Ug®MA.

Operator colligations can be regarded as discrete linear systems : If, at time ne Z,
the internal state is x(n) € X and the system receives an input h,(n) € E,, then it
produces an output h,(n) € E, and the infernal state changesto x(n+ 1) € X so that
the following dynamic equations hold:

hy(n) = A x@)+ A hy(n), x(n+1) = Ay x(n) + Ay, hy(n).

Thus, there exists a bijection from 11, to the set of equivalence classes of simple
unitary colligations with the input space N and the output space M; this bijection is
given by the relation (U, G) = {N.M,GOH: Ulgyp} forany (U,G)e U,. Each
class of this sort is characterized by an analytic function; we now recall its definition.

4. We say that a function @ belongs to the set B(E,, E,) of contractive analytic
functions if ¢: D — Q(El, E,) is an analytic function in the open unit disk D on the
complex plane and @(z) is a contraction for every ze ID. It is well known that if
ze D converges nontangentially to e'’, the strong limit @’ of @(z) exists a.e.
Assume that m is the Lebesgue normalized measure in T (= dD) and E is an arbit-
rary space. Let L*(E) be the space of measurable functions f: T — E such that
ITIIfllzgdm < o andlet /%(E) be the space of sequences h: Z — E such that
Sl h(m)||2 < oo; each fe L*E) is such that f= Xe, f(n) for fe I%E) and
e, ) =e'™. Weset H(E)={fe L*E): f(n)=0if n<0}. If w: T »L(EEy)
is a weakly measurable function such that ||w |l : = esssup ||w(e™)]] <o, we say that
we L™ (T; E;, E,) and the multiplication My, by w is a bounded operator from
L%E)) to L*E,) such that [|w|l,=||My |l and Myv = S{e, wn)v: ne 2} for
any ve E,. Inaddition, W(n) = Pg 5, "My iy € R(E\, Ey), where §; denotes the
shift, i.e., (Sj-f)(e"‘) = ef'f(e™) for every fe LZ(EJ.). Consider a function w in D
given by w(re®) = X {A"le™w(n): ne 2} forany re [0,1). Then [|w] =
= sup{llw(z)ll: ze D}. If o€ B(E,.E,), then M,H*E)) C HX(E,).

Let 6 ={E, E,, X; A} be a unitary colligation. If x(0)=0 and the sequence of
inputs is given by f‘l with f, € Hz(El). the sequence of outputs is given by fz with
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UNITARY COLLIGATIONS AND PARAMETRIZATION FORMULAS 149

fy=Mgf,, where @@):=Aj,+24,,(1-24,,)"'A,, forany ze D. Since A is uni-
tary, we have

Z{llhymNI?: 0sn<m} + llxm+ )2 = Z{ o) |I*: 0Sn<m},
and, hence, | My || < 1. Thus, ¢ € B(E,, E,); it is called the characteristic function

of the colhgauon or the response function of the system; we denote this fact by setting

= c.f. @).

It is easy to see that & =&’ implies c.f. (6) = c.f. @). It is well known that the
converse statement holds if 8 and &’ are simple unitary colligations and, moreover,
thatany @ € B(E,, E,) is the characteristic function of such a colligation. Proofs of
these two facts will be sketched in the next section. Thus, a bijection between 1, and

B(N, M) is established and the parametrization formulas for the solutions of interpola-
tion problems can be obtained. This is the subject of our paper.
2. Realization of Contractive Analytic Functions.

1. Proposition 1. A function @ belongs to B(E].Ez) iff there exist a unitary
operator W € K(F) and two isometries ,:E,— F and n,:E,— F such that
(m,E,) and (n,E,) are wandering subspaces for W,F = v {® [W‘ﬂjﬁ}: nedl:
j=12}, WnE, LW"m, E, if n<m, and

¢c) = 51 -zWy'ln;, Vze D. (1)
For any ¢ € B(E|,E,), these W, m,, and T, are unique up to unitary isomor-
phisms.

Proof. If @€ B(E,,E,), the contraction My is such that S, My = My S, for
any fe LZ(E}-). Then it follows from subsection 1.1 that there exist a unitary operator
W e L(F) and isometries p;: LAE;)— F such that Mg = p3p;, W*p;=p;S;, and
F = v{p[XE): j=1,2} = V {®[W'R,E;: neZ]: j= 1,2} for m ;=p;|g.
Then 75 W"n, = 0 if n<0 and @(z) = L{z"n5W"m;: n=0}. Thus, relation
(1) holds. H W', m;, and m) areas W,m; and m,, then l(W"njv) = W”':t}v
defines a unitary operator A € X(F, F") such that AW = WA and Am; ==, j=1,2.

Conversely, let ¢ be given by (1) with W, m;, and m, as in the statement above;
for any trigonometric polynomial f; in H?(E;), we have

2| Mg i )| < I Z{W™*n, ik): k20}]12 +
+ | Z{W*n fk: k20312 = 1A 12 > IAN2

Thus, ||Mg|| < 1. This implies the required result.
Now we can prove that every contractive analytic function ¢ has a realization as

the characteristic function of a simple unitary colligation 8, i.e., ¢ = c.f. (). This fact
was proved in [9]; it is basically contained in the book by Nagy and Foias [13]. We
derive it from Proposition 1, simplifying, thus, the proof given in [1].

2. Proposition 2. Let @, W, n,, and ®, be as in Proposition 1. We set

E={®[W"mE:n20]}® {{®[W"'"ME,: m21]}, X =FOE.
Let A = [Ajy)j=1,2 € R(X®E,E; ®X) be given by Ay = M3y, Ay = MWy,
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150 R. AROCENA

Ay = PyWl|y, and Ay = PyWn,. Then & :={E},E» X;A} Iis a simple unitary
colligation, ¢ = c.£.(8), W is a unitary dilation of Ay, which is minimal iff ¢
is a pure contractive function.

Proof. Since W[X ® (m,E|)] =X @ W(n,E,), the operator A =[(n5W’|W&£‘)®
@Iy )W ([Iy®m] is unitary. It follows from V{W"'E: ne Z}=F that A, is
c.n.u.and 3 is a simple unitary colligalién. Since P WX C Wn, E,, we have

WPz WX LX forany n>0 and Py W™y = (PxW|x)
tion of A,,. Since

I i ; : ¥
™, i.e., W is a unitary dila-

FOV{W'E, ne 2} = ® {(W'[(,E) N (,E>)]: ne 2}

and ¢@(0) = n5m,, we conclude that W is a minimal dilation iff ||@(0)||< |l k| for
every nonzero h € Ey, i.e., iff ¢ is a pure contractive function. We have WP WX LX
forany n20, ) = n3Pr,g,, and PpW™in E, ® (W"mE,: m21] if n20; con-
sequently,

Ap + 2A (I -2A5) Ay = Ty + 3 L{"PxW': n>0}m; = ¢(@).

3. The approximately controlled subspace of a colligation & = {E|, E,, X; A} is
X, := v {A}}An E|: n20}, its approximately observable subspace is defined as fol-
lows: X, :=V { A3} A[| E5: n20}. By induction, one can find that X 0 [X.V X,,] =
=L:={xeX:A"x = A}jx, A" x = Al x Yn>0}. Moreover, AL C L and, by
duality, AL = L. This implies that & is simple iff X = X_v X_,. This fact and the

interpretation of the colligations as systems give a direct proof of the assertion that
simple unitary colligations with the same characteristic function are equivalent.

Thus, we see that 11, «> BN, M); this is the fact that we learned by reading [7,

8]. More precisely, it is stated in the following theorem: _
4. Theorem 1. Let V be an isometry acting in H with domain D and defect
subspaces N and M. A bijection between the set W, of equivalence classes of

minimal unitary extensions of V and the set B(N, M) of contractive analytic
functions can be defined as follows:

(i) Given (U,G)e W, weset X=GOH and let ¢=q@U,G)e BIN.M) be
the characteristic function of the colligation {N,M, X; Ulyan}. I.e€.,

0@ = Py Uy + zPMU|x(l—szm'x)_lzPXU]N:

(ii) given @ € B(N, M), let the unitary operator W € C(F) and the isomet-
ries v:IAN)— F and u: [X(M)—> F be such that My = p*v, W*v = v§,
W*W = US (S is a shift in the corresponding space), and F = v [L2(N)] v L[L2(M)].
We set

E={@®[W"WN): n201}@{{® [W"(uM): m21]}, X =F0E,

andlet Ae RX®E,, E,®X) be given by A®,x) = [L*(Vv +x), Py W(Vv + x)]
for any ve N and xe X. If G=H® X and U=V ® A, then (U G)e U,
and U, G) = ¢.
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3. Description of All the Solutions of a General Interpolation Problem. 1. Let
subspaces B, C L*E,) and B, C L%(E,) be such that E, CB,C S;'B, and
S;'E, ©ByCS,B, If A L(B),By) issuch that A S5 = Py, S)A, then we set
Sy={we L™(T:EEp: Pp, My | =A, lIwll. = IAll}.

For B;=HE,) and B,= H2(E,) := L*E,)0 HXE,), the assertion §,#@ is
the Nehari— Page theorem (see [14]). If K C H*E) is such that S[HXE® K] C

C HXE)0 K, the same assertion with B;= HX(E) and B, = H*(E) ® K, E,=E,=E,
gives the Sarason general interpolation theorem [15].

In general, the assertion §, # @ originates from the Nagy — Foias commutant lift-
ing theorem (see [13] or [11]). The latter can be proved by the method in [2] giving a
direct description of § 4 [3]. which is sketched below for completeness.

Without loss of generality, assume that ||A]|= 1. Let the space H and the isomet-
ries A;B; — H, j=1,2, besuchthat A = X34, and H = (A,B)) V (A;B;). Then
V(A,S,b, + Ayby) = A b, + X, 8;'b,, forany b, € B, and b, € B,, defines an iso-
metry V actingin H. If (U,G)e lIV, an isometric extension pj: L2(Ej)—> G of lj
is defined by p‘,-S;’b=U‘"?\.jb. forany ne Z and be B;, and Qi-Sj=U’pj.j=l. 2
Since S,p5p; = P3P, S, there exists w = wU, G) € L™(T; E|, E,) suchthat M =
p3p,; inthiscase, Pgp M ig = (p,ip, )* (Pyig)=Aand 12 ||wl. 22]IA|l = 1.
Thus, 34 # @.

2. A bijection from 11, onto EA is defined by (U, G) =» w(U, G). Infact, if (U,
G)e U, then G =p, [LXE)] V p, [L*(E,]. Hence, in obvious notation, we have
(U,G)=(U".G’) in Uy iff p5p, = p5 pi. If we T, there exist a unitary oper-
ator U e L(G) and isometries p;: [*(E)] - G, j = 1,2, suchthat M,, = p3p,,
G = p,[L*ED] V p,[LAE,)), p;S;=U"p;, and (p,ip,)" (P, ip) = A. Thus, we may
assume that p; "'B,- = A;, and then it is clear that (U, G) € LL;. The assertion follows.

For w = w(U.G), wehave W(n) = Pg, $5"p5p i, = Pg,S:XoPy U™ ighyig, .
If n<0, then w(n) = P, Sy Pg M, ip S ig, = Pg,5;A g ig,s therefore,
wo(relt) 1= 2 {rirleinw(n): n < 0} = Z P, S,A (- 475 ig. 2 =rei!, Let my:
E,— H and m,: E,— H be the isometries given by 7, =4 iz, and T, =2, S5 ig,.
Thus,

Fa = {we L™(T; E;, Ey): w(z) = wo(z) + 3PrUJ —2U) " igm, (U,G) e Uy}

3. For any unitary operator U € L(G) and a subspace L of G, we set fy ; ()=
=P, (-zUy"i,, ze D. Let SW:D be the characteristic function of the unitary col-
ligation 8D := {L,L,GOL; U}, ie.,

SUD(z) = PU|, + 2P U|px (Ipr =z P2 Ulpa)™ PRU|L.
Then
furL@ = Uy - 28YP@)" Vze D, %)}

which follows from X {(Pr U)"7 P, U)): 0<j<m} = U™ Vm20.
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If V is an isometry acting in H, a generalized resolvent of '_V is fy .y for
(U,G)e Uy. If e B(N, M) and (U, G)e 11y are related as in subsection 1.4, then
the Chumakin formula (see [10]) implies that

fon® = {Iy - z[VPp +@@) Py1}™" Vze D, &)

Since VPp +@(z)Py is the characteristic function of the colligation 8- = {D ® N,

R @& M, GO H; U}, relation (3) follows from (2).
Thus, if N and M are the defect subspaces of the isometry V defined in (2), a pa-

rametrization of {we §,} by means of {¢ € BN, M)} is given by
w() =2 Pg S:A(1- 28)) " i, + 13 [VPp +@@Py) Iy —2[VPp +9@Py1} " my.
4. On the Arov-Grossman Formula. 1. Let V be an isometry as in subsection
1.2. A unitary extension B € R(H®M, N®H) of V is given by B(h,m) =
= (Pyh,m+ VPph) forany ze H, me M. If L isasubspace of H and L‘=
= HOL, weset 8"Y ={LoM NoL LB} and §VP = c.£.[8""). Then
SV = (8] 412 € BLOM,NOL) with

§1,@) = PLVPD(I—ZP_,_.LVPD)'I, Sy = PL([—ZVPDPLJ.)‘I ™ Vze D.

A theorem stated in (7] says that if (U, G)e I, and ¢ € B(N, M) are related as in
Theorem 1, the characteristic function S-9 of 8D .= (L, L, GOL, U} is given by

§UDGE) = 5,,6) + Sp@ 9@ - S, 9IS, &) VzeD. (@)

A proof of (4) is given in [8]. Another one can be found in [12], where it is con-
nected with the description of all the liftings 2 la Nagy — Foias. An alternative proof
was sketched in [4] and originates from the following statement.

2. Proposition 3. Let a = (Y, ®K,K®Y,,Y; 1} be a unitary colligation
such that Pyt| =0. We set T = [E,]]; 41,2 = c.f.(@) and definew: YOV, -
- Y,®Y by o(y,y) = Pyzer‘t .y, Pgt(0. ¥, 0)] for any (y,y,)e Y®Y,.
Then (i) [I-Z,,(z)] is invertible in LK) forall ze D; (i) ® is unitary;
(iii) the characteristic function ¢ of {Y,,Y,,Y, w} is given by

G(z) = Z,/(z) + Zﬂ(z)[l—}:.lz(z)]_lin(z) Nze D.

Proof. Since I, (0) = Pgt| =0, we have IIZ, @)l €]z| forall ze D
and statement (i) is valid. :
Clearly, Y®Y, D 17'K and Y® Y, D 1K; since ot 'K) = tK forall ke K

and o(y,y,) = t©(y,,,0) forall (y,y,) € [(Y$Y|)BT."K], we get statement (ii).

Let {y,(n): n 20} €Y, betheoutputsof {Y,,Y,,¥;w} for y(0)=0 and let
the inputs {y,(n): n 20} C Y, besuchthat y,(n) =0 if n >0. Then f():=
1= Z{z"y,(n): n20} = 0(z)y,(0). Weset k(0) = Pgt[y(0),y,(0),0], y(n+1) =
= Petly®m),y,(n), k(m)], and k(n+1) = Petly(n+1), y(n+1),0]. Then a
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answers (o the inputs {y,(n), k(n)} by the outputs {k(n). ¥o(n)} and, thus, g(z):=
= Z{z"k(1): n20} issuchthat £,,(z)y,(0) + Z,,(z) g(z) = g(z) and Z,,(2)y,(0) +
+ Z,,(2)g(z) = f(z). This yields statement (iii).

3. With the notation of subsection 4.1, let 8" = (L@®N,L®M,X;A’} be the
“direct sum” of {L,L, {0};I;}) and 8 = {N,M, X; A}, where A is the restriction of
U to GOD; hence, ¢ = c.f.8); ie, A"e QX®LON,LO&8M®X) is given by
A'(x,l,n) = [LLA@,m)]. Let o = (LON,NOL,L*® X: 1) be the product of &’
and 8V'D), ie., 1= BOL) (L ®A"). Then X = [Z;]i4=1,2 1= c.L.(@) is the
product of S™D and c.f.(8"). Thus, =812 =80, %5 =5, and =
= Sy¢. We may apply Proposition 3 with ¥, =Y,=L, K=N, and ¥ = L*®X.
Since 1(g,v) = (Pyg.[U(Pyx+Pp)g+v]) forany ge G and v € N, we have
(g) = Pg [18.Py1(g,0)] = P; (tg. Pyg) = Ug forany g e G, consequently
{(Y.Y,¥;0) = {L.L,L* ®X; U} = 8", This implies (4).

4. A mapping from B, M) onto {SY'P: (U, G)e U, } is given by (4);itis a
bijection when D VL = Rv L = H. Infact,if (U,G). U’,G")e 1, are such that
$Y = gV then PLU™|, = PLU™|, ¥ m 2 0 because P, (-:U)"|, = [I, -
— 28U now, Py U™, is determined by P, U"|,. PRU™|, and P, U"|,.
Since P, U™, = (P, U™™|,)V and PyU"|, = VPp P U™, if m > 0, we con-
clude by induction that P, U™|, = P,,U’™|, Ym 2 0; thus, (U,G) = (U’,G").

5. We now apply formula (4) to the description of the set § 4 defined in subsec-
tion 3.1 in the notation of Section 3. We set , = llif.] and m,=1,5; ig, asin sub-
section 3.2, and L = (n,E)) v (n,E,). Then T[EPHUU—ZU)—I g = myP, U -
—zU) iy = 1y SUBGE) [1,- 28 YUH )] ;. In subsection 3.2, we have seen that
3, = {we L(T:E,Ey): w(z) = wy(z) + myP U -2UY " iym,, (U, G)e Uy} .
Thus, with [Sjk]j.k= 1,2+ s in subsection 4.1, we obtain from (4) the following par-
ametrization formula : :

¥, = {we L (T:ELEy):w) = wylz) + 13 S@) [1,-28G)] ' =y,

S =8, +Syolly-5,01" S, @€ BN, M)}.

By comparing it with the relation given in subsection 3.3, we note that if E, and
E, have finite dimension, the same happens with L (in fact, dimL < dimE, +
+ dim E,), while, in general, dimH = oo,

Appendix: On the Schur Analysis. To conclude, we indicate certain relations, to
be developed elsewhere, between our subject and the Schur analysis (concerning this
topic and the operator theory, see [11]).

With each (U, G) € 1l;,. asequence of contractions {Y,: k£ =0} is associated by
setting Nog=N, Mo=M, H,=V{U'H:0<j<p), N, =H,0H,_,, M, =
= H, 0 UHy,, and Y, = Py, Ul|y, forall k> 0. Each y, determines the relative
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position of the subspaces UN,_, and M, . In the scalar Carathéodory-Féjer problem,

{¥,} Is the classical sequence of the Schur parameters [6].
By definition, an (N, M)-choice sequence is an element of the set 8 (N, M) of se-
quences of contractions {I',: k > 0} such that T'| € LN, M) and T, € ¥ (DI—;

Dr;) Yk>0. (af Te L(X,Y) and ||?|§ .Dy=U-T"T)"" and Dy de-
notes the closure of D X).

A bijection between llr and B(N, M) is obtained [5] by associating with each
(U,G)e U, the sequence (U, G)e B(N, M) givenby I', =y, and T, = A,

MYt Pi - Pi|py, ¥ k> 0. where p e LN,.Dy) and A, e LM, D)

are the unitary operators defined by p, (U =Y )|y, , = D‘n and A (- Uplly,, =
=

With each @ e B(N, M), the Schur algorithm associates G¢ € B(Dp, D)
with T'=@(0), defined as follows. Assume that § = (N, M, X: A} is asimple uni-
tary colligation such that ¢ = c.f.(3), N, and M, are the closures of (A-T")N and
(I-AT")M, respectively, X, =XON,, and A;=A|y. Then §, := {N}. M. X1 A}}
is also a simple unitary colligation. We set 8, =c.f.(8;) and let pe X (N,. D) and
Ae R M,, D) be the unitary operators given by p@A-T)|y = D and A7~

— AT)|p = D+ Then ©¢ := Ag, (-)p* is such that
9@) =T+ D @) [I+:T @) ' Dy Vze D.

By setting fo = ¢. f,=©f,,. and T, = ©f, ,(0) forall k>0, an clement

(@) e B(N, M) is defined.
If (U,G)e U, and ¢=¢(U,G) isasin Theorem 1, then (U, G) = I(9).

1. Arecena R. Characteristic functions of unitary colligations and of isometries with scale subspaces //
Acta cient. venez. — 1987. — 38. — P. 540 — 543,

2. Arocena R. Unitary extensions of isometries and contractive intertwining dilations // Operator
Theory: Adv. and Appl. — 1989. -41. - P. 13 -

3. Arocena R. Some remarks on lifting and interpolation problems (To appear).

4. Arocena R. Commutative unitary extensions of isometries // Publ. Mat del Uruguay. — 1988, - 1. -
P. 67 - 80.

5. ArocenaR. Schur analysis of a class of translation invariant forms // Analysis and Partial Differ-
ent. Ecmat. (A Collection of Papers dedicated to Mischa Cotlar (ed. C. Sadosky)). = New York,
Base Dekker, 1990.

6. Arocena R. On a geomelric interpretation of Schur parameters // Rev. Unién mat. Argent. — 1990.

—34. - P. 150 - 165.

7. ArovD.Z., GrossmanL. Z. Scattering matrices in the theory of dilations of isometric operators //
Sov. Math. Dokl. - 1983. - 27. - P. 518 - 522.

8. Arov D. Z., Grossman L. Z. Scattering matrices in the theory of unitary extensions of isometric
operators. — Preprint.

9. Brodskii Y. M., Shvartsman Ja. §. On invariant subspaces of contractions // Sov. Math. Dokl. -
1971. - 12. - P. 1659 — 1663.

10. Chumakin M. E. Generalized resolvents of isometric operators // Sib. Mat J. — 1967. — 8, N4, -
P. 876 — 892.

11. Foias C., Frazho A. E. The commutant lifting approach to interpolation problems. — Basel etc.:
Birkhiuser, 1990,

12. Mordn M. D. On intertwining dilations // J. Math Anal. and Appl. — 1989. — 141. - P. 219 - 234,

13. ;Vagy B‘;.l _;902., Foias C. Harmonic analysis of operators on Hilbert space. — Amsterdam: North-Hol-
and, 1970.

14. Nikolskii N. K. Treatise on the shift operator. - New York: Springer, 1986.

15. Sarason D. Generalized interpolation in H ™ // Trans. Amer. Math. Soc.— 1967. 127.- P. 179~
203.

Received 31. 08. 93

ISSN 0041-6053. Yxp. mam. xypu., 1994, m. 46, N* ?



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008

