
Моделі та засоби систем баз даних і знань

© Kyrylo Malakhov, Aleksandr Kurgaev, Vitalii Velychko, 2018

ISSN 1727-4907. Проблеми програмування. 2018. № 4 59

UDC 004.724, 004.62 https://doi.org/10.15407/pp2018.04.059

Kyrylo Malakhov, Aleksandr Kurgaev, Vitalii Velychko

MODERN RESTFUL API DLS AND FRAMEWORKS

FOR RESTFUL WEB SERVICES API SCHEMA MODELING,

DOCUMENTING, VISUALIZING

The given paper presents an overview of modern RESTful API description languages (belongs to interface

description languages set) – OpenAPI, RAML, WADL, Slate – designed to provide a structured description

of a RESTful web APIs (that is useful both to a human and for automated machine processing), with related

RESTful web API modelling frameworks. We propose an example of the schema model of web API of the

service for pre-trained distributional semantic models (word embedding’s) processing. This service is a part

of the “Personal Research Information System” services ecosystem – the “Research and Development

Workstation Environment” class system for supporting research in the field of ontology engineering: the au-

tomated building of applied ontology in an arbitrary domain area as a main feature; scientific and technical

creativity: the automated preparation of application documents for patenting inventions in Ukraine. It also

presents a quick look at the relationship of Service-Oriented Architecture and Web services as well as REST

fundamentals and RESTful web services; RESTful API creation process.

Key words: Service-Oriented Architecture, Web service, REST, RESTful API, OpenAPI, RAML, WADL,

Slate.

Introduction

Databases, web sites, business applica-

tions and services need to exchange data. This

is accomplished by defining standard data

formats such as Extensible Markup Language

(XML) or JavaScript Object Notation

(JSON), as well as transfer protocols or Web

services such as the Simple Object Access

Protocol (SOAP) or the more popular today –

Representational State Transfer (REST). De-

velopers often have to design their own Ap-

plication Programming Interfaces (APIs) to

make applications work while integrating

specific business logic around operating sys-

tems, or servers. This paper introduces these

concepts with a focus on the RESTful APIs

and presents an overview of modern RESTful

API description languages (RESTful API

DLs): OpenAPI Specification, RAML, and

the example of modeling the schema of web

API of the service for pre-trained distribu-

tional semantic models (word embeddings)

processing (is a part of the “Personal Re-

search Information System” [1] services eco-

system – the “Research and Development

Workstation Environment” [2] class system

for supporting research in the field of ontolo-

gy engineering: the automated building of ap-

plied ontology in an arbitrary domain area as

a main feature; scientific and technical crea-

tivity: the automated preparation of applica-

tion documents for patenting inventions in

Ukraine) with related RESTful web API

modelling frameworks.

Service-Oriented Architecture style

and Web services

According to the Open Group [3] (a

global consortium that develops open, ven-

dor-neutral information technology stand-

ards), an SOA is an architectural style that

supports service orientation. Service orienta-

tion is a way of thinking in terms of the out-

comes of services, and how they can be de-

veloped and combined. In this definition, a

service is a repeatable business activity that

can be logically represented; the Open Group

gives the examples: “check customer credit,”

and “provide weather data.” Further, a service

is self-contained, may be composed of other

services, and consumers of the service treat

the service as a black box. SOA is a distinct

architectural style which is a major improve-

ment over earlier ideas, although it includes

some of the earlier ideas. Also, traditional ar-

chitectural methods must be employed in or-

der to obtain maximum benefit from using

SOA.

http://dx.doi.org/10.7124/bc.000027

Моделі та засоби систем баз даних і знань

60

Another definition of Service-Oriented

Architecture comes from [4]: a paradigm for

organizing and utilizing distributed capabili-

ties that may be under the control of different

ownership domains. It provides a uniform

means to offer, discover, interact with and use

capabilities to produce desired effects con-

sistent with measurable preconditions and ex-

pectations. According to [4], the focus of

SOAs is to perform a task (business function).

This is different from some other paradigms,

such as object-oriented architectures, where

the focus is more on structure of the solution

in the case of an object-oriented architecture,

the focus is on how to package data inside an

object. SOAs address ownership boundaries

through service descriptions and service inter-

faces. SOA provides reuse of externally de-

veloped frameworks by providing easy in-

teroperability between systems. Generally

speaking, in order to perform a task, an SOA

groups services on different systems, possibly

running on different operating systems, possi-

bly written using different programming lan-

guages. Most current SOA-based applications

employ an asynchronous client/server-type

architectural style – asynchronous event-

driven architectural style [5]. Event-driven

SOA (also known as SOA 2.0) is the current

and advanced form of SOA. In this approach

at present, unlike the older SOA approach

where services used to be designed as pre-

defined processes, the events generally trigger

the execution of activities. The asynchronous

event-driven architectural style is better for

real time or proactive systems, since business

processes are treated as a sequence of events,

and therefore different business processes that

have little relationship with each other, except

for a few individual shared tasks, do not have

to obey the same kind of centralized man-

agement. In an asynchronous event-driven

architecture, an event message carries a state

change to an event server. The event server

passes these events along to the servers, pos-

sibly with value added. Servers may then

generate messages for other event servers (of-

ten calls “publish/subscribe” architecture).

More detailed in-depth look at the current

state of SOA presented in [6, 7].

Figure 1 uses a Venn diagram to illus-

trate the relationship between SOA and Web

services. The overlapping area in the center

represents SOA using Web services for con-

nections. The nonoverlapping area of Web

services represents that Web services can be

used for connections, but connections alone

do not make for an SOA. The non-

overlapping area of SOA indicates that an

SOA can use Web services as well as connec-

tions other than Web services (the original

specifications of CORBA and DCOM are ex-

amples).

Figure 1. Relationship of Web services

and SOA

Key to SOA is the identification and

design of services. The idea is that services

should be designed in such a way that they

become components that can be assembled in

multiple ways to support or automate business

functions. It is not necessarily easy to proper-

ly identify and design services. When done

well, the services allow an organization to

quickly assemble services – or modify the as-

sembly of services – of add or modify the sup-

port or automation of business functions. Here

are basic concepts related to services [8].

 Atomic service. An atomic service

is a well-defined, self-contained function that

does not depend on the context or state of

other services. Generally, an atomic service

would be seen as fine grained or having a fin-

er granularity.

 Composite service. A composite

service is an assembly of atomic or other

composite services. The ability to assemble

Моделі та засоби систем баз даних і знань

61

services is referred to as composability. Com-

posite services are also referred to as com-

pound services. Generally, a composite ser-

vice would be seen as coarse grained or hav-

ing a larger granularity.

 Loosely coupled. This is a design

concept where the internal workings of one

service are not “known” to another service.

All that needs to be known is the external be-

havior of the service. This way, the underly-

ing programming of a service can be modified

and, as long as external behavior has not

changed, anything that uses that service con-

tinues to function as expected. This is similar

to the concept of information hiding that has

been used in computer science for a long

time.

The design challenge is to find a bal-

ance between fine-grained and coarse-grained

services to minimize communication over-

head yet keep the services loosely coupled.

Services are assembled to support or

automate business functions. Figure 2 illus-

trates the assembly of services. This repre-

sents an SOA. Web services are used to con-

nect the services in an SOA [8].

Figure 2. Assembly of services into an SOA

It is easy to imagine that we can reas-

semble the same services with other services

to achieve a different functionality. This abil-

ity to change the assembly of services is one

way that an SOA can quickly adapt to chang-

ing business needs.

RESTful architectural style and

RESTful web services

According to Fielding [9], the REST-

ful architectural style focuses on: “...the roles

of components, the constraints upon their in-

teraction with other components, and their

interpretation of significant data elements...”.

He coined the term “REST” an architectural

style for distributed hypermedia systems. Put

simply, REST (short for Representational

State Transfer) is an architectural style de-

fined to help create and organize distributed

systems. The key word from that definition

should be “style,” because an important as-

pect of REST is that it is an architectural style

– not a guideline, not a standard, or anything

that would imply that there are a set of hard

rules to follow in order to end up having a

RESTful architecture.

The RESTful architectural style con-

sists of constraints on data, constraints on the

interpretation of data, constraints on compo-

nents, and constraints on connectors between

components.

The RESTful architectural style pos-

sesses the following constraints [9].

Client-Server. The separation of con-

cerns is the core theme of the Web’s client-

server constraints. The Web is a client-server-

based system, in which clients and servers

have distinct parts to play. They may be im-

plemented and deployed independently, using

any language or technology, so long as they

conform to the Web’s uniform interface.

Stateless. The client-server interaction

is stateless. There is no stored context on the

server. Any session information must be kept

by the client.

Cacheable. Data in a response (a re-

sponse to a previous request) is labeled as

cacheable or non-cacheable. If it is cacheable,

the client (or an intermediary) may reuse that

for the same kind of request in the future.

Caching response data can help to reduce cli-

ent-perceived latency, increase the overall

availability and reliability of an application,

and control a web server’s load. In a word,

caching reduces the overall cost of the Web.

Uniform Interface. There is a uniform

interface between components. In practice,

there are four interface constraints: resource

identification – requests identify the resources

they are operating on (by a URI, for exam-

ple); resource manipulation through the repre-

sentation of the resource – when a client or

server that has access to a resource, it has

enough information based on understanding

Services

Web services

Моделі та засоби систем баз даних і знань

62

the representation of the resource to be able to

modify that resource; messages are self-

descriptive – the message contains enough

information to allow a client or server to han-

dle the message, this is normally done

through the use of Internet Media types

(MIME types); use of hypermedia to change

the state of the application – for example, the

server provides hyperlinks that the client uses

to make state transitions.

Layered System. Components are or-

ganized in hierarchical layers; the compo-

nents are only aware of the layer within which

the interaction is occurring. Thus, a client

connecting to a server is not aware of any in-

termediate connections.

Code-on-Demand. The Web makes

heavy use of code-on-demand, a constraint

which enables web servers to temporarily

transfer executable programs, such as scripts

or plug-ins, to clients. Code-on-demand tends

to establish a technology coupling between

web servers and their clients, since the client

must be able to understand and execute the

code that it downloads on-demand from the

server. For this reason, code-on-demand is the

only constraint of the Web’s architectural

style that is considered optional.

So, it’s pretty clear that the RESTful

web services meet the constraints of the

RESTful architecture. Summarizing, a REST-

ful web service is client/server-based, does

not store state. It accesses resources (web

pages or data) located at a URL. The results

of a request from client to server can be

cached in the client. It has a uniform interface

with self-descriptive messages, based on hy-

permedia. Also, the client and server aren’t

aware of intermediate connections between

the two of them.

RESTful API creation process –

designing API and creating

a schema modeling

As UI is to UX (User Experience),

API is to APX (Application Programming

Experience). Like optimizing for UX (User

Experience) has become a primary concern in

UI development, also optimizing for APX

(API User Experience) should be a primary

concern in API development.

The process of RESTful API creation

must contain all of the following steps:

 Determining business value.

 Choosing metrics.

 Defining use cases.

 Designing API and creating a

schema model.

A detailed description of the RESTful

API creation process is presented in [8, 10,

11]. In our paper we will focus on the design-

ing API and creating a schema model. Model-

ing the schema for your API means creating a

design document that can be shared with oth-

er teams, customers, or executives. A schema

model is a contract between your organization

and the clients who will be using it. A schema

model is essentially a contract describing

what the API is, how it works, and exactly

what the endpoints are going to be. Think of it

as a map of the API, a user-readable and a

machine-readable (automated machine pro-

cessing) description of each endpoint, which

can be used to discuss the API before any

code is written. With a schema model, we can

ensure that everyone has a shared understand-

ing of what the API will do and how each re-

source will be represented when the API is

complete. Each of the schema modeling lan-

guages has tools available to automate testing

or code creation based on the schema model

you’ve created. But even without this func-

tionality, the schema model helps us have a

solid understanding of the API before a single

line of code is written. Figure 3 shows the

API Modeling framework where you have

API specifications defined and generate API

documentation [12]. Also, generate server and

client source code.

Next, we’ll look at the specifics of two

of the main schema modeling frameworks and

markup languages:

 RESTful API Modeling Language

(RAML), which supports Markdown.

 OpenAPI specification (OpenAPI)

format (previously Swagger), which supports

JSON and YAML.

Моделі та засоби систем баз даних і знань

63

Figure 3. API modelling

RAML and OpenAPI: an overview

The RESTful API Modeling Language

(RAML) [13] is a concise, expressive lan-

guage for describing RESTful APIs. Built on

broadly used standards such as YAML

(YAML stands for Yet Another Markup Lan-

guage, and is a generic specification lan-

guage) and JSON, RAML is a non-prop-

rietary, vendor-neutral open spec. RAML was

created around the notion of design-first de-

velopment [12]. Although all of the specifica-

tion languages can be used this way, RAML

was designed this way from the outset. It

makes it easy to create a code development

life cycle that supports the development of

APIs that meet your business goals and use

cases. The RAML website [14] has good doc-

umentation, including strategies, best practic-

es, and practical instruction. You’ll find a

basic tutorial for the RAML language itself at

[14]. RAML has good online modeling tools,

also, it has been open-sourced along with

tools and parsers for common languages. The

development of RAML will be overseen by a

steering committee of API and UX practition-

ers, and there is an emerging ecosystem of

third-party tools being developed around

RAML [15]. Consider the pros and cons of

RAML [16]. Pros: single specification to

maintain; strong, visual-based integrated de-

velopment environment and online tooling

with collaboration focus; allows for design

patterns; easy to get started. Cons: lacks

strong documentation and tutorials outside of

specification; limited code reuse/extensions;

multiple specifications required for several

tools, including dev and QA; poor tooling

support for newer versions.

The best way to get started with

RAML is to use the RAML API Designer

with free account on the Anypoint system,

where MuleSoft maintains its RAML specif-

ic tools [17]. RAML excels at supporting the

entire API's lifecycle. It provides a balance

between developer tooling and technical

writers without taking away from one or the

other. It also is the fastest framework to

ramp up your project. MuleSoft maintains

some open source tools that can extend and

improve experience with a RAML specifica-

tion. The API Designer that helps you design

your schema from the ground up. An API

Console graphical user interface is available

that displays the structure and patterns and

creates interactive documentation. The API

Notebook provides a way to use JavaScript

to test and explore APIs and create Mark-

down versions of the API to share on

GitHub. You’ll find hundreds of additional

Client

Source

Server

Source

JSON,

YAML
HTML

REST client

RESTful Web service

API
specification

(machine-readable)

API
documentation,

visualising
(human-readable)

Generate API specification

Generate client source

Generate server so
urce

Generate API documentation

Generate
API documentation

Моделі та засоби систем баз даних і знань

64

RAML tools at GitHub and on the [13] web-

site, which can help you create and leverage

the schemas you build.

The OpenAPI Specification OpenAPI,

originally known as the Swagger Specifica-

tion, is a specification for machine-readable

interface files for describing, producing, con-

suming, and visualizing RESTful web ser-

vices. Originally part of the Swagger frame-

work [18], it became a separate project in

2016, overseen by the OpenAPI Initiative, an

open source collaborative project of the Linux

Foundation [19]. Swagger and some other

tools can generate code, documentation and

test cases given an interface file. OpenAPI

was one of the earliest schema modeling

frameworks available, and it has gone through

a few revisions. Version 3.0 is the most recent

one as of this writing. During the develop-

ment of the various versions, they’ve incorpo-

rated many of the best practices uncovered by

the other two languages, and OpenAPI re-

mains one of the innovative frameworks

available. OpenAPI supports both JSON and

YAML for its schema markup. Consider the

pros and cons of OpenAPI [16]. Pros: a large

community and support-base; high adoption

rate, meaning lots of documentation; strong

framework support; has the largest language

support of any opensource framework. Cons:

requires multiple specifications for some

tools, including dev and QA; doesn't allow for

code reuse, includes, or extensions; lacks

strong developer tools; requires schemas for

all responses.

OpenAPI has a very strong modeling

language for defining exactly what’s expected

of the system – very useful for testing and

creating coding stubs for a set of APIs.

In comparison to one another, both

OpenAPI and RAML are very capable, com-

patible with many languages.

 Both offer compatibility in: .NET,

Go, Haskell, Java, JavaScript, Node.js, PHP,

Python, Ruby, Scala.

 OpenAPI’s additional capabilities:

Clojure, Coldfusion, D, Eiffel, Erlang,

Groovy, and Typescript.

 RAML's additional capabilities:

Elixer and Pearl.

Both languages are strong and able

to produce excellent APIs despite their dif-

ferences. Their key differences are what can

help you determine which is best for your

business.

OpenAPI’s best features are its strong

documentation and compatibility with lesser

used languages. It provides a fast setup and a

large support community. The big takeaway

for OpenAPI is that it is designed as a bot-

tom-up specification. OpenAPI specifies the

behavior which affects the API to create more

complex, interlocking systems.

RAML excels at supporting the entire

API’s lifecycle. It provides a balance between

developer tooling and technical writers with-

out taking away from one or the other. It also

is the fastest framework to ramp up your pro-

ject. The main difference between the two is

that RAML is a top-down specification,

meaning it breaks down the system and ex-

plains the behavior of the various sub-

components.

The main characteristics of both

RESTful API DLs are presented in the com-

parative table.

There are, of course, alternatives. Two

of the most popular are WADL [20] and Slate

[21]. Each have their own caveats, of course.

WADL is incredibly time consuming to create

descriptions with, and the linking methodolo-

gy leaves much to be desired when compared

to any of the three specifications discussed

throughout this article. Slate, similarly, has

the caveat of having untested or unproven ap-

proaches due to the relatively small userbase,

despite the fact that it handles documentation

much like API Blueprint [22] does, and gen-

erates a pretty interface for it all.

These alternatives are interesting, to

be sure, but their low adoption rates, issues

inherent to their structure, and fundamental

caveats make a potentially unstable bet. With

many strategies in the modern IT workforce

focusing heavily on rapid development and

deployment, untested approaches have the

distinct possibility of massively lowered qual-

ity as the demand rises exponentially.

As part of the development of the

“Personal Research Information System”

[1, 2], the API schemas of its services was

Моделі та засоби систем баз даних і знань

65

Table. Сomparison of modern RESTful API DLs and frameworks

Description

Language
RAML OpenAPI WADL Slate

Software

license
Apache 2.0 Apache 2.0 CDDL 1.1 Apache 2.0

Format
YAML

(Markdown)
YAML, JSON XML Markdown

Open source yes yes yes yes

Commercial

offering
yes yes no no

Sponsored by

Mulesoft, Cisco,

VMware, Paypal,

AngularJS, Box

Open API Initia-

tive, Google, IBM,

Mcrosoft

Oracle -

Current release 1.0 3.0 - 2.3.1

Design

strategy
API-first Existing API Existing API Existing API

References http://raml.org http://swagger.io
https://github.com

/javaee/wadl

https://github.com

/lord/slate

Code

generation
yes yes no no

Documentation yes yes yes yes

Visual-based

IDE
yes yes no yes

Online IDE yes yes no no

Editors

API Workbench

(IDE based on

Atom)

Swagger Tools

(editor, codegen,

UI)

no Local web editor

modeled with OpenAPI, in particular, the

schema model of web API of the service for

pre-trained distributional semantic models

(word embeddings) (DSM) processing. With

this web service API is possible to: calculate

semantic similarity between pair of terms (in-

cluding multiple-word terms, one-word terms,

words) within the chosen DSM; compute a

list of nearest semantic associates for terms

(including multiple-word terms, one-word

terms, words) within the chosen DSM; find

the center of lexical cluster for a set of terms

(including multiple-word terms, one-word

terms, words) within the chosen DSM; calcu-

late semantic similarity between two sets of

terms (including multiple-word terms, one-

word terms, words) within the chosen DSM.

The source code and the service API

schema model description are available via

GitHub repository [23].

https://github.com/
https://github.com/

Моделі і засоби систем баз даних та знань

66

Conclusion

OpenAPI as well as RAML have very

much in common. Projects relying on the ex-

tensive language support and tool integrations

will tend to OpenAPI. But if the language

support is not crucial as implementations are

foremost done in standard languages such as

Java, RAML is an equivalent option. OpenA-

PI and RAML both have a large community

and are backed by market leaders, so it will

never be wrong choosing one of them for API

documentation.

Recently, several APIs contributors

(members of 3Scale, Apigee, Capital One,

Google, IBM, Intuit, Microsoft, PayPal,

Restlet and SmartBear) have announced the

Open API Initiative [19], which aims at

standardizing the way REST APIs are de-

scribed. This initiative will extend the Swag-

ger specification and format to create an open

technical community where members can eas-

ily contribute to building a vendor-neutral,

portable and open specification for providing

metadata for RESTful APIs. We hope this

initiative will also promote and facilitate the

adoption and use of a standard API Descrip-

tion Language.

References

1. Palagin O.V., Velychko V.Yu., Malakhov

K.S. and Shchurov O.S. Personal research in-

formation system. About developing the

methods for searching patent analogs of in-

vention. Computer means, networks and sys-

tems. 2017. N 16. P. 5–13. (in Ukrainian).

2. Palagin O.V., Velychko V.Yu., Malakhov

K.S. and Shchurov O.S. (2018). Research and

development workstation environment: the

new class of current research information sys-

tems. Problems in programming. N 2–3. P.

289–298.

3. Open Group. Service Oriented Architecture:

What is SOA? [Online] Available from:

https://www.opengroup.org/soa/source-book/

soa/p1.htm [Accessed: 05.11.2018]

4. Mackenzie C.M., Laskey K., McCabe F.,

Brown P.F., Metz R. 2006. OASIS Reference

Model for Service Oriented Architecture 1.0.

OASIS. [Online] Available from:

https://www.oasis-open.org/committees/

download.php/19679/soa-rm-cs.pdf [Ac-

cessed: 05.11.2018]

5. Chou D. Using Events in Highly Distributed

Architectures. The Architecture Journal. [On-

line] Available from: https://msdn.microsoft.

com/en-us/library/ dd129913.aspx [Accessed:

05.11.2018]

6. Bhowmik S. Cloud Computing. Cambridge

University Press. 2017. 462 p.

7. Etzkorn L.H. Introduction to Middleware:

Web Services, Object Components, and Cloud

Computing. CRC Press, 2017. 662 p.

8. Barry D.K. Web Services, Service-Oriented

Architectures, and Cloud Computing: The

Savvy Manager’s Guide. Morgan Kaufmann

is an imprint of Elsevier, 2013. 248 p.

9. Fielding R. 2000. Architectural Styles and the

Design of Network-Based Software Architec-

tures. Ph.D. Disser- tation, University of Cali-

fornia-Irvine. [Online] Avaliable from:

https://www.ics.uci.edu/~fielding/pubs/dissert

ation/top.htm [accessed 05.11.2018]

10. Pereira C.R. Building APIs with Node.js.

Apress, 2016. 135 p.

11. Doglio F. REST API Development with

Node.js. Apress, 2018. 323 p.

12. Patni S. Pro RESTful APIs: Design, Build and

Integrate with REST, JSON, XML and JAX-

RS. Apress, 2017. 126 p.

13. RESTful API Modeling Language (RAML).

[Online] Available from: https://raml.org/

[Accessed: 05.11.2018]

14. RAML 100 Tutorial | RAML. [Online] Avail-

able from: https://raml.org/developers/raml-

100-tutorial [Accessed: 05.11.2018]

15. API Design Tooling From RAML. [Online]

Available from:

http://apievangelist.com/2014/ 03/01/api-

design-tooling-from-raml/ [Accessed:

05.11.2018]

16. Swagger (OAS) vs. RAML - Which is Better

for Building APIs? [Online] Available from:

https://blog.vsoftconsulting.com/blog/is-raml-

or-swagger-better-for-building-apis [Ac-

cessed: 05.11.2018]

17. Anypoint Platform. [Online] Available from:

https://anypoint.mulesoft.com/ [Accessed:

05.11.2018]

18. The Best APIs are Built with Swagger Tools |

Swagger. [Online] Available from:

https://swagger.io/ [Accessed: 05.11.2018]

19. OpenAPI Initiative Charter. [Online] Availa-

ble from: https://www.openapis.org/partici-

pate/how-to-contribute/governance [Ac-

cessed: 05.11.2018]

https://www.opengroup.org/soa/source-book/%20soa/p1.htm
https://www.opengroup.org/soa/source-book/%20soa/p1.htm
https://www.oasis-open.org/committees/%20download.php/19679/soa-rm-cs.pdf
https://www.oasis-open.org/committees/%20download.php/19679/soa-rm-cs.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://raml.org/
https://raml.org/developers/raml-100-tutorial
https://raml.org/developers/raml-100-tutorial
http://apievangelist.com/2014/%2003/01/api-design-tooling-from-raml/
http://apievangelist.com/2014/%2003/01/api-design-tooling-from-raml/
https://blog.vsoftconsulting.com/blog/is-raml-or-swagger-better-for-building-apis
https://blog.vsoftconsulting.com/blog/is-raml-or-swagger-better-for-building-apis
https://anypoint.mulesoft.com/
https://swagger.io/
https://www.openapis.org/participate/how-to-contribute/governance
https://www.openapis.org/participate/how-to-contribute/governance

Моделі і засоби систем баз даних та знань

67

20. Web Application Description Language.

[Online] Available from: https://www.w3.org/

Submission/wadl/ [Accessed: 05.11.2018]

21. Lord/slate: Beautiful static documentation for

your API. [Online] Available from:

https://github.com/lord/slate [Accessed:

05.11.2018]

22. API Blueprint | API Blueprint. [Online]

Available from: https://apiblueprint.org/ [Ac-

cessed: 05.11.2018]

23. Malakhovks/ds-rest-api. GitHub. [Online]

Available from: https://github.com/mala-

khovks/ds-rest-api [Accessed: 05.11.2018]

Література

1. Палагін О.В., Величко В.Ю., Малахов К.С.,

Щуров О.С. Автоматизоване робоче місце

наукового дослідника. До питання розроб-

ки методів пошуку аналогів патентної до-

кументації винаходу. Комп'ютерні засоби,

мережі та системи. 2017. № 16. С. 5–13.

2. Palagin O.V., Velychko V.Yu., Malakhov

K.S. and Shchurov O.S. (2018). Research and

development workstation environment: the

new class of current research information sys-

tems. Problems in programming. N 2–3.

P. 289–298.

3. Open Group. Service Oriented Architecture:

What is SOA? [Online] Available from:

https://www.opengroup.org/soa/source-book/

soa/p1.htm [Accessed: 05.11.2018]

4. Mackenzie C.M., Laskey K., McCabe F.,

Brown P.F., Metz R. 2006. OASIS Reference

Model for Service Oriented Architecture 1.0.

OASIS. [Online] Available from:

https://www.oasis-open.org/committees/

download.php/19679/soa-rm-cs.pdf [Ac-

cessed: 05.11.2018]

5. Chou D. Using Events in Highly Distributed

Architectures. The Architecture Journal. [On-

line] Available from: https://msdn.microsoft.

com/en-us/library/ dd129913.aspx [Accessed:

05.11.2018]

6. Bhowmik S. Cloud Computing. Cambridge

University Press. 2017. 462 p.

7. Etzkorn L.H. Introduction to Middleware:

Web Services, Object Components, and Cloud

Computing. CRC Press, 2017. 662 p.

8. Barry D.K. Web Services, Service-Oriented

Architectures, and Cloud Computing: The

Savvy Manager’s Guide. Morgan Kaufmann

is an imprint of Elsevier, 2013. 248 p.

9. Fielding R. 2000. Architectural Styles and the

Design of Network-Based Software Architec-

tures. Ph.D. Disser- tation, University of Cali-

fornia-Irvine. [Online] Avaliable from:

https://www.ics.uci.edu/~fielding/pubs/dissert

ation/top.htm [accessed 05.11.2018]

10. Pereira C.R. Building APIs with Node.js.

Apress, 2016. 135 p.

11. Doglio F. REST API Development with

Node.js. Apress, 2018. 323 p.

12. Patni S. Pro RESTful APIs: Design, Build and

Integrate with REST, JSON, XML and JAX-

RS. Apress, 2017. 126 p.

13. RESTful API Modeling Language (RAML).

[Online] Available from: https://raml.org/

[Accessed: 05.11.2018]

14. RAML 100 Tutorial | RAML. [Online] Avail-

able from: https://raml.org/developers/raml-

100-tutorial [Accessed: 05.11.2018]

15. API Design Tooling From RAML. [Online]

Available from:

http://apievangelist.com/2014/ 03/01/api-

design-tooling-from-raml/ [Accessed:

05.11.2018]

16. Swagger (OAS) vs. RAML - Which is Better

for Building APIs? [Online] Available from:

https://blog.vsoftconsulting.com/blog/is-raml-

or-swagger-better-for-building-apis [Ac-

cessed: 05.11.2018]

17. Anypoint Platform. [Online] Available from:

https://anypoint.mulesoft.com/ [Accessed:

05.11.2018]

18. The Best APIs are Built with Swagger Tools |

Swagger. [Online] Available from:

https://swagger.io/ [Accessed: 05.11.2018]

19. OpenAPI Initiative Charter. [Online] Availa-

ble from: https://www.openapis.org/partici-

pate/how-to-contribute/governance [Ac-

cessed: 05.11.2018]

20. Web Application Description Language.

[Online] Available from: https://www.w3.org/

Submission/wadl/ [Accessed: 05.11.2018]

21. Lord/slate: Beautiful static documentation for

your API. [Online] Available from:

https://github.com/lord/slate [Accessed:

05.11.2018]

22. API Blueprint | API Blueprint. [Online]

Available from: https://apiblueprint.org/ [Ac-

cessed: 05.11.2018]

23. Malakhovks/ds-rest-api. GitHub. [Online]

Available from: https://github.com/mala-

khovks/ds-rest-api [Accessed: 05.11.2018]

Data received 20.09.2018

https://www.w3.org/%20Submission/wadl/
https://www.w3.org/%20Submission/wadl/
https://github.com/lord/slate
https://apiblueprint.org/
https://github.com/malakhovks/ds-rest-api
https://github.com/malakhovks/ds-rest-api
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.opengroup.org/soa/source-book/%20soa/p1.htm
https://www.opengroup.org/soa/source-book/%20soa/p1.htm
https://www.oasis-open.org/committees/%20download.php/19679/soa-rm-cs.pdf
https://www.oasis-open.org/committees/%20download.php/19679/soa-rm-cs.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://raml.org/
https://raml.org/developers/raml-100-tutorial
https://raml.org/developers/raml-100-tutorial
http://apievangelist.com/2014/%2003/01/api-design-tooling-from-raml/
http://apievangelist.com/2014/%2003/01/api-design-tooling-from-raml/
https://blog.vsoftconsulting.com/blog/is-raml-or-swagger-better-for-building-apis
https://blog.vsoftconsulting.com/blog/is-raml-or-swagger-better-for-building-apis
https://anypoint.mulesoft.com/
https://swagger.io/
https://www.openapis.org/participate/how-to-contribute/governance
https://www.openapis.org/participate/how-to-contribute/governance
https://www.w3.org/%20Submission/wadl/
https://www.w3.org/%20Submission/wadl/
https://github.com/lord/slate
https://apiblueprint.org/
https://github.com/malakhovks/ds-rest-api
https://github.com/malakhovks/ds-rest-api

Моделі і засоби систем баз даних та знань

68

About the authors:

Kyrylo Malakhov,

Junior Research Fellow.

38 Ukrainian publications,

3 International publications,

H-index: Google Scholar – 4.

http://orcid.org/0000-0003-3223-9844.

Aleksandr Kurgaev,

Doctor of Technical Science,

Professor, Leading Researcher of Department

205 at Glushkov Institute of Cybernetics.

Author of more than 240 scientific works,

including 8 monographs,

100 Patents and Author’s Certificates

for innovations and useful models.

H-index: Google Scholar – 5, Scopus – 2.

http://orcid.org/0000-0001-5348-2734.

Vitalii Velychko,

PhD, assistant professor, Senior researcher.

73 Ukrainian publications,

25 International publications,

H-index: Google Scholar – 7, Scopus – 1.

http://orcid.org/0000-0002-7155-9202.

Affilation:

V.M. Glushkov Institute of cybernetics of

National Academy of Sciences of Ukraine,
40 Glushkov ave., Kyiv,

Ukraine, 03187.

Phone: (+38) (044) 526 3348.

Email: aduisukr@gmail.com

http://orcid.org/0000-0003-3223-9844
http://orcid.org/0000-0002-7155-9202

