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ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS
ON THE UNIT CIRCLE

[TPO HECTAHIOHAPHI OPTOI'OHAJIBHI ITOJITHOMH
HA OTHHHYHOMY KOJII
Two index formulas for operators defined by infinite band matrices are proved. These results may be

interpreted as a generalization of the classical theorem of M. G. Krein for orthogonal polynomials. The
proofs are based on dichotomy and nonstationary inertia theory.

Hosejieno asi dhopsynn injieKcy 1718 ONepaTopis, BH3HAUEHHX MATPHUAMH HECKIIUEHHOrO NOPAAKY.
i pesyiibTaTi MOAKHA IHTCPIPETYBATH AK Y3arajibHenns Kiacuunoi teopesu M. I'. Kpeftna npo op-
ToroHaiikHi noinoyu. [loBejienns 6a3yeThes Ha IHXOTOMIT Ta HecTalioHapHii Teopii iepuiii.

1. Introduction. In this paper, we prove the following two theorems.
Theorem 1. Let R = (R,j):'-’zo be a self-adjoint block matrix with blocks R;

of order r  such that the submairices L, = {RU};—:’:’, n=0,1,.... are invertibie

with
sup (L, I L3 D) < e, (1)
n=01 ...
and
(w28l =01, ' 2)

for some positive number €, where (L;]),"_ m is the rxr block in the right

lower corner of L;'. For each n=20,1,.... let a, ,.....0,4m, be m+1
matrices of the order r, which solve the following system of matrix equations:

m
Z Rn+h.n+1’an+kn = 6!:, nilr' h=0,...,m, (3)
k=0
andlet a;= 0 if j>i20 or i-m>j20. Then the operator G = (a;)ji-o
determines a Fredholm operator in 1,2, and
index G = —v, ((R;)jin™), )

Jor sufficiently large n.

In this theorem, the following notation is used. For a finite self-adjoint matrix A,
we denote by v, (A) the number of positive cigenvalues of A, counting multiplicities.
We also denote by /7 the Hilbert space of all square summable sequences (x,)n—g
with x,e €, n = 0.1,..., and let IE(Z} be the Hilbert space of‘all square sum-
mable sequences (X, )p=—. With x, e C, n=0,%1,....

In this paper, we also prove the following result for the bilateral case.

Theorem 2. Let R = (R;)jj-_.. be a self-adjoint block matrix with blocks R
of the order r such that the submatrices L, = (R‘j):;:-::’, n=0, £1,..., are in-
vertible with

sup (LI LS < oo

n=0, %1, ...
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ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE 19

and
(e B el ™D Sl

for some positive number €, where (L' Ym.m IS the rxr block in the right

lower corner of L;’. Foreach n=0, £1, ..., let G, po... . Qo be m+1
matrices of the order r, which solve the following system of matrix equations:

m
ZRn+h.n+1an+k,rs = sh,mlr; h =0....,m.
k=0

and let aj = 0 ifi<j or i >j+m. Then the matrix A = (a,j);;?,_,, defines a
Fredholm operator in If (Z). Moreover, KerA = (0} and there exist nonnega-
tive integers N, p, and q such that

VAR =g vi@RpjEr ) =p n=N.N+1,...,
and
indexA = p — q.

These two results are a generalization of a classical theorem of M. G. Krein on the
location of zeros of the orthogonal polynomials on the unit circle T. To show this,
assume that . is a bounded real measure on the unit circle. Denote by

R, = je“'”"du. n=0,zl,...,
T

the Fourier coefficients of p, and assume that (R; _,-}}};g is invertible for some posi-
tive integer m. Let a, ..., a, be complex numbers solving the following system of
equations

z R;,_,,ak = Sk,m' h = 0. vaiig T0
k=0

Define a polynomial p,, by
Pu@= Y ay2t.
k=0
Then the equalities

J.pm(é"e)ﬁdu.= ZRh_kak= Sﬁ,m‘ h = 0..‘..??!.
T k=0
indicate that p,, (z) is the mth orthogonal polynomial relative to L.

Denote L = (R ,—_j)f}LO and L' = (R; _j)f}';"é. Assume that both L and L’ are in-
vertible. We set L™ = (y; )70 and note that since ¥,,,, = detL’/detL, Y, is
nonzero. First, assume that y, > 0. In this case, we may apply Theorem 1 to the
matrix R = (R;;)7-o. It follows that the Toeplitz operator G = (a;)j-o is a Fred-
holm operator and the index G = -v,(L’). Here, q,..., a, are defined as above

and a, = 0 for k<0 and k>m. Since G is a Toeplitz operator whose symbol is
Pm (@), we find that p, (z) does not vanish on the unit circle and the number of zeros

LY
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20 A. BEN-ARTZI, 1. GOHBERG

of p, (=) inside the unit disc is equal to v (L"). On the other hand, in the case where

Yum <0, we can apply the previous consideration to the measure —p. In this case,
we also find that p,, (z) does not vanish on the unit circle and the number of zeros of
Pw/(2) inside the unit disc is equal to v, (~L’). Interpreting the inertia of L' = (R H-)ff;(])
in terms of the Jacobi rule, we obtain the Krein's result, presented below under the
stronger hypothesis used in [11].

Theorem (M. G. Krein (11]). Ler T = (R;_;)j.o be a self-adjoint Toeplitz mat-
rix such thar det (Rr'—j)fj=0 #0, k=0,...,m. Denote d, = det (R,-_j)f}=ﬂ. Let
P and V be, respectively. the number of permanences and the number of variations

of sign in the sequence 1,dy.d,, ..., d, ,, andlet p(z) == a,?"+...+a, be
the polynomial whose coefficients satisfy
ag 0
| | =
-1 0
d,, I

Then p(z) does not vanish on the unit circle. Moreover, if d, d, | >0 (respective-
Iy.d d ,<0,) then p(z) has P (respectively, V) zeros inside the unit disc

m=m=1
and 'V (respectively, P) zeros outside the unit disc, counting multiplicities.
The complete proofs and the further refinements of Krein's theorem can be found
in [1, 8, 10], as well as the other related results.
Theorems 1 and 2 given above are also the generalization of Theorem 1.1 in [4],
which is stated below.

Theorem. Ler R = (R;)j-_.. be a self-adjoint block matrix whose eniries R;;

are r xr complex matrices with the following properties:
(i) Ry =0 if |[i—j|> m. where m is a positive integer, and sup ;|| R ;|| <=

n+m-1

WA+m )
ijly=n

(ii) the matrices (R--}ifzﬂ and (R

ij ,n=0,z%x1,..., are invertible and

sup (IHARDFER T L R DFENTITHI < o 5)
n+m—1
O!

(iii) the number of negative eigenvalues of the matrices Rijjj=p + 1 =
+ 1, .... does not depend on n and

([(Rf}'}n'+nll_])nl,nl > 0‘ = U’ £ DR

ij=n

where ([(R,});’jﬁ:’,‘]‘l)mbm is the rxr block in the right lower corner of

[(R‘_j)rwm ] _].

ij=n d
For every integer n, let a, ,....,a,,,, be m+1 matrices of the order r
solving the following system of matrix equations:

m
E RuinnskOnatn =% b, h=0,....m, (6)
k=0
andlet a; =0 if i <jori>j+m.
Then the matrix A = (a ,-J-);?':h,, defines an invertible operator in 1,2 (2), the
matrix G = (a ;j);};o defines a Fredholm operator in 13, and the index of G is
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ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE 21

n+m-1

equal to the negative of the number of negative eigenvalues of (R idij=n  for any
n=0,=x1,.., counting multiplicities.
This assertion differs from Theorems 1 and 2 by the assumption that the inertia of

n+m-1

the matrices (R;);—,  doesnotdependon n and the fact that we consider the first

_an+m
ijij=n
n+m-1

any restrictions on the inertia of Ridass and deal with the last columns of the

column of the matrices inverse to (R (in Theorems 1 and 2, we do not impose

n+m

matrices inverse to (R ;);i_, ). The proofs of Theorems I and 2 do not coincide with

the proof of this assertion in [4] but exploit the same ideas.
Let us explain how this assertion can be deduced from Theorems 1 and 2. We set

M, =R;)jtn and K, = R;)jin™", n=0,%1,.... Since M, and K, are in-

=n

vertible, it follows from the Schur factorization of the matrix

Rﬂ n "
Mﬂ - ¥ Kﬂ"l-]

that (M;l)o_o is invertible as well. Furthermore, inequality (5) results in
supl [(M;1)0,0) 7 ) < . )
In addition, the Schur factorization also implies that

Vi, (K;;) + v, ((M;l)m,m) = V+(M") = V+((M;l)0,0) + VvV, (Kﬂ+l)- (8)

A B
To show this, we note that, for an invertible block self-adjoint matrix A = [B‘ CJ'

where A is invertible, the factorization

i I 0\ (A 0 I Al'B
“\B*A! 1)lo c-B"A'B)\0 I _

and the Sylvester law of inertia yield v,(A) = v,A)+v (C ~B A B). Denoting

-1 A B . -1 PR
A= g , weobtain C;” = C-B A" B, and hence,

VoA = v, A+ Vv, Cy. (9)
Similarly, if C is invertible, we get
V+(A) =V, (‘41) + Vv, (C) (10)

By using (9) with A = M,, A =K,, and C; = (M,),, ,,, We obtain the first equal-
ity in (8), while (10) with A = M,, A; = (M;l)o'o, and C = K,,, implies the se-
cond equality in (8).

By condition (iii), we have v, (K,) = v, (K, , ), and (M;l)m_m > 0. Hence, (8)

leads to (M, 1)0.0 > 0, and therefore, inequality (7) implies
(M7 2¢el, n=0%1,..., (11)

for some positive number €.
By replacing the indices n, h, and £ in equality (6) by —n—m, m—h, and m -k,
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22 A. BEN-ARTZI, 1. GOHBERG

respectively, we obtain

m

Z R—n—h.—n—ka—n—k.—ﬂ—m = am.h‘gﬂ h = 0' en g ML

k=0
We now set
Rij=R_ij a&; =a. jm ij=0%1,...
Then the equalities given above imply that
m
Y RovoriBons ® B L =0 a2

k=0
Let us apply Theorems 1 and 2 to these equalities. First, we note that if either i < j or
i >j+m, then —i>—j—m+m or —i < —j—m, and therefore, a/; = a_;_j_, =0.
Denote L, = (R});L)'. Then

qn

L = R it = HR DT il = IMid,

ij=n

where J = (8, ,,_;1,)'~. This equality and condition (ii) imply that L, is invertible
with sup,, (|| L} || Il L7V ) < . Inaddition, L' =JMZ_ J. whence, by vir-
tueof (11), (L, ')m_m = (M:,',_,,,)o o 2 €l.. Thus, Theorems | and 2 are applicable
to the matrices (R,—’;- J,-}-=0 and (R ,-J-J,-js_,, and equalities (12). Note that, by condition
(iii), there exists an integer v, such that

VR =v,, n=0%1,... (13)

y=n +
Then
VRGN = V@R DT = V(R onemat)s 1 = 0, £

=n ij=n

Conscquently, Theorem 1 guarantees that the matrix G’ = (a; }” _o determines a

-Fredholm operator in {,2 with
index G' = -

Similarly, Theorem 2 shows that the matrix A" = (afj);?,:_m defines a Fredholm
operator in 13{2) with KerA” = [0} and the index A" = (. Thus, A" is invertible.
The invertibility of A" = (a};)jj-_.. = (a_,-l_j_,,,);t‘:_m implies that (a,}_m)q__” is
invertible, t00. Hence, A = (a,;);._.. isalso invertible.

Denote G” = {a,-’j),-}Lh_,. Then, G” @ G’ is equal'to a finite-dimensional per-
turbation of A’. Since A’ is invertible and G’ is a Fredholm operator whose index is
equal to —v,, we conclude that G” is a Fredholm operator whose index is equal to
V.. By rearranging the indices, we find that (a’; _;);i-; = (@, j_p)ij= isa Fredholm
ﬁ‘peralor with the index v,. Hence, the operator G = .{a,-_jﬁ,,,)};o is also a Fred-
holm operator with the index v,. Denote by S = (§, ;. |/,)jj=o the block forward shift.
Then, G = G”’S"™, and therefore, G is a Fredholm operator with the index G =

= v, +m(index S) = v, —mr. On the other hand, it follows form (13) that v, —mr
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ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE 23

is equal to the negative of the number of negative eigenvalues of (R; i )”*'" :

n =0, x1,..., counting multiplicities. This implies the required result.

The proofs of Theorems | and 2 are obtained by using the general theorems on
block weighted shifts, dichotomy, and the nonstationary Stein mcqualluea Prelimi-
nary results appear in Section 2. The proof of Theorem 1 is given in Section 3, where
we use a special construction of the nonstationary Stein inequalities. In Section 4, we
present the proof of Theorem 2.

for any

2. Preliminary Results for Band Operators. Dichotomy. Nonstationary Stein
Inequalities. In this section, we present some general results for the band operators
and focus our attention on their connection with the nonstationary Stein inequalities.
These results are used in the next section when proving Theorem 1.

We first consider Lemma 3.1 in [3] that guarantees the linearization of the band
operators. For convenience, we formulate this lemma below.

Let G, and G, be bounded operators in the Hilbert spaces H, and H,. We say

that G, and G, are equivalent if S,G, = G,S,, where §,,S,: H, > H, are
bounded one-to-one operators mapping H, onto H.

= : 2
Lemma 1. Let G = (a;)jj-o be a bounded operator in 17, whose entries a;;

are rxr matrices with a; = 0 if i>j+m of i < j. Define two sequences

(A)n=0 and (B,)n=0 of mxm block matrices by the relations

I, 0 ... 0 0 0 0 ... 0 a, ,
0 1, ... 0 0 -1, 0 ... 0 Apyln
'Ah= e e e s and B, = e e e aas )
0o 0 .. I 0 0 0 ... 0 Ay m=2.n
0 0 ... 0 Ayim. n 0 0 .. _'Ir Ayym=1.n
for n = 0,1, .... Then the operator G, acting in (1,2)’" and defined by
G 0 ... 0 0
0o 1/ 0 0
G] = O
0 0 I 0
0 0 0 I

where [ denotes the identity operator in 1,2 , is equivalent to the operator T =

= (8;B;+8,_1jA)j-o actingin L

This result, in fact, reduces the study of invertibility and the Fredholm properties of
the band operators to the case of block weighted shifts. The next theorem establish a
basic connection between the properties of the block weighted shifts and the nonstat-
ionary Stein inequalities. Generally speaking, the latter are systems of inequalities of

the form X, - A, X,e14,>0, n =0,1,.... The results connecting the Fredholm

properties of the block weighted shifts with these inequalities can be found in [5].
Here, we consider slightly different inequalities. For a finite self-adjoint matrix X, we

denote by v_(X) the number of negative eigenvalues of X, counting multiplicities,
and set v, (X} = dim KerX.

Theorem 3. Let (X,),-o and [A,),-¢ be two bounded sequences of rxr
matrices with self-adjoint X, . Assume that the following inequalities hold:

Rcr— A XA 80 =m0 (14)
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24 A. BEN-ARTZI. I. GOHBERG

and

Xu-rni s An+m—] "'AHA,HA; e A;+m—| 2 81}“ n = 0' l' SACEE {15}

. b -
where & > 0 and m is a positive integer. Let T be the operator in I defined
as follows: T = (S,J-,]Aj Vij=0- Then 1-T is a Fredholm operator in !,2, and
there exists a positive integer N such that

index(/-T) = =v_(X,), i=NN+1 ... (16)

and
Vo(X,) =0,- i =NN+1 ... (17)
First. we define the concept of dichotomy, which is underlying in the proof of this
result. Consider a system of the form

= A X i S0 R (18)

L |

where (A, )~ is a sequence of complex r x r matricesand v, e €. n=0,1,....
A bounded sequence of projections {P,),_, in € with constant rank, is called a di-
chotomy for system (18) if the commutation relations

PoviA, = AP = Ol (19)

hold and there exist two positive numbers ¢ < 1 and M, such that

A, iy AP X< M| P, x| (20)

and
|7 —— -Px|l = (M)A, -Px]l, @
for xe €, n=0.1,..., and k = 1,2, .... The constant number Rank P,, n =0,

1. ..., is called the rank of the dichotomy. This concept appears in [2, 6, 7. 9].
A dichotomy can be also defined for bilateral systems

Xpye1 = Agxye =020, 00 (22)
and for systems indexed by negative integers
Xpsp=AsXn, =0ty (23)

A dichotomy for (22) (respcclivcly. for (23)) is a bounded sequence of projections
{P,)h=-w (respectively, (P, ],,__m} with constant rank satisfying conditions (19)-

(2]) with the obvious change of indices.
Finally, we say that system (22) admits an asymptotic dichotomy in the positive
(negative) direction, if there exists an integer N such that the system x,,, | = A, nX,
=0.1.... (n=0.-1....) admits a dichotomy.
- We refer to [5] for the results concerning dichotomies and their connection with the
nonstationary Stcin equations and the block weighted shifts.
We now prove Theorem 3. Denote the inertia of a finite self-adjoint matrix X by
In(X) = (v,,vpVv_), where v, =v_ (X), vy = dimKerX, and v_= v_(X).
Proof of Theorem 3. Denote :

¥ = B £ =0 Fiss (24)

and ’ ’
By = Appsmg - Apr kK =0,1,.... (25)
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ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE 25

Then (15) leads to
Yiei-B:VaBe 281, k=0,1,.... (26)
To transform the latter system to the ordinary form, we set
Ci=B, ad Z,=Y_,,, k=0,-1,... 27
Hence, (26) turns into
Zs~C ZaiiCy 281, b= B, ...
By Corollary 2.6 in [5], it follows from these inequalities that there exists a positive
integer k,, and nonnegative integers v, and v_ such that
InZy) = (v,,0,v), k= —kop—-kp—1,.... (28)
Let us apply Theorem 3.7 of [5] to the system
25~ Ci 2516y > 8L, km <kp—1,—kg—2. i
Since the sequence {Zt];:‘f_“ is of constant inertia (v,, 0, v_), we conclude that the
system
Xpo1 = Cpxp k= —ko—-1,-ko-2, ...,

admits a dichotomy of rank v,.

Now recall that Cy = B:k. k = 0,-1,.... Hence, Proposition 3.3 in [5] shows
that the system

Xpoy = Bpxp k= ko+1,kog+2, ..,

admits a dichotomy of rank v .
Thus, the system

Xpp1 = kab k= 0,1,..., (29)

admits an asymptotic dichotomy of rank v,.
In view of the definition (25) of B, and the boundedness of (A,),_o» One can ap-
ply Proposition 1 presented below to system (29). This implies that the system

Xpsi=Asxe n=0,1,..,
admi.ts an asymptotic dichotomy of rank v .
Theorem 2.11 in [5] implies that / — I' is a Fredholm operator with
index(| - =v, —r=-v_ (30)
It follows from (28) and the dpﬁ__nitions (27) and (24)of Z, and Y, that
In(X,,) = (v,,0,v), k=ko+l, kg+2,....

Assume that s € {0, ..., m—1}. Letus apply the argument presented above to the

sequences (X, Jo_o and {4, };_o. Wefind that /-T, where I, =@, ;, 'Ai*’);’w’

is a Fredholm operator. Furthermore, there exist integers k;, v, ;, and v_ ; such that

index (/ -T) = . A @31
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26 A. BEN-ARTZI, I. GOHBERG

and

In(X,,,,) = ¢, ,0.v_,), k=k+Lk+2,... (32)

However, it is clear that index (/ - T") = index (/ - I';). Thus, (30) and (31) imply that
V_=V_, Hence,v, ;=r-v__ =r-v_=v, Therefore, (32) yields In(X,, ,.)=
= (v+.0.v_). k=k,+1,k,+2,...,fors=0,...,m-1
This implies
In(X,) = v,,0,v), n=NN+1,...,
where N = m(2+ max k). These equalities and (30) lead to (16) and (17).

0ss<m—1
Proposition 1. Let (A });_o be a bounded sequence of rxr matrices. De-
note

By =Apsm A k=01,..., (33)
where m is a positive integer. If the system
Xpor = Byxp k=0,1,..., (34)
admits an (asymptotic) dichotomy of rank q, then the system
e 9 TN NN R T e (35)

also admits an (asymptotic) dichotomy of the same rank q.

Proof. The statement concerning the asymptotic dichotomies follows from the
statement concerning the dichotomies after an obvious change of indices. Hence, we
only prove the latter. Moreover, the statement is trivial for m = 1. Therefore, we con-
sider m= 2.

Assume that (34) admits a dichotomy of rank g. It follows from Proposition 6.1
and Theorem 4.2 in [2] that there exists a bounded sequence of self-adjoint r X r mat-

rices (X, }x-o of constant inertia (g, 0, r —¢), and a positive number € such that

Xim = Be XgoymBi2 €, k=0,1,.... (36) -
Let
L= sup |lA|l+1L
a=0, 1, ...
Define

8 = e/Q(m—-1)L*™.

Forevery k =0, 1, ..., we define the matrices Xy sm_1> Xtmem—2s o> Xkms1 T€-
cursively via ' '

Ximss = Atmss XimsssAmes +80, s=m—1,..., 1 (37)
Then (X,),-o is a bounded sequence with

L] Ll -
Xime1 = Agms1 Atma2 - Akmem-1XgsymAimem—1--- Akms28pms1 + R,

where

m=2
R = 6{!,.*' Z Aisl o Akm+s‘4km+.r'"‘4km+l)

s=1

ISSN 0041-6053. Yxp. mam. xypn., 1994, m. 46, N° 1



ON TIME DEPENDENT ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE 27

satisfies
IRIl < 8(@m — 1)LH™D),

Hence,

* * *
Xim = Akm Xims18km = Xpm — Agmy -+ Akmem=1 X+ )ymAbmem—1-+- Apm + Ry,

(38)
where R = —AI.,,, X im+ 1A satisfies
IR |l < 8(m - DL*™ = g/2.
Taking the definition of B, and (36) into account, we obtain from (38)
Xim = Atm Xims 18%m 2 Xpm = B X tymBi—€1,/2 2 €1,/2, k =0,1,....
Combining this with (37), we get
X, - AvX, A, 281, n=01,.., ©(39)
where we have taken into account that 8 < g/2.
We now show that
In(X,) = @0, r-q, n=0,1,.... 40)
Recall that (40) holds for n = km, k = 0, 1, ..., by construction. For a natural num-

ber n, let £ besuchthat km > n. It easily follows from (39) that
Xn = Au A.l.'m—ikaAkm-l "'An 2 81‘;-9
and, similarly,
Xo— Ag e A1 X,A, ... Ag 2 81,

Let In(X,) = (v, , Vg, V_,) ByLemma25in([5]and In(Xy) = In(X;,) = (g, 0,
r —q). these inequalities imply that

v 24 q=2 ,\"+.“ +V0.n’
Thus,
I (X,) = (V, »Vo wV_,) = @0,r—q).

Finally, we apply Theorem 6.4 in [2] to inequalities (39). Since (X ,),—o is a bounded
sequence of constant inertia (g, 0, r —g), system (35) admits a dichotomy of rank q.

3. Proof of the Main Result. In this section, we prove Theorem 1. We use the
results obtained in the previous section and Lemma 2 below, which shows how the
nonstationary Stein inequalities can be derived in the special situation under consi-
deration. In the next statement and in the proof, we use the following notation: Let m

be a a positive integer and let R = (R ,-j)g-ﬂal be a self-adjoint block matrix with the

blocks R;; of order r satisfying the equality R; = 0 for |i—j| >m. Denote certain
submatrices of R as follows:

L,=Ryity, n=0,..,m-1, @1)
K,=@®R)iv", a=0 ...m, 42)
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28 A. BEN-ARTZI. . GOHBERG

and
.o (RNl ww B, ... =1,

" yh=n+lj=n

Lemma 2. For every positive number p. there exist a positive number & with
the following property: Assume that the matrices L, n =0, ....,m~-1. and K,
no=0. ....m. defined above are invertible with

max (LI 2D < e @3)
n=4u, ..., m-
max K.l < p. (44)
n=0, ..., n .
and that
&0 i 200 m= 0, i m=1, (45)

Then the following inequalities hold:

K, ,—H,K;'H, >0, n=0, ....m-1, (46)

n+1

and
K= H, K, ) (H KT HG K HoH KT L (H L, KL 2 81, (4T)

Proof. Fix p > (. Denote by € the set of finite self-adjoint matrices R =

= (R,);"5" with blocks R ; of order r, which satisfy the equality R, =0 for
[#=j1 >m and are such that the matrices L, n =0, ....m-1, and K, n =0, ...
...m, given by (41), (42), are invertible and satisfy (43) —(45).

The space € endowed with the usual topology is compact and the matrix on the
left-hand side of (47) is a continuous function of R e Q. Thus, in order to prove the
existence of & >0 satisfying (47) for all R e €, it suffices to show that, for cach

R e €, the following inequality holds:
Km a (Hm—l K;:I-]) e (H]. k’l_l ) 'HI[P K!J_I H(‘;(H| KI_] )‘ ok {‘l{m—l Km—| r > 0. {43‘\

We now prove (46) and (48) for R € Q. The invertibility of K, and (45) imply
that
{Lf_il }m.m >0, n=0, ....m-1. {49)

Denote
Q,=HK™" n=0 ....m-1. (50)

Note that the ithrow of H, isecqual tothe (i + I)throw of K,. Thus, it follows from
H, = Q,K, that Q, has the following form:

0 7, ... 0 0
0 0 ... 0 0
G = Fans som swa sme s [ = Qioeus gl
0 0 .. 0 4
* * ok #®

*

Consequently, H, K,,_' H, = Q,,H; has the following form:
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er+l. n+l LEa Rﬂ+l. n+m
RrH— 2, n+1 nee Rn+2. n+m
R w*

H,K'H, = | ... , =0, ...m—1, (51)
er+m—i,ﬂ+l Rn+ni—l. n+m
* s *

Denote

E, =K,,+1—H,,K,,_1H:. n=0,..,m-1. (52)

Since both K, . and H,K! H: are self-adjoint and coincide in their m —1 upper
rows, by virtue of (51), we conclude that £, has the following form:

0 e W
E, = U 0 0 ; n_: 0, ....m-1. (53)
F = ¥ L '
Equality (52) also shows that
Rr.'. n+m
Ky = Rn+m‘n+m _(Rn+m_n Rﬂ+m_ n+mv—lKn_] » =0, ... .,m-1.

s
ndem=1, n+m

Thus, W, is the Schur complementof K, in L,. Consequently,

m, = ((LH, ) n=0..,m-1L
Hence, (49) implies that
p, >0, n=0,....m-1 (54)
This inequality and (53) lead to
E,=20, n

I
=]

Laom=1. (55)

Hence, (52) yields (46).

We now prove (48). If m = 1, then (53) reduces to Eg = pg. This, together with
(52) and (54), leads to K, —HOKal Hy = Ey = fo > 0. Thus, (48) is true in this
case. Assume that m = 2. First, we prove that

m-—2

Eni—] + z Qm—l g Qu+|Eu Q:HI L Q::-] > (. (56)
n=0

We prove (56) by contradiction. Assume that (56) is false. Noie that the matrix on the
left-hand side of (56) is nonnegative by (55). Hence, there exists a nonzero vector x =

= (x;)" in (C")"™ such that

m-=2
.\‘*Em_l,\‘ + Z J\'*Qm_] S Q,“_]E”Q,H_] S Qm—] x = 0.
n=0
By virtue of (55), this gives " E,,_;x = 0 and
-""Qm—l Qn+lENQ:&+1 Q:HX =0 n=0,....m-2, (57)

It follows from x"E, ,x and the special structure of E,_, given by (53) that
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Xp—1M p_1Xm-y = 0. Thus, it follows from (54) that x,,_, = 0. Let se {0, ..., m -2}
be the unique integer such that x, # 0 and x.,,=...= x,,_; = 0. Note that s exists
because x # 0 and x,,_; = 0. It follows from the special structure of Q, given in
(50) that
*
.
Qs-rl Qm—] x = *
Xy

Hence, by taking the special structure of E; given by (53) into account, we obtain
-‘-‘Qm—l Qs+lE$Q.\'+I Qm—l x =
= (Qs+] Qm—] -‘-) EJ'(Q$+1 Qm—l "') = "-:us"‘.\"

By (57), this leads to xjp X, =0 and, hence, (54) implies that x, = 0 arriving at a

contradiction. Consequently, (56) is true.
Now note that equality (52) vields

Koo~ XK B n=0,..m-1
Hence, by the definition (50) of Q,,, we get
K,.1- Q“K”Q” =E, n=0..,m-1 (58)
In particular,
Ky~ 0 iK1 @y = Egiye i (99)
In addition, it follows from (58) that

Qm—] QN+1KN+[ Q:wl Q:I"] - Qm—l Q"KHQ:J Q:u--l =

= Qmit o Qi1 EnQost . Qorys n=0,...,m=2. (60)

By summing (59) and (60) for n = 0,1, ..., m —2, we obtain
Ky = Quet - QoKo Q0 oo Qi =
E,g + Z-;Qm_l s TR0 W5
Therefore, (56) gives
Kp = Qut- QKo Qoo Qi > 0.
Recalling the definition (50) of Q,. we find
— ot K1) . (Ho K Ko (Ho KG')' ... (Hp 1 Kpy_p)” > 0.

Hence, (48) is valid.

Proof of Theorem 1. We use the nolation, which generalizes the notation of the
previous lemma. We set L, = (R;);iL,', K, = R;);L" ' and H, = Rl s N
n=0,1,.... Without loss of generality, we can assume that R;; = 0 for |i—j|> m.
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Note that the Schur complement of (L, )m.m in L, is K,. Thus, mequalmes (1) and
(2) imply that K, is invertible (n = 0, 1, ...), with

sup || K| < oo
n=0, 1, ...

Denote

p= s (PN po=a NP ond )}

By the previous inequality and (1), we get p < eo. Thus, we can apply Lemma 2 to
the block matrix (RU),J*Z'“ ! for n=0,1,.... We have

Ko -H,K'H, 20, n=0,1,...,
and
Kuvm=avmt Kninp) o Hony KD H K H (H o K1)
w(Hpyyma K2 ) 281, n=0,1,...,
where 8 is positive and independent of n. Hence,

K=l VLY 20 #=01 0 (61)

Kn-i-m = (}{nﬂu—] Kn_lm—l (Hn K;l) Kl‘l (Hn K;l)*

w(Hpoma K2 D) 281, n=0,1,.... (62)
We now apply Theorem 3 to the set (61) and (62) of nonslalionary Stein inequal-
ities. Let I' = (§; ;,H; K; )u _op be an operator acting in I,m By Theorem 3, I-T

is a Fredholm operator and there exists a positive integer N such that index (/-I') =
=-v_(K,), n=N,N+1,.... Hence,

= (8,1, — 81K H; M=o (63)
is a Fredholm operator with '
ind_ex(.'—l'") =v_(K,), n=NN+1,.... (64)
We now define m X m block matrices A, and B,, n =0,1, ..., by
L: 0 i D 0 0 0 .. 0 a,
0 L wn B 0 oy B wo O gy
A, ®m | wonrves mee aes i By | eee  wer e e ven , (65)
0 0 ... I 0 0 0 ... 0 apma2n
0. 0 ... 0 ayma g 0 .. =l imiin

where a;; are as in the statement of the theorem. Note that (a,, s ,)i=o is the last
column of the inverse of L,. Hence, (A,),-o and (B ,),-o are bounded sequences.

Furthermore, note that a,,,, , = ;! )mm- Thus, inequality (2) demonstrates that
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Ay isinvertible with  sup | a,},., |l < o Finally, we get
n=0,1,..

sy AR NB LI AT D) < e (66)
n=01,...

In addition, the following equalities hold

Rn.n+| Rn.u'rm—i Rn.n+m Qpivmn
* i ; : .
oA, =
Rn+m—-l.n+l Rn+m—1.n+m-l Rn+m-],n+m a;r+m,n
and
m=1
_Rn.rH! _Rn.n+nr—l z Rn,n+k Apsk,n
k=0
K"B" - m-1 !
_Rn-l-m—].rHl _Rn+m—l.n+m—l ZRn+m—l.n+k au+l',n
k=0
7
for n = 0, 1, ... . Taking equations (3) defining a, ., into account, we obtain

H,A, +K B =0, n=0,1,....
Consequently, — K, 'H = BRA;]. n = 0,1,.... Hence, equality (63) shows that

I-T* = (30, +8,,,BA” im0 e

Define an operator S in lf,,, by
S = (5;,;+1Aj)§=0- (68)
In follows from the invertibility of the matrices A; and inequality (66) that § is a
Fredholm operator in /7, with indexS = —rm. This equality and (64) imply that
T = (I-T")S is a Fredholm operator with
indexT = v_(K,)-rm. n=NN+1,....

However, K, is invertible for n = 0, I, ..., and, therefore, v _(K,)+Vv_(K,) = rm.
Thus,

indexT = -v, (K,), n=N,N+1,.... (69)
In addition, we obtain from (67) and (68) that '

T=(-T)S = (§;B;+8,_, ;A)j0-

Finally, we apply Lemma 1 lo the operator G = (a‘j);;g defined in the statement of

Theorem 3. We conclude that the operator G, = G® ... ® 1/ is equivalent to 7.
Hence, G is a Fredholm operator and (69) leads to

index G‘= -v,(K,), n=NN+1,....

Therefore, (4) is valid for n> N.
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4. Bilateral Case. Im this section, we present the proof of Theorem 2. Since this
proof is similar to the proof of Theorem 1, only the principal changes are indicated.
Proof of Theorem 2. As inthe proof of Theorem 1, we denote ’

Kn = (R;_f):;::l - l;

H,, — (Ry n+m,n+m-—1

i=n+l,j=n

for n = 0, £1, .... We have the inequalities

sup (L, IL 0L I K < e
n=0, 11, ...

By using Lemma 2, we obtain as in (61) and (62)
K, —HKHK,HK >0, (70)

Kn+m_’(1'!n+m—l Kr:lm—l (Hn Krl_l) Kn(Hn Kr:l)‘

o (Hpomar Kb 1) 2 &1, (71)
for n =0, £1, ..., where g >0. Denote
r= (5,-J+,H!.K;' )j=0-
It follows from inequalities (70) and (71) and Theorem 4 below that /—T" is a Fred-
holm operator with
m(y-I) = 132) (72)

and there exist nonnegative integers N, q, and p such that

v,K)=¢q v,K_ )=p n=NN+1.., (73)

and
index(/-TI") = q — p. (74)

AS in equality (67) in the proof of Theorem 3, we get ‘
1 - r“ = (5,—H,,+5‘-+1_}-B‘A,-_I ):;,___,.,;

where A, and B, are given by (65) for n =0, £1, ... . Furthermore, we also have

sup (1A, L 18,1 11 A7' 1) < o

n=0, %1, ...
as in (66). Hence, the operator
S = (Bijs14)j=-e
is invertible. Therefore, by (72) and (74),
T=(-T")S = (§;B;+3,;. Aj):f__w
is a Fredholm operator such that

KerT = S7 (Ker( -T™") =S (Am@ -M)*) = (0}
and
indexT = ~index(/-T') = p-gq.
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Finally, Lemma 3.1 in [3] shows that the operator A ® /® ... ® [ is equivalent to T.
Hence, A is a Fredholm operator, KerA = {0}, and indexA = p —g. Together with
(73), this proves the theorem.

We now give the bilateral analog of Theorem 3.

Theorem 4. Let (X,),-_.. and (A,),-_.. be two bounded sequences of r xr
matrices with self-adjoint X, . Consider the operator T = (5,-J+1Aj)};=_,, in

! ;1'(2 ). Assume that the following equalities hold:

X

n+1

~AX Ay 20, n =01, (75)

and
-

X.H'+m_Arl+ﬂl—l Anan:; An+m—| 2 E"r' n=0zxI.., (76)

where € > 0 and m is a positive integer. Then I-T is a Fredholm operator
with

Im(-T) = 132), (77)
and there exist nonnegative integers N, p, and g such that

v,(X,) =¢q. v,(X_)=¢q. n=NN+1,.., (78)

and
. index(/ =T) = g-p. (79)

Proof. Denote

Y, =X,, k=0=%1,.., (80)

and
Byw Ap o o, & =0F]L . (81)

Then (76) leads to

Thus, by setting
G,=B and Z, =Y .., k=021, .., (82)
we obtain
Ty 3Ty O 2 Bl Rl Bl
We apply Theorem 4.2 in [5] to the last set of inequalities. We find that the system
X = Coxpe k=0,%1, ... (83)

admits an asymptotic dichotomies in the positive and negative directions, the rank of
which we denote by p and ¢, respectively. Furthermore, there exists a positive in-
teger kg such that

In@Z) = (p.0,r—p), k= kpko+1,.... (84)

and
In@Z,) = (¢.0,r—q), k= -ky,—ky—1,.... (85)

Since C; = B:,, by (82), it follows from Proposition 3.3 in [5] that the system
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X = By k=011, ...,
admits an asymptotic dichotomy of rank ¢ in the poauwe direction. By Proposition 1,
the sy slun

Kagi = A = BEL (86)

admits an asymptotic dichotomy of rank ¢ in the positive direction.
We now show that (86) admits an asymptotic dichotomy in the negative direction,

Let D, = A_,,m N = =0,%1,.... Then the definitions (81) and (82) of B, and C;
result in

L - -
Ci‘ = B—J{ = A—i‘m "‘1-A'nr+m—l = Di‘nHm—l "'L)km-

Thus, by applying Proposition | to system (83), we find that the system x, ., = D, v, =
= Az,,+,,,_| v, and, therefore, the system
X4 = Ai,,,\‘", n=0x1 ..., _ (87)

admit the asymptotic dichotomies of rank p in the positive direction. Finally, we ap-
ply Proposition 3.3 in [5] to system (87). This implies that (86) admits an asymptotic
dichotomy of rank p in the negative direction.

We now apply Theorem 4.2 in [5] to system (86). Since (86) admits the asymptotic
dichotomies of rank ¢ and p in the positive and negative directions, / —T" is a Fred-
holm operator with

index (/ -T) = g—p. (88)
Recall that, by definitions (80) and (82) and cqualities (84) and (85), we have
In(ka) = (q.{},f'-—-q}. k= kn+l. k[}+2..... (89)

and
InX,,) = (p.O,r=p), k= -ko=1, k=2, ....

Let us show that
In(X,) =(@0,r—¢q, n=N+I1,N+2,..., (90)

and
In(X,) =(p.0,r-p), n=-N-1,N-2,..., o1

where N = (ko+2)m. Since the proofs of (90) and (91) are similar, we only prove
(90). Let n > N. Itfollows from (76) that

* *

Xn_An-[ "'Ari-mxn—m"qn—m An—l 2 E"r'

Note that n—m > N—m = (ko+ 1)m. By iterating (75), we obtain

* * * *

An——l -"Afr—mxn—mAﬂ-m An—l _Au—t "'A(k0+l]mx(kﬂ+l}nl’4'(ku+l}m Aﬂ—l T

-
- An_.], s A.rl-ﬂl (Xu—m_An-—m-l vew A(I(ui—l)mxtkn+1]mA{ﬁ'u+])m b

* * *

# An—m-l)An—m Am—l 2 0.

Combining these two inequalities, we get

* *

Xn_“Aﬂ—l A%(,d-l)mxl.tnﬂ]nlA(kn+l)m An—]

v

el,. (92)
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Denote In(X,) = (V4 ,, Vo, V_,)- Since InXg +1ym) = (g. 0, r —q) by (89), it
follows from (92) and Lemma 2.5 in [5] that

Vi 2@ (93)
Now let &” with k"m = n+m. The next equality follows from (75) and (76) in the
same way as (92)

Xk-m—Xfm_‘, ...A"I"An i Ak'm—l > Elr.
Since In(Xy,,) = (g.0,r —¢g) by (89), Lemina 2.5 in (5] indicates that
g > V+’n+\’(}‘".

This inequality and (93) imply v, = 0,v, , = ¢ and, therefore, v_, = r—g. Since

n> N is arbitrary and In (X,) = (v, ,. Vg, V_,), this proves (90). Similarly, (91)1s

valid.
Equalities (90), (91), and (88) imply that (78) and (79) hold.

Finally, we prove (77). Define a bounded self-adjoint operator X in IE(Z} by
= (5, X}q_ . Then (76) yields

X-T"XT™ 2 8L
Assume that ue Ker(/-T""). Then u = I'""u and, therefore,
= Xu,u)—(XT""u, T*™u) = (X -T"XT"™u, 1) 2 ellu]l”.

Thus, u = 0. This proves that Ker (/ ~T"") = {0}. Since /-T is a Fredholm oper-
ator, this implies (77).
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