Discrete limit theorems for Estermann zeta-functions. I

Antanas Laurinčikas and Renata Macaitienė

Communicated by V. V. Kirichenko

In honour of the 65th birthday of Professor V. V. Kirichenko

Abstract. A discrete limit theorem in the sense of weak convergence of probability measures on the complex plane for the Estermann zeta-function is obtained. The explicit form of the limit measure in this theorem is given.

Introduction

As usual, denote by $\mathcal{P}, \mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}$ and \mathbb{C} the sets of all primes, positive integers, non-negative integers, integers, real and complex numbers, respectively. For arbitrary $\alpha \in \mathbb{C}$ and $m \in \mathbb{N}$, the generalized divisor function $\sigma_{\alpha}(m)$ is defined by

$$
\sigma_{\alpha}(m)=\sum_{d / m} d^{\alpha}
$$

If $\alpha=0$, then $\sigma_{\alpha}(m)$ becomes the divisor function

$$
\sigma_{0}(m)=d(m)=\sum_{d / m} 1
$$

2000 Mathematics Subject Classification: 11M41.
Key words and phrases: compact topological group, Estermann zeta-function, Haar measure, probability measure, limit theorem, weak convergence.

It is well known that, for every positive ϵ,

$$
d(m)<_{\epsilon} m^{\epsilon}, \quad m \in \mathbb{N} .
$$

Here and in the sequel $f(x)<_{\eta} g(x)$ with a positive function $g(x), x \in I$, means that there exists a constant $c=c(\eta)>0$ such that $|f(x)| \leq c g(x)$, $x \in I$. Since

$$
\begin{equation*}
\sigma_{\alpha}(m)=m^{\alpha} \sigma_{-\alpha}(m) \tag{1}
\end{equation*}
$$

hence we have that

$$
\begin{equation*}
\sigma_{\alpha}(m) \ll_{\epsilon} m^{\epsilon+\max (\Re \alpha, 0)} \tag{2}
\end{equation*}
$$

Let $s=\sigma+i t$ be a complex variable, and k and l be coprime integers. For $\sigma>\max (1,1+\Re \alpha)$, the Estermann zeta-function $E\left(s ; \frac{k}{l}, \alpha\right)$ with parameters α and $\frac{k}{l}$ is defined by

$$
E\left(s ; \frac{k}{l}, \alpha\right)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)}{m^{s}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

The function $E\left(s ; \frac{k}{l}, \alpha\right)$ is analytically continuable to the whole complex plane, except for two simple poles at $s=1$ and $s=1+\alpha$ if $\alpha \neq 0$, and a double pole at $s=1$ if $\alpha=0$.

The function $E\left(s ; \frac{k}{l}, \alpha\right)$ with parameter $\alpha=0$ was introduced by T. Estermann in [2] for needs of the representation of a number as the sum of two products. I. Kiuchi investigated [6] $E\left(s ; \frac{k}{l}, \alpha\right)$ for $\alpha \in(-1,0]$. The paper [12] is devoted to zero distribution of the Estermann zetafunction. The mean-square of $E\left(s ; \frac{k}{l}, \alpha\right)$ was considered in [14], while the universality for $E\left(s ; \frac{k}{l}, \alpha\right)$ was proved in [3]. The mentioned results also can be found in [13].

In view of [1], we have the functional equation

$$
E\left(s ; \frac{k}{l}, \alpha\right)=E\left(s-\alpha ; \frac{k}{l},-\alpha\right)
$$

Therefore, without loss of generality, we can suppose that $\Re \alpha \leq 0$.
The first attempt to characterize the asymptotic behaviour of the function $E\left(s ; \frac{k}{l}, \alpha\right)$ by probabilistic terms was made in [9]. Here a limit theorem in the sense of weak convergence of probability measures on the complex plane was proved. To state this theorem, we need some notation.

Let $\gamma=\{s \in \mathbb{C}:|s|=1\}$ be the unit circle on the complex plane, and

$$
\Omega=\prod_{p} \gamma_{p}
$$

where $\gamma_{p}=\gamma$ for each prime p. By the Tikhonov theorem, with the product topology and pointwise multipilication, the infinite-dimensional torus Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, where $\mathcal{B}(S)$ denotes the class of Borel sets of the space S, the probability Haar measure m_{H} can be defined, and this leads to a probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space $\gamma_{p}, p \in \mathcal{P}$. We extend the function $\omega(p)$ to the set \mathbb{N} by the formula

$$
\omega(m)=\prod_{p^{r} \| m} \omega^{r}(p), \quad m \in \mathbb{N}
$$

where $p^{r} \| m$ means that $p^{r} \mid m$ but $p^{r+1} \nmid m$. Now on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$ we define, for $\sigma>\frac{1}{2}$, the complex-valued random element $E\left(\sigma ; \frac{k}{l}, \alpha ; \omega\right)$ by the series

$$
E\left(\sigma ; \frac{k}{l}, \alpha ; \omega\right)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \omega(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

and denote by $P_{E, \sigma}^{\mathbb{C}}$ its distribution, i.e.,

$$
P_{E, \sigma}^{\mathbb{C}}(A)=m_{H}\left(\omega \in \Omega: E\left(\sigma ; \frac{k}{l}, \alpha ; \omega\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then in [9] the following result has been obtained.

Theorem 1. Suppose that $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Then the probability measure

$$
\frac{1}{T} \text { meas }\left\{t \in[0, T]: E\left(\sigma+i t ; \frac{k}{l}, \alpha\right) \in A\right\}, \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to the measure $P_{E, \sigma}^{\mathbb{C}}$ as $T \rightarrow \infty$.
In [10] a generalization of Theorem 1 was given, a limit theorem in the space of meromorphic functions for the Estermann zeta-function was obtained. Let $D=\left\{s \in \mathbb{C}: \sigma>\frac{1}{2}\right\}$, and let $M(D)$ denote the space of meromorphic on D functions equipped with the topology of uniform convergence on compacta. Moreover, by $H(D)$ denote the space of analytic on D functions equipped with the topology of $M(D) . H(D)$ is a subspace of $M(D)$. On $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$, define the $H(D)$-valued random element

$$
E\left(s ; \frac{k}{l}, \alpha ; \omega\right)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \omega(m)}{m^{s}} \exp \left\{2 \pi i m \frac{k}{l}\right\}, \quad s \in D, \quad \omega \in \Omega
$$

and denote by P_{E}^{H} its distribution, i.e.,

$$
P_{E}^{H}(A)=m_{H}\left(\omega \in \Omega: E\left(s ; \frac{k}{l}, \alpha ; \omega\right) \in A\right), \quad A \in \mathcal{B}(H(D)) .
$$

Then in [10] the following theorem has been proved.
Theorem 2. Suppose that $\Re \alpha \leq 0$. Then the probability measure

$$
\frac{1}{T} \text { meas }\left\{\tau \in[0, T]: E\left(s+i \tau ; \frac{k}{l}, \alpha\right) \in A\right\}, \quad A \in \mathcal{B}(M(D))
$$

converges weakly to P_{E}^{H} as $T \rightarrow \infty$.
Theorems 1 and 2 are of continuous type, the measures in them are defined by shifts $E\left(\sigma+i t ; \frac{k}{l}, \alpha\right)$ and $E\left(s+i \tau ; \frac{k}{l}, \alpha\right)$, when t and τ vary continuously in the interval $[0, T]$. The aim of this paper is to obtain a discrete limit theorem on the complex plane for the Estermann zetafunction, when t in $E\left(\sigma+i t ; \frac{k}{l}, \alpha\right)$ takes values from some discrete set.

Let, for brevity, for $N \in \mathbb{N}_{0}$,

$$
\mu_{N}(\ldots)=\frac{1}{N+1} \sum_{0 \leq m \leq N} 1
$$

where in place of dots a condition satisfied by m is to written.
Theorem 3. Suppose that $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Moreover, let $h>0$ be a fixed number such that $\exp \left\{\frac{2 \pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \backslash\{0\}$. Then the probability measure

$$
P_{N, \sigma} \stackrel{\text { def }}{=} \mu_{N}\left(E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to $P_{E, \sigma}^{\mathbb{C}}$ as $N \rightarrow \infty$.

1. Limit theorems for absolutely convergent series

Let, for fixed $\sigma_{1}>\frac{1}{2}$,

$$
v_{n}(m)=\exp \left\{-\left(\frac{m}{n}\right)^{\sigma_{1}}\right\}
$$

For $n \in \mathbb{N}$ and $\sigma>\frac{1}{2}$, define

$$
E_{n}\left(s ; \frac{k}{l}, \alpha\right)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) v_{n}(m)}{m^{s}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

and, for $\widehat{\omega} \in \Omega$,

$$
E_{n}\left(s ; \frac{k}{l}, \alpha ; \widehat{\omega}\right)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) v_{n}(m) \widehat{\omega}(m)}{m^{s}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

Since, by (2), for $\Re \alpha \leq 0$, the estimate $\sigma_{\alpha}(m) \ll m^{\epsilon}$ is true, it is easily seen that the series for $E_{n}\left(s ; \frac{k}{l}, \alpha\right)$ and $E_{n}\left(s ; \frac{k}{l}, \alpha ; \omega\right)$ converge absolutely in the half-plane $\sigma>\frac{1}{2}$. The details are similar to those given in Chapter 5 of [8].

On $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, define two probability measures

$$
P_{N, n, \sigma}=\mu_{N}\left(E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right) \in A\right)
$$

and

$$
\widehat{P}_{N, n, \sigma}=\mu_{N}\left(E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \widehat{\omega}\right) \in A\right) .
$$

Theorem 4. Suppose that $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Let $h>0$ be a fixed number such that $\exp \left\{\frac{2 \pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \backslash\{0\}$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure $P_{n, \sigma}$ such that the measures $P_{N, n, \sigma}$ and $\widehat{P}_{N, n, \sigma}$ both converge weakly to $P_{n, \sigma}$ as $N \rightarrow \infty$.

The proof of Theorem 4 is based on a discrete limit theorem on the torus Ω. Define

$$
Q_{N}(A)=\mu_{N}\left(\left(p^{-i m h}: p \in \mathcal{P}\right) \in A\right), \quad A \in \mathcal{B}(\Omega)
$$

Lemma 1. Let $h>0$ be a fixed number such that $\exp \left\{\frac{2 \pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \backslash\{0\}$. Then the probability measure Q_{N} converges weakly to the Haar measure m_{H} as $N \rightarrow \infty$.

Proof. The dual group of Ω is

$$
\mathcal{D} \stackrel{\text { def }}{=} \bigoplus_{p} \mathbb{Z}_{p}
$$

where $\mathbb{Z}_{p}=\mathbb{Z}$ for each prime p. An element $\underline{k}=\left(k_{2}, k_{3}, k_{5}, \ldots\right) \in \mathcal{D}$, where only a finite number of integers $k_{p}, p \in \mathcal{P}$, are distinct from zero, acts on Ω by

$$
\omega \rightarrow \omega^{\underline{k}}=\prod_{p} \omega^{k_{p}}(p)
$$

Therefore, the Fourier transform $g_{N}(\underline{k})$ of the measure Q_{N} is of the form

$$
\begin{align*}
g_{N}(\underline{k}) & =\int_{\Omega} \prod_{p} \omega^{k_{p}}(p) \mathrm{d} Q_{N}=\frac{1}{N+1} \sum_{m=0}^{N} \prod_{p} p^{-i m h k_{p}} \\
& =\frac{1}{N+1} \sum_{m=0}^{N} \exp \left\{-i m h \sum_{p} k_{p} \log p\right\} \tag{3}
\end{align*}
$$

where only a finite number of integers $k_{p}, p \in \mathcal{P}$, are distinct from zero. It is well known that the system $\{\log p: p \in \mathcal{P}\}$ is linearly independent over the field of rational numbers \mathbb{Q}. Moreover,

$$
\prod_{p} p^{k_{p}}=\exp \left\{\sum_{p} k_{p} \log p\right\}
$$

is a rational number, while, by the hypothesis of the lemma, the number

$$
\exp \left\{\frac{2 \pi r}{h}\right\}
$$

is irrational for all $r \in \mathbb{Z} \backslash\{0\}$. Hence, we obtain that

$$
\exp \left\{-i h \sum_{p} k_{p} \log p\right\} \neq 1
$$

for $\underline{k} \neq \underline{0}$. Thus, we deduce from (3) that

$$
g_{N}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=\underline{0} \\ \frac{1}{N+1} \frac{1-\exp \left\{-i(N+1) h \sum_{p} k_{p} \log p\right\}}{1-\exp \left\{-i h \sum_{p} k_{p} \log p\right\}} & \text { if } \underline{k} \neq \underline{0}\end{cases}
$$

This shows that

$$
\lim _{N \rightarrow \infty} g_{N}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=\underline{0} \\ 0 & \text { if } \underline{k} \neq \underline{0}\end{cases}
$$

and in view of Theorem 1.4.2 of [4] the lemma is proved, since the limit Fourier transform corresponds the measure m_{H}.

Proof of Theorem 4. Define the function $u_{n, \sigma}: \Omega \rightarrow \mathbb{C}$ by the formula

$$
u_{n, \sigma}(\omega)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \omega(m) v_{n}(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

Then the function $u_{n, \sigma}$ is continuous, and

$$
u_{n, \sigma}\left(\left(p^{-i m h}: p \in \mathcal{P}\right)\right)=E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)
$$

Therefore, $P_{N, n, \sigma}=Q_{N} u_{n, \sigma}^{-1}$. Thus, by Lemma 1 and Theorem 5.1 of [1] we obtain that the measure $P_{N, n, \sigma}$ converges weakly to $m_{H} u_{n, \sigma}^{-1}$ as $N \rightarrow \infty$.

Now let the function $\widehat{u}_{n, \sigma}: \Omega \rightarrow \mathbb{C}$ be given by the formula

$$
\widehat{u}_{n, \sigma}(\omega)=\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \widehat{\omega}(m) \omega(m) v_{n}(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

Then, similarly as above, we find that the measure $\widehat{P}_{N, n, \sigma}$ converges weakly to $m_{H} \widehat{u}_{n, \sigma}^{-1}$ as $N \rightarrow \infty$. However,

$$
\widehat{u}_{n, \sigma}(\omega)=u_{n, \sigma}(\omega \widehat{\omega})=u_{n, \sigma}(u(\omega))
$$

where $u(\omega)=\omega \widehat{\omega}, \omega \in \Omega$. Hence, $m_{H} \widehat{u}_{n, \sigma}^{-1}=m_{H}\left(u_{n, \sigma} u\right)^{-1}=$ $\left(m_{H} u^{-1}\right) u_{n, \sigma}^{-1}=m_{H} u_{n, \sigma}^{-1}$, since the Haar measure is invariant.

2. Approximation in the mean

To prove Theorem 3, we have to pass from the function $E_{n}\left(s ; \frac{k}{l}, \alpha\right)$ to $E\left(s ; \frac{k}{l}, \alpha\right)$. For this, we need the estimate for the mean

$$
\frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|
$$

If $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$, then it is known [14] that

$$
\begin{equation*}
\int_{1}^{T}\left|E\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \ll T, \quad T \rightarrow \infty \tag{4}
\end{equation*}
$$

In our case, a discrete version of estimate (4) is necessary. To prove an estimate of such a kind, we use the Gallagher lemma, see [11], Lemma 1.4.

Lemma 2. Let T_{0} and $T \geq \delta>0$ be real numbers, \mathcal{T} be a finite set in the interval $\left[T_{0}+\frac{\delta}{2}, T_{0}+T-\frac{\delta}{2}\right]$, and

$$
N_{\delta}(x)=\sum_{\substack{t \in \mathcal{T} \\|t-x|<\delta}} 1
$$

Moreover, let $S(x)$ be a complex-valued continuous function on $\left[T_{0}, T_{0}+T\right]$ having a continuous derivative on $\left(T_{0}, T_{0}+T\right)$. Then

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} N_{\delta}^{-1}|S(t)|^{2} \leq & \frac{1}{\delta} \int_{T_{0}}^{T_{0}+T}|S(x)|^{2} \mathrm{~d} x \\
& +\left(\int_{T_{0}}^{T_{0}+T}|S(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{T_{0}}^{T_{0}+T}\left|S^{\prime}(x)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
\end{aligned}
$$

Lemma 3. Suppose that $\sigma>\frac{1}{2}, \sigma \neq 1, \sigma \neq 1+\Re \alpha$, if $\alpha \neq 0, \Re \alpha \leq 0$ and $N \rightarrow \infty$. Then

$$
\sum_{m=0}^{N}\left|E\left(\sigma+i m h+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2} \ll N+|\tau|
$$

Proof. A simple application of the integral Cauchy formula and (4) show that

$$
\int_{1}^{T}\left|E^{\prime}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \ll T
$$

Hence, and from (4), using Lemma 2, we have that

$$
\begin{aligned}
& \sum_{m=0}^{N}\left|E\left(\sigma+i m h+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2} \leq \frac{1}{h} \int_{0}^{h N}\left|E\left(\sigma+i t+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \\
+ & \left(\int_{0}^{h N}\left|E\left(\sigma+i t+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{h N}\left|E^{\prime}\left(\sigma+i t+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
\ll & \int_{-|\tau|}^{h N+|\tau|}\left|E\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \\
+ & \left(\int_{-|\tau|}^{h N+|\tau|}\left|E\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{-|\tau|}^{h N+|\tau|}\left|E^{\prime}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
\ll & N+|\tau| .
\end{aligned}
$$

Theorem 5. Suppose that $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Then $\lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|=0$.

Proof. Let σ_{1} the same as in Section 1. For $n \in \mathbb{N}$, define

$$
l_{n}(s)=\frac{s}{\sigma_{1}} \Gamma\left(\frac{s}{\sigma_{1}}\right) n^{s}
$$

Then, see [9], for $\sigma>\frac{1}{2}$,

$$
E_{n}\left(s ; \frac{k}{l}, \alpha\right)=\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} E\left(s+z ; \frac{k}{l}, \alpha\right) l_{n}(z) \frac{\mathrm{d} z}{z}
$$

Define σ_{2} by

$$
\sigma>\sigma_{2}> \begin{cases}\frac{1}{2} & \text { if } \alpha=0 \text { or } 1+\Re \alpha-\sigma>0 \\ 1+\Re \alpha & \text { otherwise }\end{cases}
$$

Thus, we obtain by the residue theorem that

$$
\begin{aligned}
E_{n}\left(s ; \frac{k}{l}, \alpha\right)= & \frac{1}{2 \pi i} \int_{\sigma_{2}-\sigma-i \infty}^{\sigma_{2}-\sigma+i \infty} E\left(s+z ; \frac{k}{l}, \alpha\right) l_{n}(z) \frac{\mathrm{d} z}{z} \\
& +E\left(s ; \frac{k}{l}, \alpha\right)+R\left(s ; \frac{k}{l}, \alpha\right)
\end{aligned}
$$

where

$$
R\left(s ; \frac{k}{l}, \alpha\right)= \begin{cases}\operatorname{Res}_{z=1-s} E\left(s+z ; \frac{k}{l}, \alpha\right) \frac{l_{n}(z)}{z} & \text { if } \alpha=0 \\ \operatorname{Res}_{z=1-s} E\left(s+z ; \frac{k}{l}, \alpha\right) \frac{\ln _{n}(z)}{z} & +\operatorname{Res}_{z=1+\alpha-s} E\left(s+z ; \frac{k}{l}, \alpha\right) \frac{l_{n}(z)}{z} \\ & \text { if } 1+\Re \alpha-\sigma>0\end{cases}
$$

Hence, we have

$$
\begin{aligned}
& \frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \\
\ll & \int_{-\infty}^{\infty}\left(\frac{\left|l_{n}\left(\sigma_{2}-\sigma+i \tau\right)\right|}{\left|\sigma_{2}-\sigma+i \tau\right|} \frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma_{2}+i m h+i \tau ; \frac{k}{l}, \alpha\right)\right|\right) \mathrm{d} \tau
\end{aligned}
$$

$$
\begin{equation*}
+\frac{1}{N+1} \sum_{m=0}^{N}\left|R\left(\sigma_{2}-\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| . \tag{5}
\end{equation*}
$$

We can choose $\sigma_{2} \neq 1$ and $\sigma_{2} \neq 1+\Re \alpha$. Thus, by Lemma 3

$$
\begin{align*}
& \frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma_{2}+i m h+i \tau ; \frac{k}{l}, \alpha\right)\right| \\
\ll & \frac{1}{N}\left(\sum_{m=0}^{N} 1\right)^{\frac{1}{2}}\left(\sum_{m=0}^{N}\left|E\left(\sigma_{2}+i m h+i \tau ; \frac{k}{l}, \alpha\right)\right|^{2}\right)^{\frac{1}{2}} \\
\ll & 1+|\tau| \tag{6}
\end{align*}
$$

Applying Lemma 2 again, we find that

$$
\begin{align*}
& \sum_{m=0}^{N} \mid R\left(\sigma_{2}-\right.\left.\sigma+i m h ; \frac{k}{l}, \alpha\right) \mid \\
& \ll \sqrt{N}\left(\sum_{m=0}^{N}\left|R\left(\sigma_{2}-\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|^{2}\right)^{\frac{1}{2}} \\
& \ll \sqrt{N}\left(\int_{0}^{N h}\left|R\left(\sigma_{2}-\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right. \\
&\left.+\left(\int_{0}^{N h}\left|R\left(\sigma_{2}-\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{N h}\left|R^{\prime}\left(\sigma_{2}-\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} . \tag{7}
\end{align*}
$$

Since the function $l_{n}(s)$ contains the Euler gamma-function, we obtain the estimate

$$
\begin{equation*}
\int_{0}^{N h}\left|R\left(\sigma_{2}-\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \ll 1 . \tag{8}
\end{equation*}
$$

This and application of the Cauchy integral formula give the bound

$$
\int_{0}^{N h}\left|R^{\prime}\left(\sigma_{2}-\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \ll 1 .
$$

This and (7), (8) lead to the estimate

$$
\frac{1}{N+1} \sum_{m=0}^{N}\left|R\left(\sigma_{2}-\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t \ll \frac{1}{\sqrt{N}} .
$$

Therefore, in view of (5) and (6)

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \\
\ll & \lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|l_{n}\left(\sigma_{2}-\sigma+i \tau\right)\right|(1+|\tau|) \mathrm{d} t \tag{9}
\end{align*}
$$

However, since $\sigma_{2}-\sigma<0$,

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|l_{n}\left(\sigma_{2}-\sigma+i \tau\right)\right|(1+|\tau|) \mathrm{d} t=0
$$

and the theorem is a consequence of estimate (9).
We also need an analogue of Theorem 5 for the functions $E\left(s ; \frac{k}{l}, \alpha ; \omega\right)$ and $E_{n}\left(s ; \frac{k}{l}, \alpha ; \omega\right)$

Theorem 6. Let $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Then, for almost all $\omega \in \Omega$,

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N} \right\rvert\, E\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \\
& \left.-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \right\rvert\,=0
\end{aligned}
$$

Proof. In [9], Lemma 5, it was obtained that, under the hypotheses of the theorem,

$$
\int_{0}^{T}\left|E\left(\sigma+i t ; \frac{k}{l}, \alpha ; \omega\right)\right|^{2} \mathrm{~d} t \ll T
$$

for almost all $\omega \in \Omega$. Hence, similarly to the proof of Lemma 3, we obtain that

$$
\begin{equation*}
\sum_{m=0}^{N}\left|E\left(\sigma+i m h+i \tau ; \frac{k}{l}, \alpha ; \omega\right)\right|^{2} \ll N+|\tau| \tag{10}
\end{equation*}
$$

for almost all $\omega \in \Omega$.
The random variables $\omega(m), m \in \mathbb{N}$, are pointwise orthogonal, that is

$$
\mathbb{E}(\omega(m) \overline{\omega(n)})= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

where $\mathbb{E}(X)$ denotes the expectation of X. Hence, we have that

$$
\begin{aligned}
& \mathbb{E}\left(\frac{\sigma_{\alpha}(m) \omega(m)}{m^{\sigma}} \frac{\overline{\sigma_{\alpha}(n)} \bar{\omega}(n)}{n^{\sigma}} \exp \left\{2 \pi i \frac{k}{l}(m-n)\right\}\right) \\
= & \begin{cases}\frac{\left|\sigma_{\alpha}(m)\right|^{2}}{m^{2 \sigma}} & \text { if } m=n, \\
0 & \text { if } m \neq n .\end{cases}
\end{aligned}
$$

Thus, in view of (2), the series

$$
\sum_{m=1}^{\infty} \mathbb{E}\left|\frac{\sigma_{\alpha}(m) \omega(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}\right|^{2} \log ^{2} m
$$

converges for any fixed $\sigma>\frac{1}{2}$. Therefore, by the Rademacher theorem, see, for example [11], the series, for any fixed $\sigma>\frac{1}{2}$,

$$
\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \omega(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

converges for almost all $\omega \in \Omega$. Hence, the series

$$
\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) \omega(m)}{m^{\sigma}} \exp \left\{2 \pi i m \frac{k}{l}\right\}
$$

for almost all $\omega \in \Omega$, converges uniformly on compact subsets of the half-plane $\left\{s \in \mathbb{C}: \sigma>\frac{1}{2}\right\}$. This shows that, for almost all $\omega \in \Omega$, the function $E\left(s ; \frac{k}{l}, \alpha ; \omega\right)$ is analytic in the region $\left\{s \in \mathbb{C}: \sigma>\frac{1}{2}\right\}$. Therefore, using the representation

$$
E_{n}\left(s ; \frac{k}{l}, \alpha ; \omega\right)=\frac{1}{2 \pi i} \int_{\sigma_{1}-i \infty}^{\sigma_{1}+i \infty} E\left(s+z ; \frac{k}{l}, \alpha ; \omega\right) l_{n}(z) \frac{\mathrm{d} z}{z}
$$

we obtain that, for $\frac{1}{2}<\sigma_{2}<\sigma$,
$E_{n}\left(s ; \frac{k}{l}, \alpha ; \omega\right)=\frac{1}{2 \pi i} \int_{\sigma_{2}-\sigma-i \infty}^{\sigma_{2}-\sigma+i \infty} E\left(s+z ; \frac{k}{l}, \alpha ; \omega\right) l_{n}(z) \frac{\mathrm{d} z}{z}+E\left(s ; \frac{k}{l}, \alpha ; \omega\right)$
for almost all $\omega \in \Omega$. Using the latter formula and (9), we complete the proof in the same way as in the case of Theorem 5.

3. Proof of Theorem 3

Define one more probability measure

$$
\widehat{P}_{N, \sigma}=\mu_{N}\left(E\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

We begin the proof of Theorem 3 with the following statement.
Theorem 7. Suppose that $\sigma>\frac{1}{2}$ and $\Re \alpha \leq 0$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure P_{σ} such that the measures $P_{N, \sigma}$ and $\widehat{P}_{N, \sigma}$ both converge weakly to P_{σ} as $N \rightarrow \infty$.

Proof. By Theorem 4, for $\sigma>\frac{1}{2}$, the measures $P_{N_{\rho} n, \sigma}$

$$
\widehat{P}_{N, n, \sigma}=\mu_{N}\left(E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

for every $\omega \in \Omega$, both converge weakly to the same measure $P_{n, \sigma}$ as $N \rightarrow \infty$.

For any positive M, by the Chebyshev inequality

$$
\begin{align*}
P_{N, n, \sigma}(\{z \in \mathbb{C}:|z|>M\}) & =\mu_{N}\left(\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|>M\right) \\
& \leq \frac{1}{M(N+1)} \sum_{m=0}^{N}\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \tag{11}
\end{align*}
$$

As we have observed above, the series for $E_{n}\left(s ; \frac{k}{l}, \alpha\right)$ converges absolutely for $\sigma>\frac{1}{2}$. Also, the latter property holds for $E_{n}^{\prime}\left(s ; \frac{k}{l}, \alpha\right)$. Therefore, for $\sigma>\frac{1}{2}$,

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{1}^{T}\left|E_{n}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t & =\sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2} v_{n}^{2}(m)}{m^{2 \sigma}} \\
& \leq \sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2}}{m^{2 \sigma}}<\infty \tag{12}
\end{align*}
$$

and

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{1}^{T}\left|E_{n}^{\prime}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t=\sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2} v_{n}^{2}(m) \log ^{2} m}{m^{2 \sigma}}
$$

$$
\begin{equation*}
\leq \sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2} \log ^{2} m}{m^{2 \sigma}}<\infty \tag{13}
\end{equation*}
$$

An application of Lemma 2 yields

$$
\begin{aligned}
& \frac{1}{N+1} \sum_{m=0}^{N}\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \ll \frac{1}{\sqrt{N}}\left(\sum_{m=0}^{N}\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|^{2}\right)^{\frac{1}{2}} \\
\ll & \frac{1}{\sqrt{N}}\left(\frac{1}{N h} \int_{0}^{N h}\left|E_{n}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right. \\
& \left.+\left(\frac{1}{N} \int_{0}^{N h}\left|E_{n}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\frac{1}{N} \int_{0}^{h N}\left|E_{n}^{\prime}\left(\sigma+i t ; \frac{k}{l}, \alpha\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

This, (12) and (13) show that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right)\right| \leq C(h) R, \tag{14}
\end{equation*}
$$

where

$$
R=\left(\sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2}}{m^{2 \sigma}}+\left(\sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2}}{m^{2 \sigma}}\right)^{\frac{1}{2}}\left(\sum_{m=1}^{\infty} \frac{\left|\sigma_{\alpha}(m)\right|^{2} \log ^{2} m}{m^{2 \sigma}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}<\infty
$$

For arbitrary $\epsilon>0$, let $M_{\epsilon}=C(h) R \epsilon^{-1}$. Then, taking into account (11) and (14), we find that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} P_{N, n, \sigma}\left(\left\{z \in \mathbb{C}:|z|>M_{\epsilon}\right\}\right) \leq \epsilon \tag{15}
\end{equation*}
$$

The function $u: \mathbb{C} \rightarrow \mathbb{R}, z \rightarrow|z|$, is continuous. Therefore, by Theorem 4 and Theorem 5.1 of [1] we have that, for $\sigma>\frac{1}{2}$, the probability measure

$$
\mu_{N}\left(\left|E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \in A\right), \quad A \in \mathcal{B}(\mathbb{R})
$$

converges weakly to $P_{n, \sigma} u^{-1}$ as $N \rightarrow \infty$. This together with Theorem 2.1 of [1] and (15) implies

$$
\begin{aligned}
P_{n, \sigma}\left(\left\{z \in \mathbb{C}:|z|>M_{\epsilon}\right\}\right) & \leq \liminf _{N \rightarrow \infty} P_{N, n, \sigma}\left(\left\{z \in \mathbb{C}:|z|>M_{\epsilon}\right\}\right) \\
& \leq \limsup _{N \rightarrow \infty} P_{N, n, \sigma}\left(\left\{z \in \mathbb{C}:|z|>M_{\epsilon}\right\}\right) \leq \epsilon
\end{aligned}
$$

for all $n \in \mathbb{N}$. Define $K_{\epsilon}=\left\{z \in \mathbb{C}:|z| \leq M_{\epsilon}\right\}$. Then the set K_{ϵ} is compact, and by (16)

$$
P_{n, \sigma}\left(K_{\epsilon}\right) \geq 1-\epsilon
$$

for all $n \in \mathbb{N}$. This means that the family of probability measures $\left\{P_{n, \sigma}\right.$: $n \in \mathbb{N}\}$ is tight, and by the Prokhorov theorem, see Theorem 6.1 of [1], it is relatively compact. Therefore, there exists a subsequence $\left\{P_{n_{k}, \sigma}\right\} \subset$ $\left\{P_{n, \sigma}\right\}$ such that $P_{n_{k}, \sigma}$ converges weakly to some measure P_{σ} on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ as $k \rightarrow \infty$.

Let θ_{N} be a random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{B}(\widehat{\Omega}), \mathbb{P})$ with the distribution

$$
\mathbb{P}\left(\theta_{N}=m h\right)=\frac{1}{N+1}, \quad m=0,1, \ldots, N
$$

Define

$$
X_{N, n}=X_{N, n}(\sigma)=E_{n}\left(\sigma+i \theta_{N} ; \frac{k}{l}, \alpha\right)
$$

and denote by $X_{n}=X_{n}(\sigma)$ the complex-valued random variable with the distribution $P_{n, \sigma}$. Then by Theorem 4

$$
\begin{equation*}
X_{N, n} \underset{N \rightarrow \infty}{\mathcal{D}} X_{n} \tag{17}
\end{equation*}
$$

where $\xrightarrow{\mathcal{D}}$ denotes the convergence in distribution. Moreover, from the above remark

$$
\begin{equation*}
X_{n_{k}}(\sigma) \underset{k \rightarrow \infty}{\stackrel{\mathcal{D}}{\rightarrow}} P_{\sigma} \tag{18}
\end{equation*}
$$

Define

$$
X_{N}(\sigma)=E\left(\sigma+i \theta_{N} ; \frac{k}{l}, \alpha\right)
$$

Then in view of Theorem 5, for $\sigma>\frac{1}{2}$ and any $\epsilon>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \mathbb{P}\left(\left|X_{N}(\sigma)-X_{N, n}(\sigma)\right| \geq \epsilon\right) \\
= & \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \mu_{N}\left(\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right| \geq \epsilon\right) \\
\leq & \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{\epsilon(N+1)} \sum_{m=1}^{\infty}\left|E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)-E_{n}\left(\sigma+i m h ; \frac{k}{l}, \alpha\right)\right|=0 .
\end{aligned}
$$

This, (17), (18) and Theorem 4.2 of [1] show that

$$
\begin{equation*}
X_{N}(\sigma) \underset{N \rightarrow \infty}{\mathcal{D}} P_{\sigma}, \tag{19}
\end{equation*}
$$

and this is equivalent to weak convergence of $P_{N, \sigma}$ to P_{σ} as $N \rightarrow \infty$.
Relation (19) shows that the measure P_{σ} is independent of the choice of the sequence $P_{n_{k}, \sigma}$. Hence, we obtain that

$$
\begin{equation*}
X_{n}(\sigma) \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} P_{\sigma} . \tag{20}
\end{equation*}
$$

Now define

$$
\widehat{X}_{N, n}=\widehat{X}_{N, n}(\sigma)=E_{n}\left(\sigma+i \theta_{N} ; \frac{k}{l}, \alpha ; \omega\right)
$$

and

$$
\widehat{X}_{N}=\widehat{X}_{N}(\sigma)=E\left(\sigma+i \theta_{N} ; \frac{k}{l}, \alpha ; \omega\right)
$$

Then in the same way as above, using (20) and Theorem 6, we find that the measure $\widehat{P}_{N, \sigma}$ also converges weakly to P_{σ} as $N \rightarrow \infty$.

Proof of Theorem 3. In view of Theorem 7, it remains to identify the limit measure P_{σ}.

Let $A \in \mathcal{B}(\mathbb{C})$ be a fixed continuity set of the limit measure P_{σ} in Theorem 7. Then we have that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mu_{N}\left(E\left(\sigma+i m h ; \frac{k}{l}, \alpha\right) \in A\right)=P_{\sigma}(A) \tag{21}
\end{equation*}
$$

Now on $(\Omega, \mathcal{B}(\Omega))$ define the random variable θ by the formula

$$
\theta=\theta(\omega)= \begin{cases}1 & \text { if } E\left(\sigma ; \frac{k}{l}, \alpha ; \omega\right) \in A \\ 0 & \text { if } E\left(\sigma ; \frac{k}{l}, \alpha ; \omega\right) \notin A\end{cases}
$$

Then we have that

$$
\begin{equation*}
\mathbb{E} \theta=\int_{\Omega} \theta \mathrm{d} m_{H}=m_{H}\left(\omega \in \Omega: E\left(s ; \frac{k}{l}, \alpha ; \omega\right) \in A\right)=P_{E, \sigma}^{\mathbb{C}} \tag{22}
\end{equation*}
$$

Let $a_{h}=\left\{p^{-i h}: p \in \mathcal{P}\right\}$. Define the transformation f_{h} on Ω by $f_{h}(\omega)=a_{h} \omega, \omega \in \Omega$. Then f_{h} is a measurable measure preserving transformation on $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. In [5] it was obtained that the transformation f_{h} is ergodic. Then by the classical Birkhoff-Khinchine theorem, see,
for example [7], we obtain that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N} \theta\left(f_{h}^{m}(\omega)\right)=\mathbb{E} \theta \tag{23}
\end{equation*}
$$

for almost all $\omega \in \Omega$. However, by the definition of f_{h}, we have that

$$
\frac{1}{N+1} \sum_{m=0}^{N} \theta\left(f_{h}^{m}(\omega)\right)=\mu_{N}\left(E\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \in A\right)
$$

From this, (22) and (23) we obtain that

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(E\left(\sigma+i m h ; \frac{k}{l}, \alpha ; \omega\right) \in A\right)=P_{E, \sigma}^{\mathbb{C}}(A)
$$

Therefore, by $(21), P_{\sigma}(A)=P_{E, \sigma}^{\mathbb{C}}(A)$. Since A is arbitrary continuity set of P_{σ}, the latter equality is true for any continuity set A. However, all continuity sets constitute the determining class, and we have that $P_{\sigma}(A)=P_{E, \sigma}^{\mathbb{C}}(A)$ for all $A \in \mathcal{B}(\mathbb{C})$. The theorem is proved.

References

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[2] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc., N.31, 1930, pp.123-133.
[3] R. Garunkštis, A. Laurinčikas, R. Šleževičienė, J. Steuding, On the universality of Estermann zeta-functions, Analysis, N.22, 2002, pp.285-296.
[4] H. Heyer, Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin, 1977.
[5] R. Kačinskaité, A discrete limit theorem for the Matsumoto zeta-function on the complex plane, Lith. Math. J., N.40(4), 2000, pp. 364-378.
[6] I. Kiuchi, On an exponentials sum involving the arithmetic function $\sigma_{a}(n)$, Math. J. Okayama Univ., N.29, 1987, pp.193-205.
[7] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
[8] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
[9] A. Laurinčikas, Limit theorems for the Estermann zeta-function. I, Statist. Probab. Lett., N.72, 2005, pp.227-237.
[10] A. Laurinčikas, Limit theorems for the Estermann zeta-function. II, Cent. Eur. J. Math., N.3(4), 2005, pp.580-590.
[11] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer-Verlag, Berlin, 1971.
[12] R. Šleževičienė, J. Steuding, On the zeros of the Estermann zeta-function, Integral Transforms and Special Functions, N.13, 2002, pp.363-371.
[13] R. Šleževičienė, On some aspects in the theory of the Estermann zeta-function, Fiz. Mat. Fak. Moksl. Semin. Darb., N.5, 2002, pp.115-130.
[14] R. Šleževičienė, J. Steuding, The mean-square of the Estermann zeta-functon, Faculty of Mathematics and Informatics, Vilnius University, Preprint 2002-32, 2002.

\author{

A. Laurinčikas
 A. Laurinčikas \quad| Department of Mathematics |
| :--- |
| and Informatics, |
| |
| Vilnius University, |
| |
| Naugarduko 24, |
| |
| LT-03225 Vilnius, |
| |
| Lithuania |
| |
| E-Mail: antanas.laurincikas@mif.vu.lt |

}

Contact information
R. Macaitienė

Department of Mathematics
and Informatics,
Šiauliai University,
P. Višinskio 19, LT-77156 Šiauliai, Lithuania
E-Mail: renata.macaitiene@mi.su.lt

Received by the editors: 09.07.2007 and in final form 07.04.2008.

