The symmetries of McCullough-Miller space

Adam Piggott ${ }^{1}$

Communicated by R. I. Grigorchuk

Abstract. We prove that if W is the free product of at least four groups of order 2 , then the automorphism group of the McCullough-Miller space corresponding to W is isomorphic to group of outer automorphisms of W. We also prove that, for each integer $n \geq 3$, the automorphism group of the hypertree complex of rank n is isomorphic to the symmetric group of rank n.

1. Introduction

A simplicial complex K is a geometric model for a group G if there exists a homomorphism $m: G \rightarrow$ Aut(K), where Aut(K) denotes the group of simplicial automorphisms of K—in other language, we would say that K is equipped with a G-action. The smaller the kernel of m, the less the model simplifies G; in the best case, m is injective, and the model represents G precisely as a subgroup $m(G)$ of Aut(K). The larger $m(G)$ in $\operatorname{Aut}(\mathrm{K})$, the greater the expectation that $\operatorname{Aut}(\mathrm{K})$ in its entirety, rather than the subgroup $m(G)$, can offer insights into G; in particular, it is natural to believe that a model is better if $m(G)$ is large (say, of finite index) in $\operatorname{Aut}(\mathrm{K})$, and best if $m(G)=\operatorname{Aut}(\mathrm{K})$. Following [2], we say that

[^0]K is an accurate geometric model of G if there exists an isomorphism $m: G \rightarrow \operatorname{Aut}(\mathrm{~K})$.

For each positive integer n, we write W_{n} for the universal Coxeter group of rank n; that is, W_{n} is the free product of n groups of order two, as presented $\left\langle a_{1}, \ldots, a_{n} \mid a_{1}^{2}, \ldots, a_{n}^{2}\right\rangle$. We write $\operatorname{Out}\left(W_{n}\right)$ for the group of outer automorphisms of W_{n}.

For each $n \geq 3$, $\operatorname{Out}\left(W_{n}\right)$ is the outer automorphism group of the most simple free product with n factors. The group $\operatorname{Out}\left(W_{n}\right)$ is related to, but much more simple in structure than, $\operatorname{Out}\left(F_{n-1}\right)$ (see, for example, [3]), where F_{m} denotes the free group of rank m. Even so, there are a number of questions one may ask about a group which have been answered for $\operatorname{Out}\left(F_{n}\right)$, but not for $\operatorname{Out}\left(W_{n}\right)$. In particular, one may wish to identify an accurate geometric model for a group of interest. In [2], Bridson and Vogtmann showed that if $n \geq 3$, then the spine of the appropriate outer space is an accurate geometric model for $\operatorname{Out}\left(F_{n}\right)$. In the present article we prove that, provided $n \geq 4$, a well-known geometric model of $\operatorname{Out}\left(W_{n}\right)$ is in fact an accurate geometric model.

Given a group G and a fixed free-product decomposition of G, the corresponding McCullough-Miller space $\mathrm{K}(G)$ is a contractible simplicial complex which is a geometric model for the group of symmetric outer automorphisms of $G[6]$ - those outer automorphisms of G which map each free factor in the fixed decomposition of G to a conjugate of a free-factor. Further, it is known that the modeling homomorphism is injective. In the present article we consider the case that $G=W_{n}$, equipped with the canonical decomposition; we write K_{n} for the corresponding McCulloughMiller space. In this case, each outer automorphism of W_{n} is a symmetric outer automorphism, so K_{n} is a geometric model for $\operatorname{Out}\left(W_{n}\right)$. We show that the modeling homomorphism is surjective, and hence prove the following.

Theorem 1.1. For each integer $n \geq 4$, the McCullough-Miller space K_{n} is an accurate geometric model of $\operatorname{Out}\left(W_{n}\right)$.

Remark 1.2. The hypothesis $n \geq 4$ is necessary because: $\operatorname{Out}\left(W_{3}\right)$ is finitely generated, and hence it is countably infinite; K_{3} is the barycentric subdivision of the regular trivalent tree, and hence $\operatorname{Aut}\left(\mathrm{K}_{3}\right)$ is uncountably infinite.

In general, a McCullough-Miller space is constructed by gluing together copies of a finite complex HT_{n}, called the hypertree complex of rank n, which is the simplicial realization of a poset ($\mathcal{H} \mathcal{T}_{n}, \leq$), called the hypertree
poset of rank n (see Remark 1.5 below). The poset $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ is the sêt of hypertrees on n labeled vertices, partially-ordered by the operation of folding. It is well-known, and easily seen, that HT_{n} is a geometric model for Σ_{n}, the symmetric group of rank n. As part of our proof of Theorem 1.1, and for its independent interest, we prove the following.

Theorem 1.3. For each integer $n \geq 3$, the hypertree complex HT_{n} is an accurate geometric model of the symmetric group Σ_{n}.

Remark 1.4. The hypothesis $n \geq 3$ is necessary because there is only one hypertree on 2 labeled vertices, so $\operatorname{Aut}\left(\mathrm{HT}_{2}\right)$ is the trivial group, and it is not isomorphic to Σ_{2}.

Remark 1.5. In McCullough and Miller's original account [6] of the construction now named for them, the hypertree complex is not explicitly used. In its place is used a complex called the Whitehead complex, which is the simplicial realization of a poset called the Whitehead poset. As explained in [5], the Whitehead poset is isomorphic to the hypertree poset, and thus the corresponding simplicial realizations are interchangeable in the construction of McCullough-Miller space.

We now describe the structure of the paper, and proofs. In Section 2 we describe the hypertree poset, and a number of its subsets. In Section 3 we prove Theorem 1.3. Our argument proceeds by: identifying a subset of $\mathcal{H} \mathcal{T}_{n}$, the set of "star trees", on which Σ_{n} acts as the full permutation group; observing that the corresponding subset of vertices in the hypertree complex is geometrically distinguishable, and hence must be fixed setwise by an arbitrary simplicial automorphism; and showing that every other vertex in the hypertree complex is uniquely identified either by its relative proximities to vertices corresponding to star trees, or to vertices which can be so identified.

In Section 4 we describe the construction of K_{n} and prove Theorem 1.1. To do so we consider an arbitrary simplicial automorphism f of K_{n}. We argue that: since $\operatorname{Out}\left(W_{n}\right)$ acts transitively on the copies of HT_{n} from which K_{n} is built, and Σ_{n} is the full automorphism group of HT_{n}, there exist elements $\sigma, \phi \in \operatorname{Out}\left(W_{n}\right)$ such that the actions of $\sigma \phi$ and f agree pointwise on one of the copies of HT_{n}. We then establish that overlapping copies of HT_{n} are sufficiently intertwined that if one copy is fixed pointwise by a simplicial automorphism, overlapping copies are fixed pointwise too.

2. The hypertree complex

In this section we introduce the hypertree complex. The interested reader may find an alternative account of the hypertree complex in [5].

2.1. Hypertrees

A hypergraph Γ is an ordered pair $\left(V_{\Gamma}, E_{\Gamma}\right)$ consisting of a set of vertices V_{Γ}, and a collection (often a set) E_{Γ} of hyperedges, each of which is a subset of V_{Γ} containing at least two elements. When we want to emphasize the vertex set of Γ, we say Γ is a hypergraph on V_{Γ}. A graph (without loops) is a hypergraph in which each hyperedge contains exactly two vertices.

Hypergraphs $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ and $\Gamma^{\prime}=\left(V_{\Gamma}^{\prime}, E_{\Gamma}^{\prime}\right)$ are isomorphic as unlabeled hypergraphs if there exists a bijection $f: V_{\Gamma} \rightarrow V_{\Gamma}^{\prime}$ such that for each subset $S \subset V_{\Gamma}, f(S) \in E_{\Gamma}^{\prime}$ if and only if $S \in E_{\Gamma}$; in this case f is called a hypergraph isomorphism. Hypergraphs $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ and $\Gamma^{\prime}=\left(V_{\Gamma^{\prime}}, E_{\Gamma^{\prime}}\right)$ are isomorphic as labeled hypergraphs if $V_{\Gamma}=V_{\Gamma^{\prime}}$, and the identity map $V_{\Gamma} \rightarrow V_{\Gamma}$ is a hypergraph isomorphism $\Gamma \rightarrow \Gamma^{\prime}$. We shall usually consider hypergraphs up to labeled-hypergraph isomorphism.

Let Γ be a hypergraph. Distinct vertices $v, v^{\prime} \in V_{\Gamma}$ are said to be adjacent in Γ if $\left\{v, v^{\prime}\right\} \subset e$ for some hyperedge $e \in E_{\Gamma}$. The valence in Γ of a vertex $v \in V_{\Gamma}$ is the number of hyperedges containing v. A vertex with valence one is called a leaf. The degree in Γ of a hyperedge $e \in E_{\Gamma}$ is $\# e$, the number of vertices it contains. In general, we shall write $\# S$ for the cardinality of a set S.

Given a hypergraph Γ, and vertices $v, v^{\prime} \in V_{\Gamma}$, a walk in Γ from v to v^{\prime} is a diagram

$$
v=v_{0} \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \ldots \xrightarrow{e_{p}} v_{p}=v^{\prime}
$$

with: $p \geq 0$; each v_{k} a vertex; each e_{k} an edge; and $v_{i-1} \neq v_{i}$ and $\left\{v_{i-1}, v_{i}\right\} \subset e_{i}$ for each $i=1, \ldots, p$. Such a walk is said: to visit the vertices v_{0}, \ldots, v_{p}; to join the vertices v and v^{\prime}; and to cross the hyperegdes e_{1}, \ldots, e_{p}. Such a walk is simple if the vertices v_{0}, \ldots, v_{p-1} are distinct, and the edges e_{1}, \ldots, e_{p} are distinct.

We say a hypergraph Θ is: connected if for each pair of vertices $v, v^{\prime} \in V_{\Theta}$, there is at least one simple walk from v to v^{\prime}; and a hypertree if for each pair of vertices $v, v^{\prime} \in V_{\Theta}$, there is exactly one simple walk from v to v^{\prime}. It follows immediately that if Θ is a hypertree, then: Θ is connected; the intersection of two or more distinct hyperedges contains

Figure 1. Γ is a hypergraph but not a hypertree, Θ is a hypertree.
at most one vertex; and the collection E_{Θ} of edges is a set. A hypertree Θ is a tree if it is a graph.

Remark 2.1. A hypergraph Γ may be represented as a labeled bipartite graph $B(\Gamma)$ as follows: each vertex in V_{Γ} is a labeled vertex of $B(\Gamma)$; each hyperedge in E_{Γ} is an unlabeled vertex of $B(\Gamma)$; an unlabeled vertex u is adjacent to a labeled vertex ℓ if $\ell \in u$. Then Γ is a hypertree if and only if $B(\Gamma)$ is a tree. Thus there is a bijective correpondence between the set of hypertrees on a set S, and the set of labeled bipartite trees with labeled vertices in bijective correspondence with S. Two hypergraphs, one of which is a hypertree, and the corresponding labeled bipartite graphs are shown in Figure 1

2.2. The Hypertree Complex

For each positive integer n we write: $[n]$ for the set $\{1, \ldots, n\}$; and $\mathcal{H} \mathcal{T}_{n}$ for the set of hypertrees on [n], considered up to labeled-hypergraph isomorphism.

Remark 2.2. A general formula for $\# \mathcal{H} \mathcal{T}_{n}$, the number of hypertrees on $[n]$, was calculated in [4] and [7]. The sequence ($\# \mathcal{H} \mathcal{T}_{n}$) begins:

$$
1,1,4,29,311,4447,79745, \ldots
$$

More terms of the sequence, and the general formula for $\# \mathcal{H} \mathcal{T}_{n}$, can be found in the On-Line Encyclopedia of Integer Sequences [1, Sequence A030019].

Example 2.3. The four hypertrees of \mathcal{H}_{3} are depicted in Figure 2. The 29 hypertrees of $\mathcal{H} \mathcal{T}_{4}$ are depicted in Figure 4.

Figure 2. $\left(\mathcal{H}_{3}, \leq\right)$.

Figure 3. HT_{3}.

$$
\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}
$$

Figure 4. The 29 hypertrees in $\mathcal{H} \mathcal{T}_{4}$.

For the remainder of this section we fix an integer $n \geq 3$.
There is a partial order \leq on $\mathcal{H} \mathcal{T}_{n}$, determined by an operation called folding. Given hypertrees $\Theta, \Theta^{\prime} \in \mathcal{H} \mathcal{T}_{n}$, we say Θ^{\prime} is obtained from Θ by a single fold if there exist distinct hyperedges $e, e^{\prime} \in E_{\Theta}$ such that $e \cap e^{\prime} \neq \emptyset$ and

$$
E_{\Theta^{\prime}}=\left(E_{\Theta} \backslash\left\{e, e^{\prime}\right\}\right) \cup\left\{e \cup e^{\prime}\right\}
$$

that is, $E_{\Theta^{\prime}}$ is the result of replacing e and e^{\prime} by their union. The requirement that $e \cap e^{\prime} \neq \emptyset$ ensures that, in such a case, Θ^{\prime} is also a hypertree on $[n]$. For each pair $\Theta, \Lambda \in \mathcal{H} \mathcal{T}_{n}$, we write $\Theta \leq \Lambda$, and we say that Θ is a result of folding Λ, if Θ may be obtained from Λ by a (possibly empty) sequence of folds. Then $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ is a partially ordered set called the hypertree poset of rank n.

Example 2.4. The Hasse diagram of $\left(\mathcal{H} \mathcal{T}_{3}, \leq\right)$ is shown in Figure 2. The simplicial complex HT_{3} is shown in Figure 3.

A hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$ must have at least one hyperedge, and may have as many as $n-1$ hyperedges. For each $h \in\{0, \ldots, n-2\}$, we write $\mathcal{H} \mathcal{T}_{n}^{h}$ for the set of hypertrees on $[n]$ with $h+1$ hyperedges; a hypertree in $\mathcal{H} \mathcal{T}_{n}^{h}$ is said to have height h. The unique hypertree of height 0 is denoted Θ_{n}^{0}. The hypertrees in $\mathcal{H} \mathcal{T}_{n}^{n-2}$ are precisely the trees on [n]; it follows that there are n^{n-2} hypertrees in $\mathcal{H} \mathcal{T}_{n}^{n-2}$.
Remark 2.5 (An alternative, but equivalent, definition of a hypertree). Since the maximal elements in $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ are exactly the trees on $[n]$, and $\mathcal{H} \mathcal{T}_{n}$ is closed under folding, $\mathcal{H} \mathcal{T}_{n}$ is exactly the set of hypergraphs obtained by folding trees on $[n]$. More generally, the set of hypertrees on a vertex set V is the set of hypergraphs obtained by folding trees on V.

The hypertree complex of rank n, denoted HT_{n}, is the simplicial realization of $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$. Recall that this means: there exists a bijection \mathcal{V}_{n} from $\mathcal{H} \mathcal{T}_{n}$ to the vertex set of HT_{n}; for distinct hypertrees $\Theta_{1}, \ldots, \Theta_{k} \in \mathcal{H} \mathcal{T}_{n}$, the vertices $\mathcal{V}_{n}\left(\Theta_{1}\right), \ldots, \mathcal{V}_{n}\left(\Theta_{k}\right)$ span a $(k-1)$-simplex if and only if there exists a maximal chain in $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ which contains $\Theta_{1}, \ldots, \Theta_{k}$.

It is immediate that each single fold reduces the number of hyperedges by one, and a hypertree can be folded provided it has more than one hyperedge. It follows that each maximal chain in $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ contains exactly $n-1$ hypertrees, the minimal element of which is Θ_{n}^{0}, and the maximal element of which is a tree. Thus the simplicial complex HT_{n} has dimension $n-2$.

We shall often consider the hypertree poset without its minimal element. We write $\mathcal{H} \mathcal{T}_{n}^{+}:=\mathcal{H} \mathcal{T}_{n} \backslash\left\{\Theta_{n}^{0}\right\}$, and we write HT_{n}^{+}for simplicial realization of $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right)$. Equivalently, we may consider HT_{n}^{+}to be the subcomplex of HT_{n} spanned by $\mathcal{V}_{n}\left(\mathcal{H} \mathcal{T}_{n}^{+}\right)$, or the link in HT_{n} of $\mathcal{V}_{n}\left(\Theta_{n}^{0}\right)$. We write $\mathcal{V}_{n}^{+}(\Theta)$ for the vertex in HT_{n}^{+}corresponding to Θ.
Example 2.6. The complex HT_{4}^{+}is shown in Figure 5; this figure is an adaptation of $[6$, Figure 8]. Some vertices are represented as stars, some as filled circles and some as unfilled circles, for reasons described in Section 3.

We shall make use of a metric on HT_{n}^{+}which reflects the geometry of the 1-skeleton of HT_{n}^{+}.
Definition $2.7\left(d_{n}^{+}(\cdot, \cdot)\right)$. For hypertrees $\Theta, \Lambda \in \mathcal{H} \mathcal{T}_{n}^{+}$, we write $d_{n}^{+}(\Theta, \Lambda)$ for the combinatorial length of the minimal length paths in the 1-skeleton of HT_{n}^{+}between the vertices $\mathcal{V}_{n}^{+}(\Theta)$ and $\mathcal{V}_{n}^{+}(\Lambda)$.

Figure 5. The endpoints of antipodal dashed edges should be identified to create HT_{4}^{+}, the link in HT_{4} of Θ_{4}^{0}.

2.3. Some subsets of $\mathcal{H} \mathcal{T}_{n}$

In the arguments which follow, a number of subsets of $\mathcal{H} \mathcal{T}_{n}$ prove important. We gather the definitions here for the convenience of the reader. We have also included a table of notation at the end of the paper.

Definition 2.8 (Star trees). For each $j \in[n]$, we write Ξ_{n}^{j} for the hypertree on $[n]$ with $(n-1)$ hyperedges, each of which contains j; we say that Ξ_{n}^{j} is the star tree of rank n and common vertex j. We write \mathcal{S}_{n} for the set of star trees of rank n.

It is immediate that the elements of \mathcal{S}_{n} are isomorphic as unlabeled hypergraphs; that is, any two elements of \mathcal{S}_{n} differ by a permutation of the vertices. It is also immediate that each star tree is a tree. The hypothesis that $n \geq 3$ ensures that there are n star trees in $\mathcal{H} \mathcal{T}_{n}$.

Definition 2.9 (Line trees). A hypertree in which exactly two vertices are leaves is called a line tree; we write \mathcal{L}_{n} for the set of line trees.

It is immediate that the elements of \mathcal{L}_{n} are isomorphic as unlabeled hypergraphs. It is also immediate that each line tree is a tree, and that each vertex in a line tree has valence one or valence two. There are $n!/ 2$ line trees in $\mathcal{H} \mathcal{T}_{n}$.

Definition 2.10. For each $h \in\{1, \ldots, n-2\}$, we write \mathcal{M}_{n}^{h} for those hypertrees in $\mathcal{H} \mathcal{T}_{n}^{h}$ that contain a vertex of valence $h+1$, and a hyperedge of degree $n-h$.

It is immediate that $\mathcal{M}_{n}^{n-2}=\mathcal{S}_{n}$, and, for each h, the elements of \mathcal{M}_{n}^{h} are isomorphic as unlabeled hypergraphs. Examples are shown in Figure 6. The notation, a script M, was chosen because, amongst the vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{h}\right)$, the vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{h}\right)$ prove to have maximal valence in $\mathcal{H} \mathcal{T}_{n}^{+}$, provided $n \geq 5$ (Lemma 3.12 below).

Figure 6. From left to right, a hypertree in $\mathcal{M}_{n}^{1}, \mathcal{M}_{n}^{2}, \mathcal{M}_{n}^{3}$, and \mathcal{M}_{n}^{n-2}, with $n>4$.

The set \mathcal{M}_{n}^{1} is particularly important as, provided $n \geq 5$, the vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$ prove to be the vertices in HT_{n}^{+}of maximal valence. It is convenient to define notation for the elements of \mathcal{M}_{n}^{1}. For each pair $j, k \in[n]$ with $j \neq k$, we write $\Omega_{n}^{j, k}$ for the hypertree on $[n]$ with hyperedges $\{j, k\}$ and $[n] \backslash\{k\}$. It follows that $\mathcal{M}_{n}^{1}=\left\{\Omega_{n}^{j, k} \mid j, k \in[n], j \neq k\right\}$.

3. Automorphisms of HT_{n}

In this section we prove Theorem 1.3.
Fix an integer $n \geq 3$. Recall that we write Σ_{n} for the symmetric group of rank n, which we identify with the group of bijections $[n] \rightarrow[n]$. For a bijection $\sigma \in \Sigma_{n}$, and a subset $S \subset[n]$, we write $\sigma(S)$ for the set $\{\sigma(s) \mid s \in S\}$. For a bijection $\sigma \in \Sigma_{n}$, and a hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$, we write $\sigma(\Theta)$ for the hypertree on $[n]$ such that $E_{\sigma(\Theta)}=\left\{\sigma(e) \mid e \in E_{\Theta}\right\}$; that is, $E_{\sigma(\Theta)}$ is obtained by replacing each hyperedge $e \in E_{\Theta}$ with $\sigma(e)$.

Evidently, the map $\Theta \mapsto \sigma(\Theta)$ preserves the partial order \leq, and hence determines an automorphism of $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$; thus we have a homomorphism $\Sigma_{n} \rightarrow \operatorname{Aut}\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$. Since $\operatorname{Aut}\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$ embeds in $\operatorname{Aut}\left(\mathrm{HT}_{n}\right)$, we also
have a homomorphism $\iota_{n}: \Sigma_{n} \rightarrow \operatorname{Aut}\left(\mathrm{HT}_{n}\right)$. Theorem 1.3 is proved if we show that ι_{n} is bijective. We can simplify this task a little using the following lemma. The lemma follows immediately from the observation that for each hypertree except Θ_{n}^{0}, there is another hypertree with the same number of hyperedges.

Lemma 3.1. For each integer $n \geq 3, \mathcal{V}_{n}\left(\Theta_{n}^{0}\right)$ is the unique vertex in HT_{n} of maximal valence.

It follows from the lemma that for each simplicial automorphism $f \in \operatorname{Aut}\left(\mathrm{HT}_{n}\right), f$ fixes $\mathcal{V}_{n}\left(\Theta_{n}^{0}\right)$, and restricts to a simplicial automorphism $f^{+} \in \operatorname{Aut}\left(\mathrm{HT}_{n}^{+}\right)$. The restriction $f \mapsto f^{+}$is an isomorphism $\operatorname{Aut}\left(\mathrm{HT}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathrm{HT}_{n}^{+}\right)$. Pre-composing this isomorphism with ι_{n} gives a homomorphism $\iota_{n}^{+}: \Sigma_{n} \rightarrow \operatorname{Aut}\left(\mathrm{HT}_{n}^{+}\right)$. To prove Theorem 1.3 it suffices to show that ι_{n}^{+}is bijective.

That ι_{n}^{+}is injective follows immediately from an analysis of how Σ_{n} acts on $\mathcal{S}_{n}=\left\{\Xi_{n}^{1}, \ldots, \Xi_{n}^{n}\right\}$, the set of star trees.

Lemma 3.2. For each integer $n \geq 3$, the homomorphism $\iota_{n}^{+}: \Sigma_{n} \rightarrow$ $\operatorname{Aut}\left(\mathrm{HT}_{n}^{+}\right)$is injective.

Proof. Since $n \geq 3$, there are n distinct star trees, and Σ_{n} acts on \mathcal{S}_{n} by permuting superscripts. It follows that Σ_{n} acts as the full permutation group on $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, and distinct elements of Σ_{n} act distinctly on $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$. Thus distinct elements of Σ_{n} act distinctly on HT_{n}^{+}.

Notation 3.3. Empowered by the lemma, we shall not distinguish between an element of Σ_{n} and the corresponding automorphisms of HT_{n}, HT_{n}^{+}and $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$.

It remains to show that ι_{n}^{+}is surjective. The cases $n=3$ and $n=4$ are easily dispatched by inspection of HT_{3}^{+}and HT_{4}^{+}respectively.

Lemma 3.4. The homomorphism ι_{3}^{+}is surjective.
Proof. The complex HT_{3}^{+}consists of three disjoint vertices. The vertices are the elements of $\mathcal{V}_{3}^{+}\left(\mathcal{S}_{3}\right)$. Evidently, each automorphism of HT_{3}^{+} permutes these vertices. The result follows.

Lemma 3.5. The homomorphism ι_{4}^{+}is surjective.
Proof. Let $f^{+} \in \operatorname{Aut}\left(\mathrm{HT}_{4}^{+}\right)$. It suffices to show that there exists $\sigma \in \Sigma_{4}$ such that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{4}^{+}\left(\mathcal{H} \mathcal{T}_{4}^{+}\right)$, because then $\sigma^{-1} f^{+}$is the identity automorphism of HT_{4}^{+}, and $f^{+}=\sigma \in \Sigma_{4}$.

Consider the complex HT_{4}^{+}, as shown in Figure 5. The vertices in $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$ are shown as stars, the vertices in $\mathcal{V}_{4}^{+}\left(\mathcal{L}_{4}\right)$ are shown as filled circles, and the vertices in $\mathcal{V}_{4}^{+}\left(\mathcal{H}_{4}^{1}\right)$ are shown as unfilled circles. Note that $\mathcal{H} \mathcal{T}_{4}^{+}=\mathcal{S}_{4} \cup \mathcal{L}_{4} \cup \mathcal{H} \mathcal{T}_{4}^{1}$. Inspection of Figure 5 shows that, for each $\Theta \in \mathcal{H} \mathcal{T}_{4}^{+}, \Theta \in \mathcal{S}_{4}$ if and only $\mathcal{V}_{4}^{+}(\Theta)$ has valence three, and $\mathcal{V}_{4}^{+}(\Theta)$ is not adjacent to a vertex of valence two. Since the elements of $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$ can be identified geometrically, f^{+}fixes setwise $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$. Since Σ_{4} acts as the full permutation group on $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$, there exists $\sigma \in \Sigma_{4}$ such that $\sigma^{-1} f^{+}$ fixes pointwise $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$.

Inspection also shows that, for each $\Theta \in \mathcal{H} \mathcal{T}_{4}^{+}, \Theta \in \mathcal{H} \mathcal{T}_{4}^{1}$ if and only if $\mathcal{V}_{4}^{+}(\Theta)$ has valence three, and $\mathcal{V}_{4}^{+}(\Theta)$ is adjacent to a vertex of valence two. Since the elements of $\mathcal{V}_{4}^{+}\left(\mathcal{H}_{4}^{1}\right)$ can be identified geometrically, $\sigma^{-1} f^{+}$ fixes setwise $\mathcal{V}_{4}^{+}\left(\mathcal{H} \mathcal{T}_{4}^{1}\right)$, and hence also fixes setwise $\mathcal{V}_{4}^{+}\left(\mathcal{L}_{4}\right)$.

Further inspection shows that distinct elements of $\mathcal{V}_{4}^{+}\left(\mathcal{H} \mathcal{T}_{4}^{1}\right)$ (that is, distinct unfilled circles) can be distinguished by their relative proximities in HT_{4}^{+}to the elements of $\mathcal{V}_{4}^{+}\left(\mathcal{S}_{4}\right)$; that is, if Θ and Λ are distinct elements of $\mathcal{H} \mathcal{T}_{4}^{1}$, then there exists $\Upsilon \in \mathcal{S}_{4}$ such that $d_{4}^{+}(\Theta, \Upsilon) \neq d_{4}^{+}(\Lambda, \Upsilon)$. It follows that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{4}^{+}\left(\mathcal{H}_{4}^{1}\right)$.

Finally, further inspection shows that distinct elements in $\mathcal{V}_{4}^{+}\left(\mathcal{L}_{4}\right)$ can be distinguished by their relative proximities in HT_{4}^{+}to the elements of $\mathcal{V}_{4}^{+}\left(\mathcal{H}_{4}^{1}\right)$. It follows that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{4}^{+}\left(\mathcal{L}_{4}\right)$.

We have that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{4}^{+}\left(\mathcal{H} \mathcal{T}_{4}^{+}\right)$, as required.
To prove that ι_{n}^{+}is surjective for $n \geq 5$, we adapt the argument for $n=4$, replacing each use of inspection by a general argument. Although our general argument still works with the subsets $\mathcal{L}_{n}, \mathcal{S}_{n}$ and $\mathcal{H} \mathcal{T}_{n}^{1}$, it must recognize that these sets no longer combine to give the entirety of HT_{n}^{+}. In particular, it takes more effort to show that an arbitrary simplicial automorphism of HT_{n}^{+}fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$.

To ensure the structure of our general argument is easily visible, we describe it assuming a series of technical claims, to be proved immediately after. For each $n \geq 5$, we claim the following:
(A) The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$ are exactly the vertices in HT_{n}^{+}of maximal valence.
(B) The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$ are exactly the vertices in HT_{n}^{+}which are adjacent to $n-1$ vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$.
(C) The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{L}_{n}\right)$ are exactly the vertices in HT_{n}^{+}which, although not adjacent to any vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, are distance exactly two from $n-2$ vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$.
(D) The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$ are exactly the vertices in HT_{n}^{+}which are adjacent to some vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, and adjacent to some vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{L}_{n}\right)$.
(E) For all $\Theta, \Delta \in \mathcal{M}_{n}^{1}, \Theta=\Delta$ if and only if $d_{n}^{+}(\Theta, \Upsilon)=d_{n}^{+}(\Delta, \Upsilon)$ for all $\Upsilon \in \mathcal{S}_{n}$.
(F) For all $\Theta, \Delta \in \mathcal{H} \mathcal{T}_{n}^{1}, \Theta=\Delta$ if and only if $d_{n}^{+}(\Theta, \Upsilon)=d_{n}^{+}(\Delta, \Upsilon)$ for all $\Upsilon \in \mathcal{M}_{n}^{1}$.
(G) For all $\Theta, \Delta \in \mathcal{H} \mathcal{T}_{n}^{+}, \Theta=\Delta$ if and only if $d_{n}^{+}(\Theta, \Upsilon)=d_{n}^{+}(\Delta, \Upsilon)$ for all $\Upsilon \in \mathcal{H} \mathcal{T}_{n}^{1}$.

Proposition 3.6. For each integer $n \geq 5, \iota_{n}^{+}$is surjective.
Proof, assuming claims (A) through (G). Considered in order, Claims (A) through (D) combine to give that an arbitrary automorphism of HT_{n}^{+} fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right), \mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right), \mathcal{V}_{n}^{+}\left(\mathcal{L}_{n}\right)$ and $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$.

Let $f^{+} \in \operatorname{Aut}\left(\mathrm{HT}_{n}^{+}\right)$. As in the case that $n=4$, it suffices to show that there exists $\sigma \in \Sigma_{n}$ such that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{+}\right)$.

Since f^{+}fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, and Σ_{n} acts as the full permutation group of $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, there exists $\sigma \in \Sigma_{n}$ such that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$. Since $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, and fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$, (E) implies that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$. Since $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$, and fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$, (F) implies that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$. Finally, since $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$ and fixes setwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{+}\right),(\mathrm{G})$ implies that $\sigma^{-1} f^{+}$fixes pointwise $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{+}\right)$, as required.

Remark 3.7. Claim (A) fails in the case $n=4$ because, as is evident in Figure 5, the vertices in $\mathcal{V}_{4}^{+}\left(\mathcal{H} \mathcal{T}_{4}^{1}\right)$ (shown as unfilled circles) are not the only vertices of maximal valence.

3.1. Proving Claims (A) through (G)

Throughout this subsection we assume $n \geq 5$.
Claim (A) requires that we understand the valences of vertices in HT_{n}^{+}. For each $\Theta \in \mathcal{H} \mathcal{T}_{n}^{+}$: we write $A_{n}^{+}(\Theta)$ for the set of hypertrees in $\mathcal{H} \mathcal{T}_{n}^{+}$, distinct from Θ, which fold to Θ; and we write $B_{n}^{+}(\Theta)$ for the set of hypertrees in $\mathcal{H} \mathcal{T}_{n}^{+}$, distinct from Θ, which can be obtained from Θ by folding. Thus the valence in HT_{n}^{+}of $\mathcal{V}_{n}^{+}(\Theta)$ is $\# A_{n}^{+}(\Theta)+\# B_{n}^{+}(\Theta)$.

A convenient formula for $\# A_{n}^{+}(\Theta)$ follows from the observation that the operation of folding has a natural inverse. Let $\Theta, \Lambda \in \mathrm{HT}_{n}^{+}$, let $e \in E_{\Theta}$,
and let Δ be a hypertree on e (that is, Δ is a hypertree with vertex set $e)$. We say Λ is obtained from Θ by unfolding e to Δ, or just unfolding e, if $E_{\Lambda}=\left(E_{\Theta} \backslash\{e\}\right) \cup E_{\Delta}$; that is, if E_{Λ} is the result of replacing $e \in E_{\Theta}$ by the elements of E_{Δ}. If, in the above, Δ has only one hyperedge, then $\Theta=\Lambda$ and we say the unfolding is trivial; otherwise the unfolding is nontrivial, and Λ has more hyperedges than Θ. Evidently, Λ is obtained from Θ by unfolding if and only if Θ is obtained from Λ by folding.

Lemma 3.8 (c.f Lemma 2.5(1) [5]). For each $\Theta \in \mathrm{HT}_{n}^{+}$,

$$
\# A_{n}^{+}(\Theta)=-1+\prod_{e \in E_{\Theta}} \#\left(\mathcal{H} \mathcal{T}_{\# e}\right)
$$

Proof. Let $\Theta \in \mathrm{HT}_{n}^{+}$. For each hyperedge $e \in E_{\Theta}$, there are $\#\left(\mathcal{H} \mathcal{T}_{\# e}\right)$ distinct hypertrees on e, and hence $\#\left(\mathcal{H} \mathcal{T}_{\# e}\right)$ distinct hypertrees, including Θ itself, which may be obtained from Θ by unfolding e. The result follows.

Let $h \in\{1, \ldots, n-2\}$. If $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$, then a hyperedge in Θ has degree at most $n-h$. Our next result records that those hypertrees in $\mathcal{H} \mathcal{T}_{n}^{h}$ that contain a hyperedge of degree $n-h$ are precisely the hypertrees in $\mathcal{H} \mathcal{T}_{n}^{h}$ for which $\# A_{n}^{+}(\Theta)$ is maximal. We note that if $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$ has a hyperedge of degree $n-h$, then the other hyperedges in Θ have degree exactly two.

Lemma 3.9. Let $h \in\{1, \ldots, n-2\}$, let $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$, and let $\Lambda \in \mathcal{H} \mathcal{T}_{n}^{h}$ be such that Λ has a hyperedge of degree $n-h$. If Θ also has a hyperedge of degree $n-h$, then $\# A_{n}^{+}(\Theta)=\# A_{n}^{+}(\Lambda)$; otherwise $\# A_{n}^{+}(\Theta)<\# A_{n}^{+}(\Lambda)$.

The lemma follows inductively from Lemma 3.8, and the following result.

Lemma 3.10. For all integers $p, q \geq 3$, $\# \mathcal{H} \mathcal{T}_{p} . \# \mathcal{H} \mathcal{T}_{q}<\# \mathcal{H} \mathcal{T}_{p+q-2}$.
Proof. Let Λ be the hypertree on $[p+q-1]$ with hyperedges $\{1, \ldots, p-1\} \cup$ $\{p+q-1\}$ and $\{p, p+1, \ldots, p+q-1\}$. By Lemma 3.8 we have $\# A_{n}^{+}(\Lambda)=$ $-1+\# \mathcal{H} \mathcal{T}_{p} . \# \mathcal{H} \mathcal{T}_{q}$; recall that $\# A_{n}^{+}\left(\Theta_{p+q-2}^{0}\right)=-1+\# \mathcal{H} \mathcal{T}_{p+q-2}$. Thus to prove the lemma it suffices to exhibit an injective, but not surjective, $\operatorname{map} A_{n}^{+}(\Lambda) \rightarrow A_{n}^{+}\left(\Theta_{p+q-2}^{0}\right)$.

Let Υ be an arbitrary hypertree in $A_{n}^{+}(\Lambda)$. Note that if $e \in E_{\Upsilon}$, and $p+q-1 \in e$, then either $e \backslash\{p+q-1\} \subset\{1, \ldots, p-1\}$ or $e \backslash\{p+q-1\} \subset\{p, \ldots, p+q-2\}$. Let $a \in\{1, \ldots, p-1\}$ be maximal such that a is adjacent in Υ to $p+q-1$, and let $e_{a} \in E_{\Upsilon}$ be the hyperedge such that $\{a, p+q-1\} \in e_{a}$; let $b \in\{p, \ldots, p+q-2\}$ be minimal such
that b is adjacent in Υ to $p+q-1$, and let $e_{b} \in E_{\Upsilon}$ be the hyperedge such that $\{b, p+q-1\} \in e_{b}$. We construct a hypertree $\Upsilon^{\prime} \in \mathcal{H} \mathcal{T} p+q-2$ as follows: $\left(e_{a} \cup e_{b}\right) \backslash\{p+q-1\}$ is a hyperedge in Υ^{\prime}; for each hyperedge $e \in E_{\Upsilon}$ with $p+q-1 \in e$ and $e \backslash\{p+q-1\} \subset\{1, \ldots, p-1\}$ and $e \neq e_{a}$, we replace e by $\{b\} \cup e \backslash\{p+q-1\}$; for each hyperedge $e \in E_{\Upsilon}$ with $p+q-1 \in e$ and $e \backslash\{p+q-1\} \subset\{p, \ldots, p+q-2\}$ and $e \neq e_{b}$, we replace e by $\{a\} \cup e \backslash\{p+q-1\}$.

To show that the map $\Upsilon \mapsto \Upsilon^{\prime}$ is injective, we now explain how, given Υ^{\prime}, we can reconstruct Υ. Suppose Υ^{\prime} is as described above. We can identify a because it is maximal amongst the elements of $\{1, \ldots, p-1\}$ which are adjacent in Υ^{\prime} to at least one element of $\{p, \ldots, p+q-2\}$; similarly, we can identify b. Hence we can identify the hyperedge $\left(e_{a} \cup e_{b}\right) \backslash\{p+q-1\}$, and we can recover e_{a} and e_{b}. Having done this, it is now evident that we can recover the other hyperedges of Υ.

In this paragraph we show that the map $\Upsilon \mapsto \Upsilon^{\prime}$ is not surjective. It follows from the construction that any Υ^{\prime} must have the property that, amongst the elements of $\{1, \ldots, p-1\}$ which are adjacent to an element of $\{p, \ldots, p+q-2\}$, only the maximal element may be adjacent to more than one element of $\{p, \ldots, p+q-2\}$. Hence the hypertree with hyperedges

$$
\{1, p+q-2\},\{1\} \cup\{p, \ldots, p+q-3\},\{2, p+q-2\},\{2,3, \ldots, p-1\}
$$

is contained in $A_{n}^{+}\left(\Theta_{p+q-2}^{0}\right)$, but it is not the image of any hypertree $\Upsilon \in A_{n}^{+}(\Lambda)$ (it is here we use the hypothesis that $p, q \geq 3$).

Next we look to understand $\# B_{n}^{+}(\Theta)$ for an arbitrary hypertree $\Theta \in$ $\mathcal{H} \mathcal{T}_{n}^{+}$. We begin by observing that each hypertree $\Lambda \in B_{n}^{+}(\Theta)$ corresponds to an equivalence relation on E_{Θ}, but, in general, only certain equivalence relations on E_{Θ} correspond to hypertrees in $\mathcal{B}_{n}^{+}(\Theta)$. Given $\Theta \in \mathcal{H} \mathcal{T}_{n}$ and $\Lambda \in B_{n}^{+}(\Theta)$, we define a relation \sim_{Λ} on E_{Θ} as follows: if $e, e^{\prime} \in E_{\Theta}$, then $e \sim_{\Lambda} e^{\prime}$ if there exists $u \in E_{\Lambda}$ such that $e \cup e^{\prime} \subset u$; that is, hyperedges in Θ are related if and only if they are eventually folded in Λ. We leave the reader to verify that \sim_{Λ} is an equivalence relation. The restriction, that two hyperedges must intersect nontrivially if they are to be merged in a single fold, implies that each equivalence class must satisfy the following condition:
(*) if $e \in E_{\Theta}$ and $i, j \in \cup_{e \sim e^{\prime}} e^{\prime}$, then the unique simple walk in Λ from i to j visits only vertices in $\cup_{e \sim e^{\prime}} e^{\prime}$.

It is easily verified that an equivalence relation \sim on E_{Θ} corresponds to a hypertree Θ_{\sim} if and only if the equivalence relation satisfies $(*)$; in which case, the hypertree Θ_{\sim} is in $B_{n}^{+}(\Theta)$ unless there is only one equivalence class of hyperedeges (because then $\Theta_{\sim}=\Theta_{n}^{0}$), or all equivalence classes are singletons (because then $\Theta_{\sim}=\Theta$).

If $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$ has a vertex j of valence $h+1$, then j is contained in every hyperedge of Θ, and every vertex but j is a leaf (otherwise Θ would fail to be a hypertree). We now show that the hypertrees in $\mathcal{H} \mathcal{T}_{n}^{h}$ that contain a vertex of valence $h+1$ are precisely the hypertrees in $\mathcal{H} \mathcal{T}_{n}^{h}$ for which $\# B_{n}^{+}(\Theta)$ is maximal.

Lemma 3.11. Let $h \in\{1, \ldots, n-2\}$, let $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$, and let $\Lambda \in \mathcal{H} \mathcal{T}_{n}^{h}$ be such that Λ has a vertex of valence $h+1$. If Θ also has a vertex of valence $h+1$, then $\# B_{n}^{+}(\Lambda)=\# B_{n}^{+}(\Theta)$; otherwise, $\# B_{n}^{+}(\Theta)<\# B_{n}^{+}(\Lambda)$.

Proof. Let $\Upsilon \in \mathcal{H} \mathcal{T}_{n}^{h}$. If some vertex j has valence $h+1$, then j is contained in every hyperedge of Υ, and every partition of E_{Υ} satisfies $(*)$; otherwise, there exist partitions of E_{Υ} which do not satisfy $(*)$. The result follows.

Lemmas 3.9 and 3.11 combine with the definition of \mathcal{M}_{n}^{h} (Definition 2.10) to give the following.

Lemma 3.12. Let $h \in\{1, \ldots, n-2\}$. If $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h} \backslash \mathcal{M}_{n}^{h}$, and $\Lambda \in \mathcal{M}_{n}^{h}$, then the valence in HT_{n}^{+}of $\mathcal{V}_{n}^{+}(\Lambda)$ strictly exceeds that of $\mathcal{V}_{n}^{+}(\Theta)$.

We now compare the valences of vertices in \mathcal{M}_{n}^{h} for different values of h, and so establish Claim (A). Recall that for distinct integers $j, k \in[n]$, we write $\Omega_{n}^{j, k}$ for the hypertree with hyperedges $\{j, k\}$ and $[n] \backslash\{k\}$; and we write $\mathcal{M}_{n}^{1}:=\left\{\Omega_{n}^{j, k} \mid j, k \in[n], j \neq k\right\}$. We begin by observing that there is a simple way to characterize those vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}\right)$ which are adjacent to $\mathcal{V}_{n}^{+}\left(\Omega_{n}^{j, k}\right)$.

Definition 3.13 ((j, k)-tag). Given $\Theta \in \mathcal{H} \mathcal{T}_{n}^{+}$, and distinct integers $j, k \in[n]$ with $j \neq k$, we say Θ has a $(j, k)-\operatorname{tag}$ if $\{j, k\}$ is a hyperedge in Θ, and no other hyperedge in Θ contains k.

Lemma 3.14. For each pair $j, k \in[n]$ with $j \neq k$, and for each hypertree $\Lambda \in \mathcal{H} \mathcal{T}_{n}^{+}, \mathcal{V}_{n}^{+}(\Lambda)$ and $\mathcal{V}_{n}^{+}\left(\Omega_{n}^{j, k}\right)$ are adjacent in HT_{n}^{+}if and only if Λ has at least three hyperedges, and Λ has a (j, k)-tag.

Proof. Since $\Omega_{n}^{j, k}$ is minimal in $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right), \mathcal{V}_{n}^{+}(\Lambda)$ and $\mathcal{V}_{n}^{+}\left(\Omega_{n}^{j, k}\right)$ are adjacent in HT_{n}^{+}if and only if $\Omega_{n}^{j, k} \in B_{n}^{+}(\Lambda)$.

If Λ has only two hyperedges, then $B_{n}^{+}(\Lambda)=\emptyset$.

If Λ has at least three hyperedges and Λ has a (j, k)-tag, then we obtain $\Omega_{n}^{j, k}$ by folding, in some allowable order, all of the hyperedges in Λ except $\{j, k\}$; hence $\Omega_{n}^{j, k} \in B_{n}^{+}(\Lambda)$.

Suppose that Λ does not have a (j, k)-tag. Then there exists some vertex $\ell \neq j$ such that k and ℓ are adjacent in Λ. It follows from the definition of folding that k and ℓ are adjacent in each element of $B_{n}^{+}(\Lambda)$; thus $\Omega_{n}^{j, k} \notin B_{n}^{+}(\Lambda)$.

Proposition 3.15. [Claim (A)] The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$ are exactly the vertices in HT_{n}^{+}of maximal valence.
Proof. Let $\Omega \in \mathcal{M}_{n}^{1}$, and let Θ be a hypertree in \mathcal{M}_{n}^{h} for some $h \in$ $\{2, \ldots, n\}$. In light of Lemma 3.12, it suffices to show that the valence in $\operatorname{HT}_{n}^{+}$of $\mathcal{V}_{n}^{+}(\Omega)$ exceeds that of $\mathcal{V}_{n}^{+}(\Theta)$. To do so we will exhibit an injective, but not surjective, map $p: A_{n}^{+}(\Theta) \cup B_{n}^{+}(\Theta) \rightarrow A_{n}^{+}(\Omega)$.

Since the hypertrees in \mathcal{M}_{n}^{1} are isomorphic as unlabeled hypertrees, the corresponding vertices have the same valences in HT_{n}^{+}, and we may assume $\Omega=\Omega_{n}^{1,2}$. Similarly, we may assume

$$
E_{\Theta}=\{\{1,2\},\{1,3\}, \ldots,\{1, h+1\},\{1, h+2, h+3, \ldots, n\}\},
$$

as shown in Figure 7.

Figure 7. Θ and Ω as in the proof of Proposition 3.15.
We define $p(\Omega)=\Theta$, and $p(\Upsilon)=\Upsilon$ for each $\Upsilon \in\left(A_{n}^{+}(\Theta) \cup B_{n}^{+}(\Theta)\right) \cap$ $A_{n}^{+}(\Omega)$. Since Θ has a (1,2)-tag, $\Theta \in A_{n}^{+}(\Omega)$; it follows that $A_{n}^{+}(\Theta)$ is a subset of $\left(A_{n}^{+}(\Theta) \cup B_{n}^{+}(\Theta)\right) \cap A_{n}^{+}(\Omega)$. Thus it remains only to define $p(\Upsilon)$ for $\Upsilon \in B_{n}^{+}(\Theta) \backslash\left(A_{n}^{+}(\Omega) \cup\{\Omega\}\right)$. Consider a hypertree $\Upsilon \in B_{n}^{+}(\Theta) \backslash$ $\left(A_{n}^{+}(\Omega) \cup\{\Omega\}\right)$. Since $\Upsilon \in B_{n}^{+}(\Theta), 1$ is the only non-leaf vertex; since $\Upsilon \notin A_{n}^{+}(\Omega) \cup\{\Omega\}$, the unique hyperedge $e \in E_{\Upsilon}$ such that e contains 2 is such that $e \neq\{1,2\}$. Let j be minimal such that $j \geq 3$ and $j \in e$. We let E_{Υ}, be the set of hyperedges obtained from E_{Υ} by removing 2 from e; swapping each occurrence of 1 with j, and vice-versa; and then adding the hyperedge $\{1,2\}$. An example of this process is shown in Figure 8. Since Υ^{\prime} has at least three hyperedges, and it has a (1,2)-tag, $\Upsilon^{\prime} \in A_{n}^{+}(\Omega)$.

Since j is a non-leaf in $\Upsilon^{\prime}, \Upsilon^{\prime} \notin B_{n}^{+}(\Theta)$. We define $p(\Upsilon)=\Upsilon^{\prime}$. Since j and 1 are the only non-leaves in Υ^{\prime}, we can recognize j in Υ^{\prime}, and hence we can recover Υ from Υ^{\prime}. It follows that p is injective.

Figure 8. An example computing Υ^{\prime} for $\Upsilon \in B_{n}^{+}(\Theta) \backslash\left(A_{n}^{+}(\Omega) \cup\right.$ $\left\{\Omega, \Theta_{n}^{0}\right\}$), as in the proof of Proposition 3.15.

It remains only to show that p is not surjective. To do so, consider $\Delta \in \mathcal{H} \mathcal{T}_{n}$ such that

$$
E_{\Delta}=\{\{1,2\},\{1,3\},\{3,4\},\{4,5, \ldots, n\}\}
$$

(recall that, by hypothesis, $n \geq 5$). Since Δ has a (1,2)-tag, $\Delta \in A_{n}^{+}(\Omega)$; since 1 is not the only non-leaf in $\Delta, \Delta \notin B_{n}^{+}(\Theta)$; evidently, $\Delta \neq \Theta$; since Δ has 3 non-leaves, and any Υ^{\prime} constructed as above has only two non-leaves, $\Delta \neq \Upsilon^{\prime}$. Since $\Delta \in A_{n}^{+}(\Omega)$, and Δ is not in the image of p, p is not surjective.

We now turn our attention to claims (B) through (G).
Lemma 3.16 (Claim (B)). The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$ are exactly the vertices in HT_{n}^{+}which are adjacent to $n-1$ vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{M}_{n}^{1}\right)$.

Proof. The lemma follows immediately from Lemma 3.14, and the observation that the star trees are exactly the hypertrees with $n-1$ distinct tags.

Lemma 3.17. Let $j \in[n]$ and let $\Theta \in \mathcal{H} \mathcal{T}_{n}^{+}$. Then

1) $d_{n}^{+}\left(\Theta, \Xi_{n}^{j}\right) \leq 1$ if and only if j is the only vertex in Θ that is not a leaf;
2) $d_{n}^{+}\left(\Theta, \Xi_{n}^{j}\right)=2$ if and only if j is not a leaf in Θ, and there is at least one other vertex in Θ which is not a leaf.

Proof. Since Ξ_{n}^{j} is maximal in $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right), d_{n}^{+}\left(\Theta, \Xi_{n}^{j}\right)=1$ if and only if $\Theta \in B_{n}^{+}\left(\Xi_{n}^{j}\right)$. Evidently, j is the only non-leaf vertex in Ξ_{n}^{j}, folding cannot make a leaf into a non-leaf, and no element of $\mathcal{H} \mathcal{T}_{n}^{+}$has n-leaves. Thus each element of $B_{n}^{+}\left(\Xi_{n}^{j}\right)$ has exactly $n-1$ leaves. Property (1) follows.

Property (2) follows immediately from the observations that: $d_{n}^{+}\left(\Theta, \Xi_{n}^{j}\right)=2$ if and only if $\Theta \notin B_{n}^{+}\left(\Xi_{n}^{j}\right) \cup\left\{\Xi_{n}^{j}\right\}$, but $B_{n}^{+}(\Theta) \cap B_{n}^{+}\left(\Xi_{n}^{j}\right) \neq \emptyset$; if j is a non-leaf in a hypertree Λ, then we can arrange that j is the only non-leaf by repeatedly folding two hyperedges which both contain some $i \in[n] \backslash\{j\}$.

Corollary $\mathbf{3 . 1 8}$ (Claim (C)). The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{L}_{n}\right)$ are exactly the vertices in HT_{n}^{+}which, although not adjacent to any vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, are distance exactly two from $n-2$ of the n vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$.

Proof. Line trees and star trees have the same height, and so cannot be adjacent in $\mathcal{H} \mathcal{T}_{n}^{+}$. By definition, the lines trees are exactly the hypertrees with exactly two leaves. Equivalently, the line trees are exactly the hypertrees in which there are $n-2$ vertices which are not leaves. The result now follows from Lemma 3.17.

Lemma 3.19 (Claim (D)). The vertices in $\mathcal{V}_{n}^{+}\left(\mathcal{H} \mathcal{T}_{n}^{1}\right)$ are exactly the vertices in HT_{n}^{+}which are adjacent to some vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{S}_{n}\right)$, and adjacent to some vertex in $\mathcal{V}_{n}^{+}\left(\mathcal{L}_{n}\right)$.

Proof. Suppose $\mathcal{V}_{n}^{+}(\Theta)$ is adjacent to both $\mathcal{V}_{n}^{+}(\Xi)$ and $\mathcal{V}_{n}^{+}(\Lambda)$ for some star-tree Ξ, and some line-tree Λ. Then, since Ξ and Λ are maximal in $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right), \Theta \leq \Xi$ and $\Theta \leq \Lambda$. Since $\Theta \leq \Xi, \Theta$ has only one non-leaf vertex. Since distinct hyperedges in a hypertree can contain at most one common vertex, a single fold can turn at most one non-leaf into a leaf. Since Λ has $n-2$ non-leaves, it will take at least $n-3$ single folds to obtain from Λ a hypertree that has only one non-leaf. Since $\Lambda \in \mathcal{H} \mathcal{T}_{n}^{n-2}$, and Θ is obtained by at least $n-3$ single folds, $\Theta \in \mathcal{H} \mathcal{T}_{n}^{1}$.

Conversely, suppose that $\Theta \in \mathcal{H} \mathcal{T}_{n}^{1}$. Then $E_{\Theta}=\{A \cup\{j\}, B \cup\{j\}\}$ for some $j \in[n]$ and some non-trivial partition $\{A, B\}$ of $[n] \backslash\{j\}$. Since j is the only non-leaf of $\Theta, \Theta \in B_{n}^{+}\left(\Xi_{n}^{j}\right)$. Let $a \in A$ and let Λ_{A} be a line tree on A in which a is a leaf; let $b \in B$ and let Λ_{B} be a line tree on B in which b is a leaf. Let Λ be the hypertree on $[n]$ such that $\left.E_{\Lambda}=E_{\Lambda_{A}} \cup E_{\Lambda_{B}} \cup\{\{a, j\},\{b, j\})\right\}$. Then Λ is a line tree on $[n]$ and $\Theta \in B_{n}^{+}(\Lambda)$.

Figure 9. A 3-step unfolding and folding sequence.

The author thanks Andy Eisenberg for observing an error in an earlier proof of the following lemma, and suggesting the proof which appears below.

Lemma 3.20 (Claim (E)). For all $\Omega, \Omega^{\prime} \in \mathcal{M}_{n}^{1}, \Omega=\Omega^{\prime}$ if and only if $d_{n}^{+}(\Omega, \Xi)=d_{n}^{+}\left(\Omega^{\prime}, \Xi\right)$ for all $\Xi \in \mathcal{S}_{n}$.

Proof. Let i, j, k be distinct elements of $[n]$. It is clear that $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{i}\right)=$ 1.

We claim that $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{k}\right)=3$. The unfolding and folding sequence in Figure 9 shows that $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{k}\right) \leq 3$. Since k is a leaf in $\Omega_{n}^{i, j}$, Lemma 3.17 implies that $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{k}\right)>3$.

Finally, we claim that $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{j}\right)>3$. Because it is minimal in $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right)$, we cannot fold $\Omega_{n}^{i, j}$ and stay in $\mathcal{H} \mathcal{T}_{n}^{+}$. Suppose that Λ^{\prime} is obtained by unfolding $\Omega_{n}^{i, j}$. Then Λ^{\prime} has a (i, j)-tag. Since j is a leaf in Λ^{\prime}, Lemma 3.17 implies that $d_{n}^{+}\left(\Lambda^{\prime}, \Xi_{n}^{j}\right)>2$. Hence $d_{n}^{+}\left(\Omega_{n}^{i, j}, \Xi_{n}^{j}\right)>3$ as claimed. The result follows.

Lemma 3.21 (Claim (F)). For all $\Theta, \Delta \in \mathcal{H} \mathcal{T}_{n}^{1}, \Theta=\Delta$ if and only if $d_{n}^{+}(\Theta, \Upsilon)=d_{n}^{+}(\Delta, \Upsilon)$ for all $\Upsilon \in \mathcal{M}_{n}^{1}$.

Proof. Let $\Theta \in \mathcal{H} \mathcal{T}_{n}^{1} \backslash \mathcal{M}_{n}^{1}$. Then $E_{\Theta}=\{A \cup\{j\}, B \cup\{j\}\}$ for some $j \in[n]$ and some disjoint nonempty subsets $A, B \subset[n] \backslash\{j\}$ such that $A \cup B=[n] \backslash\{j\}$, and $\# A, \# B \geq 3$.

Let $\Upsilon \in \mathcal{M}_{n}^{1}$. Then $\Upsilon=\Omega_{n}^{k, \ell}$ for some $k, \ell \in[n]$. Since Θ and $\Omega^{k, \ell}$ are distinct elements of the same height, $d_{n}^{+}\left(\Theta, \Omega^{k, \ell}\right) \geq 2$.

If k and ℓ are adjacent in Θ, and ℓ is a leaf, then Θ can be unfolded to a hypertree with a (k, ℓ)-tag, so $d_{n}^{+}\left(\Theta, \Omega_{n}^{k, \ell}\right)=2$. If k and ℓ are not adjacent in Θ, or ℓ is not a leaf, then Θ cannot be unfolded to a hypertree with a (k, ℓ)-tag, so $d_{n}^{+}\left(\Theta, \Omega_{n}^{k, \ell}\right) \geq 3$.

It follows that the function $\Xi \mapsto d_{n}^{+}(\Theta, \Xi)$, for $\Xi \in \mathcal{S}_{n}$, can be used to identify which pairs of vertices in Θ are adjacent (and which vertex is a
non-leaf). Since the hyperedges in Θ are precisely the maximal subsets of $[n]$ with the property that elements are pairwise adjacent in Θ, the result follows.

Lemma 3.22 (Claim (G)). For all $\Theta, \Delta \in \mathcal{H} \mathcal{T}_{n}^{+}, \Theta=\Delta$ if and only if $d_{n}^{+}(\Theta, \Upsilon)=d_{n}^{+}(\Delta, \Upsilon)$ for all $\Upsilon \in \mathcal{H} \mathcal{T}_{n}^{1}$.

Proof. Let $\Lambda \in \mathcal{H} \mathcal{T}_{n}^{1}$. Then $E_{\Lambda}=\{A \cup\{j\}, B \cup\{j\}\}$ for some vertex j, and some disjoint non-empty subsets $A, B \subset[n] \backslash\{j\}$ such that $A \cup B=[n] \backslash\{j\}$. For all $\Theta \in \mathcal{H} \mathcal{T}_{n}^{+}, \Theta \in A_{n}^{+}(\Lambda)$ if and only if, for all $a \in A$ and $b \in B$, a and b are not adjacent in Θ. Since there is an element of $\mathcal{H} \mathcal{T}_{n}^{1}$ for each choice $j \in[n]$, and subsequent choices of A and B, the function $\Upsilon \mapsto d_{n}^{+}(\Theta, \Upsilon)$, for $\Upsilon \in \mathcal{H} \mathcal{T}_{n}^{1}$, contains sufficient information to establish exactly which vertices are not adjacent in Θ, and hence exactly which vertices are adjacent in Θ. It follows from the definition of a hypertree that the hyperedges in Θ are precisely the maximal subsets of $[n]$ with the property that elements are pairwise adjacent in Θ. Thus we can use the knowledge of which vertices are adjacent in Θ to reconstruct E_{Θ}. The result follows.

4. The symmetries of McCullough-Miller space

4.1. Automorphisms of W_{n}

Fix a positive integer n. There are exactly n conjugacy classes of involutions in W_{n}, each represented by a generator. Each permutation of the generators induces an automorphism of W_{n} which permutes these conjugacy classes; we write Σ_{n} for the group of these automorphisms. It follows that $\operatorname{Aut}\left(W_{n}\right)$ acts transitively on the set of conjugacy classes of involutions; we write Aut $^{0}\left(W_{n}\right)$ for the kernel of this action. It is easily verified that $\operatorname{Aut}\left(W_{n}\right)=\operatorname{Aut}^{0}\left(W_{n}\right) \rtimes \Sigma_{n}$. It follows that, writing $\operatorname{Out}^{0}\left(W_{n}\right)$ for quotient $\operatorname{Aut}^{0}\left(W_{n}\right) / \operatorname{Inn}\left(W_{n}\right)$, we have $\operatorname{Out}\left(W_{n}\right) \cong \operatorname{Out}^{0}\left(W_{n}\right) \rtimes \Sigma_{n}$. Thus for each $\alpha \in \operatorname{Out}\left(W_{n}\right)$, there exist unique automorphisms $\phi \in$ Out ${ }^{0}\left(W_{n}\right)$ and $\sigma \in \Sigma_{n}$ such that $\alpha=\phi \sigma$. For $n \geq 3$, Out $^{0}\left(W_{n}\right)$ is an infinite group.

Definition 4.1 (Partial conjugation). For an integer $i \in[n]$, and a proper subset $D \subset[n] \backslash\{i\}$, we write $x_{i D}$ for the outer automorphism of W_{n} determined by the map:

$$
a_{j} \mapsto \begin{cases}a_{i} a_{j} a_{i} & \text { if } j \in D \\ a_{j} & \text { if } j \in[n] \backslash D\end{cases}
$$

we say that $x_{i D}$ is the partial conjugation with acting letter i and domain D.

If $x_{i D}$ is a partial conjugation, then $x_{i D}$ is an involution (if D were not a proper subset of $[n] \backslash\{i\}$, then $x_{i D}$ would be the identity outer automorphism). If $i \in[n]$ and D, D^{\prime} are disjoint proper subsets of $[n] \backslash\{i\}$ such that $D \cup D^{\prime}=[n] \backslash\{i\}$, then $x_{i D}=x_{i D^{\prime}}$. We adopt the convention that whenever we write $x_{i D}$, it is assumed that either $i=1$ and $2 \notin D$, or $i \neq 1$ and $1 \notin D$.

The partial conjugations generate Out ${ }^{0}\left(W_{n}\right)$ (see, for example [3]). The following definition and lemma, due to McCullough and Miller, together establish a relationship between the hypertree poset and the automorphisms of W_{n}.

Definition 4.2 (Carried by). Given a partial conjugation $x_{i D}$, and a hypertree $\Theta \in \mathcal{H}_{n}$, we say that $x_{i D}$ is carried by Θ if: for all $d \in D$ and for all $j \in[n] \backslash D$, the simple walk in Θ from j to d visits i. Given an automorphism $\alpha \in \operatorname{Out}^{0}\left(W_{n}\right)$ and a hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$, we say that α is carried by Θ if $\alpha=x_{i_{p} D_{p}} \ldots x_{i_{1} D_{1}}$ for some partial conjugations $x_{i_{p} D_{p}}, \ldots, x_{i_{1} D_{1}}$, each of which is carried by Θ.

Remark 4.3. It follows that $x_{i D}$ is carried by Θ if and only if D is a union of connected components of $\Theta \backslash\{i\}$.

Lemma 4.4. Let $x_{i_{1} D_{1}}, \ldots, x_{i_{p} D_{p}}$ be partial conjugations and let $\Theta \in$ $\mathcal{H} \mathcal{T}_{n}$. If Θ carries the product $x_{i_{p} D_{p}} \ldots x_{i_{1} D_{1}}$, then the partial conjugations $x_{i_{1} D_{1}}, \ldots, x_{i_{p} D_{p}}$ pairwise commute.

Proof. Suppose that Θ carries $x_{i_{j} D_{j}}$ for each $j \in\{1, \ldots, k\}$. Let $p, q \in$ $\{1, \ldots, k\}$. It follows from $\left[6, \mathrm{p} .14\right.$, second paragraph] that $x_{i_{p} D_{p}}$ commutes with $x_{i_{q} D_{q}}$ if $i_{p} \neq i_{q}$. Because the factors in the free product decomposition of W_{n} are abelian, $x_{i_{p} D_{q}}$ commutes with $x_{i_{q} D_{q}}$ if $i_{p}=i_{q}$ (this is not necessarily true in the more general setting considered by McCullough and Miller).

Given a hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$, and an integer $j \in[n]$, it is easy to count the partial conjugations $x_{j D}$ carried by Θ : there is one for each collection of connected components of $\Theta \backslash\{j\}$, provided the collection excludes the connected component containing the least vertex of $[n] \backslash\{j\}$. The next lemma follows.

Lemma 4.5. For each $h \in\{0, \ldots, n-2\}$, and each hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}, \Theta$ carries exactly 2^{h} automorphisms, including the identity automorphism.

4.2. McCullough-Miller space K_{n}

We define a relation \sim on $\operatorname{Out}^{0}\left(W_{n}\right) \times \mathcal{H} \mathcal{T}_{n}$ as follows: $(\alpha, \Theta) \sim(\beta, \Lambda)$ if and only if $\Theta=\Lambda$, and $\alpha^{-1} \beta$ is carried by Θ. It is easily verified that \sim is an equivalence relation. We write $[\alpha, \Theta]$ for the \sim-equivalence class of (α, Θ), and we write \mathcal{K}_{n} for the set of \sim-equivalence classes.

We define a partial order \leq on \mathcal{K}_{n} as follows: $[\alpha, \Theta] \leq[\beta, \Lambda]$ if and only if $\alpha^{-1} \beta$ is carried by Λ, and Λ folds to Θ. Equivalently, $[\alpha, \Theta] \leq[\beta, \Lambda]$ if and only if Λ folds to Θ and $[\beta, \Lambda]=[\alpha, \Lambda]$.

McCullough-Miller space K_{n} is the simplicial realization of $\left(\mathcal{K}_{n}, \leq\right)$. We write $\mathcal{V}_{n}(\alpha, \Theta)$ for the vertex in K_{n} corresponding to $[\alpha, \Theta]$.

Remark 4.6. Since Θ_{n}^{0} carries only the identity in $\operatorname{Out}^{0}\left(W_{n}\right)$, equivalence classes of the form $\left[\alpha, \Theta_{n}^{0}\right]$ are singletons, and $\left[\alpha, \Theta_{n}^{0}\right] \leq[\beta, \Lambda]$ if and only of $\beta=\alpha$. Thus K_{n} consists of copies of HT_{n}, one copy for each element of Out ${ }^{0}\left(W_{n}\right)$, glued appropriately. Vertices of the form $\mathcal{V}_{n}\left(\alpha, \Theta_{n}^{0}\right)$ are called nuclear vertices.
4.3. A map $\operatorname{Out}\left(W_{n}\right) \rightarrow \operatorname{Aut}\left(\mathrm{K}_{n}\right)$

The set $\operatorname{Out}^{0}\left(W_{n}\right) \times \mathcal{H} \mathcal{T}_{n}$ is naturally equipped with a left $\operatorname{Out}\left(W_{n}\right)$ action: for all $\phi \in \operatorname{Out}^{0}\left(W_{n}\right), \sigma \in \Sigma_{n}$, and $(\alpha, \Theta) \in \operatorname{Out}^{0}\left(W_{n}\right) \times \mathcal{H} \mathcal{T}_{n}$, we define $\phi \sigma .(\alpha, \Theta)=\left(\phi \sigma \alpha \sigma^{-1}, \sigma \Theta\right)$. It is easily verified that this action preserves the equivalence relation \sim, and that the induced action on \mathcal{K}_{n} preserves the partial order \leq. Thus we have a homomorphism Out $\left(W_{n}\right) \rightarrow$ $\operatorname{Aut}\left(\mathcal{K}_{n}, \leq\right)$, which induces a homomorphism $\chi_{n}: \operatorname{Out}\left(W_{n}\right) \rightarrow \operatorname{Aut}\left(\mathrm{K}_{n}\right)$.

Lemma 4.7. For each integer $n \geq 3$, the homomorphism $\chi_{n}: \operatorname{Out}\left(W_{n}\right) \rightarrow$ $\operatorname{Aut}\left(\mathrm{K}_{n}\right)$ is injective.

Proof. Recall that each element of $\operatorname{Out}\left(W_{n}\right)$ has the form $\phi \sigma$ for some $\phi \in \operatorname{Out}^{0}\left(W_{n}\right)$ and some $\sigma \in \Sigma_{n}$. If ϕ is non-trivial and ι denotes the identity in $\operatorname{Out}\left(W_{n}\right)$, then

$$
\chi_{n}(\phi \sigma) \mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)=\mathcal{V}_{n}\left(\phi \sigma \iota \sigma^{-1}, \sigma \Theta_{n}^{0}\right)=\mathcal{V}_{n}\left(\phi, \Theta_{n}^{0}\right) \neq \mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)
$$

If ϕ is trivial, but σ is not, then $\sigma \Theta \neq \Theta$ for some $\Theta \in \mathcal{H} \mathcal{T}_{n}$, hence

$$
\begin{aligned}
\chi_{n}(\phi \sigma) \mathcal{V}_{n}(\iota, \Theta)=\chi_{n}(\sigma) & \mathcal{V}_{n}(\iota, \Theta)= \\
& =\mathcal{V}_{n}\left(\sigma \iota \sigma^{-1}, \sigma \Theta\right)=\mathcal{V}_{n}(\iota, \sigma \Theta) \neq \mathcal{V}_{n}(\iota, \Theta)
\end{aligned}
$$

To prove Theorem 1.1 it suffices to show that χ_{n} is surjective, which is achieved in the next proposition. To ensure the structure of the argument is most clear, we describe it assuming the following technical claims, to be proved immediately after. We claim the following:
(H) For each integer $n \geq 3$, the nuclear vertices are exactly the vertices of maximal valence in K_{n}.
(I) Let $n \geq 3$, let $x_{i D} \in \operatorname{Out}^{0}\left(W_{n}\right)$ be a partial conjugation, and let $\beta \in \operatorname{Out}^{0}\left(W_{n}\right)$ be an automorphism such that, for each $\Theta \in \mathcal{H} \mathcal{T}_{n}$, Θ carries β if and only if Θ carries $x_{i D}$. Then $\beta=x_{i D}$.
(J) Let $n \geq 4$, let $g \in \operatorname{Aut}\left(\mathrm{~K}_{n}\right)$, let $\alpha \in \operatorname{Out}^{0}\left(W_{n}\right)$, and let $x_{i D}$ be a non-trivial partial conjugation. If g fixes $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$, and fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right)$, then g fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$.

Remark 4.8. Claim (J) fails in the case that $n=3$ because, in that case, K_{n} is the barycentric subdivision of the regular trivalent tree, and an automorphism of the tree may fix pointwise the star of a valence-three vertex v without fixing pointwise the star of those valence-three vertex distance two from v.

Proof that χ_{n} is surjective, for $n \geq 4$, assuming Claims (H),(I) and (J). Consider an arbitrary simplicial automorphism $f \in \operatorname{Aut}\left(\mathrm{~K}_{n}\right)$. It follows from Claim (H) that f maps nuclear vertices to nuclear vertices; that is, f maps $\mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)$ to $\mathcal{V}_{n}\left(\alpha, \Theta_{n}^{0}\right)$ for some $\alpha \in \operatorname{Out}^{0}\left(W_{n}\right)$. It follows that $\chi_{n}\left(\alpha^{-1}\right) f$ fixes $\mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)$, and fixes setwise the star of $\mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)$. By Theorem 1.3, there exists $\sigma \in \Sigma_{n}$ such that $\chi_{n}\left(\alpha^{-1}\right) f \mathcal{V}_{n}(\iota, \Theta)=\mathcal{V}_{n}(\iota, \sigma \Theta)$ for all $\Theta \in \mathcal{H} \mathcal{T}_{n}$; hence $\chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes pointwise the star of $\mathcal{V}_{n}\left(\iota, \Theta_{n}^{0}\right)$.

Now suppose that $\chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{n}^{0}\right)$, for some $\alpha \in \operatorname{Out}^{0}\left(W_{n}\right)$. Let $x_{i D}$ be a partial conjugation. By Claims (H) and (I), amongst the vertices in K_{n} of maximal valence, $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{n}^{0}\right)$ is distinguished by the set of vertices in the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{n}^{0}\right)$ to which it is adjacent. It follows that $\chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{n}^{0}\right)$. Claim (J) then gives that $\chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes pointwise the star of $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{n}^{0}\right)$.

By induction we have that $\chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{n}^{0}\right)$ whenever α can be written as a product of partial conjugations. Since the partial conjugations generate $\operatorname{Out}^{0}\left(W_{n}\right), \chi_{n}\left(\sigma^{-1} \alpha^{-1}\right) f$ fixes pointwise the star of every nuclear vertex, and hence the entire space K_{n}. The result follows.

It remains only to prove Claims (H), (I) and (J). Before addressing Claim (H), it is convenient to define some notation. For each hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$, we write $A(\Theta)$ for the set of hypertrees in $\mathcal{H} \mathcal{T}_{n}$, distinct from Θ, which fold to Θ; and $B(\Theta)$ for the set of hypertrees in $\mathcal{H} \mathcal{T}_{n}$, distinct from Θ, which can be obtained from Θ by folding.

Proposition $4.9($ Claim $(H))$. For each integer $n \geq 3$, the nuclear vertices are exactly the vertices of maximal valence in K_{n}.

Proof of Proposition 4.9. Consider first the case that $n=3$. Nuclear vertices have valence three, and since each hypertree $\theta \in \mathcal{H} \mathcal{T}_{n}$ carries exactly one partial conjugation, and folds only to the nuclear hypertree, each non-nuclear vertex in K_{3} is adjacent to two nuclear vertices, and no non-nuclear vertices. Thus the result holds.

We therefore assume that $n \geq 4$. It is clear that each nuclear vertex has valence $\# A\left(\Theta_{n}^{0}\right)$.

Consider an arbitrary element $[\alpha, \Theta] \in \mathcal{K}_{n}$, with $\Theta \in \mathcal{H} \mathcal{T}_{n}^{h}$ for some $h \in\{1, \ldots, n-2\}$. The definitions immediately give that, for any other element $[\beta, \Lambda] \in \mathcal{K}_{n}$:

1) $[\alpha, \Theta]<[\beta, \Lambda]$ if and only if $\beta^{-1} \alpha$ is carried by Θ, and $\Theta<\Lambda$ (from which it follows that $[\alpha, \Lambda]=[\beta, \Lambda]$);
2) $[\beta, \Lambda]<[\alpha, \Theta]$ if and only if $\beta^{-1} \alpha$ is carried by Θ, and $\Lambda<\Theta$ (which does not necessarily imply that $[\beta, \Lambda]=[\alpha, \Lambda]$).

It follows that the valence in K_{n} of $\mathcal{V}_{n}(\alpha, \Theta)$ is at most

$$
\# A(\Theta)+\#(\text { automorphisms carried by } \Theta) \cdot \# B(\Theta)
$$

By Proposition 3.15, $\# A(\Theta) \leq \# A\left(\Omega_{n}^{1,2}\right)$. By Lemma 4.5, there are 2^{h} automorphisms carried by Θ. It follows from Lemma 3.11 that $\# B(\Theta) \leq$ $\# B\left(\Xi_{n}^{1}\right)=-1+B_{n-1}$, where B_{n-1} is the number of partitions of $[n-1]$ (B_{n-1} is the $(n-1)$-th Bell number). Thus we have that the valence in K_{n} of $\mathcal{V}_{n}(\alpha, \Theta)$ is at most

$$
\# A\left(\Omega_{n}^{1,2}\right)+2^{n-2}\left(-1+B_{n-1}\right)
$$

and the proposition is proved if we show that

$$
\# A\left(\Omega_{n}^{1,2}\right)+2^{n-2}\left(-1+B_{n-1}\right)<\# A\left(\Theta_{n}^{0}\right)
$$

We make the following choices, in order:
$L_{1}\left(16^{3} \quad 2\right.$
$L_{2} 154$

Θ
$L_{3} \begin{array}{llll}2 & 10 & 9 & \text { (8) }\end{array}$
$L_{4} \quad 2 \quad 11$

Figure 10. The construction of Θ, as in the proof of Proposition 4.9.

- we choose a partition $\mathbb{P}=\left\{\mathbb{P}_{1}, \ldots \mathbb{P}_{p}\right\}$ of $\{2, \ldots, n\}$ subject only to the restriction that $p>1$ (there are $\left(-1+B_{n-1}\right)$ such partitions);
- we then choose a function $m:\{1, \ldots, p\} \rightarrow\{1,2\}$ subject only to the restriction that $m(j)=1$ if $2 \in \mathbb{P}_{j}$ (there are 2^{p-1} such functions);
- for each $j \in\{1, \ldots, p\}$, we choose a composition $C_{j}:=\left(c_{j}^{1}, \ldots, c_{j}^{q}\right)$ of $\# \mathbb{P}_{j}$ (so $c_{j}^{1}, \ldots, c_{j}^{q}$ are positive integers which sum to $\# \mathbb{P}_{j}$; there are $2^{-1+\# \mathbb{P}_{j}}$ such compositions).

In making these choices, we have chosen one combination of data from a possible

$$
\left(-1+B_{n-1}\right) 2^{p-1} \prod_{j=1}^{p} 2^{-1+\# \mathbb{P}_{j}}=\left(-1+B_{n-1}\right) 2^{n-2}
$$

combinations.
Now for each $j \in\{1, \ldots, p\}$, we construct a set Λ_{j} of hyperedges as follows: if $\mathbb{P}_{j}=\left\{s_{1}, \ldots, s_{q}\right\}$ with $s_{1}>\cdots>s_{q}$, then we define

$$
\Lambda_{j}:=\left\{\left\{m(j), s_{1}, \ldots, s_{c_{j}^{1}}\right\},\left\{s_{c_{j}^{1}}, \ldots, s_{c_{j}^{1}+c_{j}^{2}}\right\}, \ldots,\left\{s_{-c_{j}^{q}+\# \mathbb{P}_{j}}, \ldots, s_{q}\right\}\right\} .
$$

Finally, we define Θ to be the hypertree on $[n]$ such that $E_{\Theta}=\bigcup_{j=1}^{p} \Lambda_{j}$.
An example construction is shown in Figure 10, using the data: $n=11$; $p=4 ; \mathbb{P}_{1}=\{2,3,6\}, m(1)=1, C_{1}=(1,2) ; \mathbb{P}_{2}=\{4,5\}, m(2)=1$, $C_{1}=(2) ; \mathbb{P}_{3}=\{7,8,9,10\}, m(3)=2, C_{3}=(3,1) ; \mathbb{P}_{4}=\{11\}, m(4)=2$, $C_{4}=(1)$.

Let \mathcal{H} denote the set of hypertrees constructed in the manner described above. Given $\Theta \in \mathcal{H}$: the corresponding partition \mathbb{P}, and the function m, can be recovered from Θ by considering the connected components of
$\Theta \backslash\{1\}$ and $\Theta \backslash\{2\}$; the compositions C_{j} can be recovered from considering the subhypertrees of Θ corresponding to each partition set. It follows that distinct choices of input data determine distinct hypertrees. The requirement that $p>1$ ensures that $\Theta \neq \Theta_{n}^{0}$. Thus we have exhibited $\left(-1+B_{n-1}\right) 2^{n-2}$ distinct hypertrees in $\mathcal{H} \subset \mathcal{H} \mathcal{T}_{n}$.

We wish to identify at least $1+\# A\left(\Omega_{n}^{1,2}\right)$ more hypertrees in $\mathcal{H} \mathcal{T}_{n}$. First we consider the elements in $A\left(\Omega_{n}^{1,2}\right)$. Recall that these are precisely the hypertrees with a (1,2)-tag and at least three hyperdges. Because some elements of \mathcal{H} have (1,2)-tags, this falls short of the extra hypertrees required by $1+\# A\left(\Omega_{n}^{1,2}\right) \cap \mathcal{H}$.

Suppose $\Theta \in A\left(\Omega_{n}^{1,2}\right) \cap \mathcal{H}$. Since $\Theta \in \mathcal{H}$: the valence of j in Θ is at most two for each $j \in\{3, \ldots, n\}$. Since $\Theta \in A\left(\Omega_{n}^{1,2}\right)$, it has a $(1,2)$ tag. The only way this can happen is if $\{2\}$ is a partition set, and $m(j)=1$ for each $j \in\{2, \ldots, p\}$. It follows that 1 has valence in Θ at least three, and no other vertex in Θ has valence exceeding two. We write Θ^{\prime} for the hypertree obtained from Θ by swapping the vertices 1 and 3 . Then Θ^{\prime} is not contained in \mathcal{H} (because 3 has valence in Θ^{\prime} at least three), and it does not have a $(1,2)$-tag (because 1 and 2 are not adjacent in Θ^{\prime}).

Evidently, distinct choices of $\Theta \in \mathcal{H} \cap A\left(\Omega_{n}^{1,2}\right)$ give distinct hypertrees Θ^{\prime}. Hence the set

$$
\mathcal{H} \cup A\left(\Omega_{n}^{1,2}\right) \cup\left\{\Theta^{\prime} \mid \Theta \in \mathcal{H} \cap A\left(\Omega_{n}^{1,2}\right)\right\}
$$

contains exactly

$$
\left(-1+B_{n-1}\right) 2^{n-2}+\# A\left(\Omega_{n}^{1,2}\right)
$$

hypertrees.
It remains only to find one more hypertree in $\mathcal{H} \mathcal{T}_{n}$. The star tree Ξ_{n}^{4} suffices because: it does not have a (1,2)-tag, and hence is not contained in $A\left(\Omega_{n}^{1,2}\right)$; the valence in Ξ_{n}^{4} of 4 exceeds two, and hence Ξ_{n}^{4} cannot be an element of $\mathcal{H} \cup\left\{\Theta^{\prime} \mid \Theta \in \mathcal{H} \cap A\left(\Omega_{n}^{1,2}\right)\right\}$.

Lemma 4.10 (Claim (I)). Let $n \geq 3$, let $x_{i D} \in \operatorname{Out}^{0}\left(W_{n}\right)$ be a partial conjugation, and let $\beta \in \operatorname{Out}^{0}\left(W_{n}\right)$ be an automorphism such that, for each $\Theta \in \mathcal{H} \mathcal{T}_{n}, \Theta$ carries β if and only if Θ carries $x_{i D}$. Then $\beta=x_{i D}$.

Proof. There exists at least one hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$ which carries $x_{i_{D}}$. It follows, by Definition 4.2 and hypothesis, $\beta=x_{i_{p} D_{p}} \ldots x_{i_{1} D_{1}}$ for some partial conjugations $x_{i_{1} D_{1}}, \ldots, x_{i_{p} D_{p}}$, each of which is carried by Θ. Thus it suffices to show that if $x_{j F}$ is a partial conjugation and $x_{j F} \neq x_{i D}$, then there exists a hypertree $\Lambda \in \mathcal{H} \mathcal{T}_{n}$ such that Λ carries $x_{i D}$ but Λ does not carry $x_{j F}$. Equivalently, it suffices to show that if $x_{j F}$ is a partial
conjugation and $x_{j F} \neq x_{i D}$, then there exists a hypertree $\Lambda \in \mathcal{H} \mathcal{T}_{n}$ such that D is a union of connected components of $\Lambda \backslash\{i\}$, but F is not a union of connected components of $\Lambda \backslash\{j\}$. We leave the reader to verify this statement.

Lemma 4.11 (Claim $(J))$. Let $n \geq 4$, let $g \in \operatorname{Aut}\left(\mathrm{~K}_{n}\right)$, let $\alpha \in \operatorname{Out}^{0}\left(W_{n}\right)$, and let $x_{i D}$ be a non-trivial partial conjugation. If g fixes $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$, and fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right)$, then g fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$.

Proof. Suppose g fixes $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$, and fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right)$.

Recall that a line tree is a hypertree which has exactly two leaves. It is immediate from the definitions that $x_{i D}$ is carried by exactly $(\# D)!(n-$ $\# D-1)$! line trees; let X denote this set of line trees. It follows that the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right)$ shares at least $(\# D)!(n-\# D-1)$! vertices with the star of $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$. Since $n \geq 4$ and $1 \leq \# D \leq n-2,(\# D)!(n-\# D-1)!\geq 2$. Since g fixes $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$, it fixes setwise the star of $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$. Hence g fixes setwise the set of vertices common to the stars of $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$ and $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$, and this set contains at least two vertices corresponding to line trees.

Now each line tree which carries $x_{i D}$ is fixed by exactly one nontrivial element of Σ_{n}, and no two line trees are fixed by the same nontrivial element of Σ_{n}. It follows that the pointwise stabilizer in $\operatorname{Aut}\left(\mathrm{HT}_{n}\right)$ of X is the trivial subgroup of Σ_{n}. By Theorem $1.3, g$ acts as an element of Σ_{n} on the star of $\mathcal{V}_{n}\left(x_{i D} \alpha, \Theta_{0}\right)$. But since g is contained in the pointwise stabiliser of the vertices shared with the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right), g$ acts as the identity on the star of $\mathcal{V}_{n}\left(\alpha, \Theta_{0}\right)$. That is, g fixes pointwise the star of $\mathcal{V}_{n}\left(\alpha x_{i D}, \Theta_{0}\right)$, as required.

References

[1] The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2011.
[2] M. R. Bridson and K. Vogtmann. The symmetries of outer space. Duke Math. J., 106(2):391-409, 2001.
[3] N. D. Gilbert. Presentations of the automorphism group of a free product. Proc. London Math. Soc. (3), 54(1):115-140, 1987.
[4] L. Kalikow. Enumeration of parking functions, allowable permutation pairs, and labeled trees. PhD thesis, Brandeis University, 1999.
[5] J. McCammond and J. Meier. The hypertree poset and the l^{2}-Betti numbers of the motion group of the trivial link. Math. Ann., 328(4):633-652, 2004.
[6] D. McCullough and A. Miller. Symmetric automorphisms of free products. Mem. Amer. Math. Soc., 122(582), 1996.
[7] D. Warme. Spanning trees in hypergraphs with applications to Steiner trees. PhD thesis, University of Virginia, 1998.

Appendix. Table of notation

[n]	the set $\{1, \ldots, n\}$
Θ_{n}^{0}	the hypertree on [n] with exactly one hyperedge
Ξ_{n}^{j}	the hypertree on $[n]$ with exactly $n-1$ hyperedges, each of which contains j
$\Omega_{n}^{j, k}$	the hypertree on $[n]$ with exactly two hyperedges, $\{j, k\}$ and $[n] \backslash\{j\}$
$\mathcal{H} \mathcal{T}_{n}$	the set of hypertrees on [n]
$\mathcal{H} \mathcal{T}^{+}$	the set of hypertrees on [n] that have at least two hyperedges
$\mathcal{H} \mathcal{T}_{n}^{h}$	the set of hypertrees on [n] that have exactly $h+1$ hyperedges
\mathcal{S}_{n}	the set $\left\{\Xi_{n}^{j} \mid j \in[n]\right\}$; elements of \mathcal{S}_{n} are called star trees
\mathcal{L}_{n}	the set of hypertrees on $[n]$ that have exactly two leaves; elements of \mathcal{L}_{n} are called line trees
\mathcal{M}_{n}^{h}	the set of hypertrees on $[n]$ which have exactly $h+1$ hyperedges, a vertex of valence $h+1$, and a hyperedge of degree $n-h$ (note: $\mathcal{M}_{n}^{1}=\left\{\Omega_{n}^{j, k} \mid j, k \in[n], j \neq k\right\}$ and $\mathcal{M}_{n}^{n-2}=\mathcal{S}_{n}=$ $\left.\left\{\Xi_{n}^{j} \mid j \in[n]\right\}\right)$
$A_{n}^{+}(\Theta)$	the set of hypertrees on [n], distinct from Θ, which fold to Θ
$B_{n}^{+}(\Theta)$	the set of hypertrees on $[n]$, distinct from Θ, which can be obtained by folding Θ
HT_{n}	the simplicial realization of $\left(\mathcal{H} \mathcal{T}_{n}, \leq\right)$, called the hypertree complex of rank n
HT_{n}^{+}	the simplicial realization of $\left(\mathcal{H} \mathcal{T}_{n}^{+}, \leq\right)$

Table 1. Notation relating to hypertrees

Contact information

A. Piggott

Department of Mathematics, Bucknell University, Lewisburg PA 17837
E-Mail: adam.piggott@bucknell.edu
Received by the editors: 19.12.2011
and in final form 16.03.2012.

[^0]: ${ }^{1}$ Thanks to Murray Elder, and the University of Newcastle, Australia, for their hospitality as this paper was written. Thanks to Andy Eisenberg, and the anonymous referee, for carefully reading the paper, and suggesting improvements.

 2010 MSC: 20E36; 05E18.
 Key words and phrases: Autmorphisms of groups; group actions on simplicial complexes; Coxeter groups; McCullough-Miller space; hypertrees.

