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Abstract. We consider expansions of functions in LP(R, |z|?*dz), 1 < p < 400 with respect
to Dunkl-Hermite functions in the rank-one setting. We actually define the heat-diffusion
and Poisson integrals in the one-dimensional Dunkl setting and study their properties. Next,
we define and deal with Hilbert transforms and conjugate Poisson integrals in the same
setting. The formers occur to be Calderon—Zygmund operators and hence their mapping
properties follow from general results.
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1 Introduction

The study of Dunkl operators has known a considerable growth during the last two decades due
to their relevance in mathematical physics and since they give the way to built a parallel to
the theory of spherical Harmonics based on finite root systems and depending on a set of real
parameters. In this spirit, the Hilbert transform, a basic tool in signal processing and in Fourier
and harmonic analysis as well, may be defined by means of partial derivatives, so that, since the
commutative algebra of Dunkl operators generalize the one of partial derivatives, it is natural to
extend the study of Hilbert transforms and connected topics as heat diffusion, Poisson integrals
and others to the Dunkl setting. In this work, we start with investigating the rank-one case, that
is why we sketch some facts that are subsequently needed. Let k& be a nonnegative parameter
and let T} be the Dunkl operator acting on smooth functions f as
Tof(@) = )+ KD TED e oy,

To that operator is associated the so-called Dunkl-Hermite operator on R denoted L; and
defined by

Ly =T¢ — 22
Its spectral decomposition is given by the Dunkl-Hermite functions hfl defined by
x2
hy () = e~ % Hy (),

where Hff are the generalized Hermite polynomials which we call the Dunkl-Hermite polynomials
as in [3], namely (see [8])

Lihk(z) = —(2n + 2k + 1)hF (2).

*This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
is available at http://www.emis.de/journals/SIGMA /Dunkl_operators.html


mailto:Nejib.BenSalem@fst.rnu.tn
http://dx.doi.org/10.3842/SIGMA.2009.037
http://www.emis.de/journals/SIGMA/Dunkl_operators.html

2 N. Ben Salem and T. Samaali

Recall also that H¥ were introduced in [7] and studied by Résler in [8], whence

1Y, (@) = (1) o 1h 7 (a?)
an T(n+k+1) ’
n n! k+2
Hy, o (z) = (<1) mm% > (%),
2

where LY are the Laguerre polynomials of index o > —%, given by

1 d"
L3(x) = a0

mx dxin (wn-l-a —m) )

e

It is well known that the system {H},>¢ is complete and orthonormal in L?(R, e |z |2k dx),
therefore the system {h¥},>¢ is complete and orthonormal in L?(R, |z|**dz).
Hereafter, LP(R, |z|?*dx),1 < p < 400 is the space of measurable functions on R satisfying

[ Fllkp = ( / If(x)lp!wl%dx>p < 4o,

and f belongs to LP(R, |z|?*dx), 1 < p < 400, unless mentioned. For a given f, one defines the
heat-diffusion integral G (f) by

+o00o
Ge(f)(t,x) =) e 2 gl (fhk(x),  t>0, xzeR,

n=0

where
ah(5) = [ Femsear
R

We shall establish that Gy (f) possesses the following integral representation

Gr(f)(tr ) = /R Pu(t,z,y) f(4)y/?*dy,

where
“+00
Pyt x,y) =Y e "2 HURE (2)nk (y).
n=0

We shall prove that Gi(f)(¢,-), t > 0, satisfies

(k4 l
1GL()(E)lkp < (cosh(26)~FF 2| £l
Next, we define the Poisson integral F(f) by

+oo
Fr(f)(t,x) =) e V2Rl (f)hk(x),  t>0, z€R.

n=0

We shall establish that F(f) possesses the following integral representation

Fo(f)(tx) = /R £ () Ax(t, 2, y) [y dy,
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where
A L [™p o
t,z,Yy) = — U, T, Y)u~ 2@ 1 du
k(2 y) Nl (1, 2, )
is the Poisson kernel associated with {hX},>o. We shall show that Fy(f)(t,-) € LP(R, |z|**dx)
and

| B ()t iy < 2527V £l
Also, we define the Hilbert transforms associated with the Dunkl-Hermite operators formally by

HE = (Tp £ 2)(—Ly) 2.
We write f ~ Z k(f)hE, to say that the last series represents the expansions of f with respect

+oo
to {hF},>0. Note, that if f ~ > ak(f)hE, then again formally,
n=0

k) _ = O(n+1,k)
HJr —n hk 3 H ~ = k - h’k )
S~ Z D narsr e ;“"(f)\/m i

where

O(n, k) = V2an if n is even,
" O(n, k) = V2n + 4k if n s odd;

here and also later on, we use the convention that hn 1 =0ifn=0.
We shall see that

M f(2) = lim FW)RE (2, )|yl dy,
0 la—y|>e
exist for almost every x, where R (z,y) are appropriate kernels. Next, we shall prove that the
operators H;" are bounded on LP(R |z|?kdx).

Finally, we use the Dunkl-Hermite functions to define the conjugate Poisson integrals fk (t,x)
by

BN T,y A 9(” k) k
S, x) E e tvantRktl ’“(f)—hnfl(x%
o Von+2k+1

fi(t l,):+f —tv2n+2k+1 k(f) 9(n+1k) k (ZL‘)
PP T L Van+ 2k 1

We shall establish that f,;t(t, x) possesses the integral representations

fH(t ) = /R Qult. o, ) f Wy dy,  fr(t2) / M(t,,9) )|yl dy,

where Qk(t, z, ) and M (t, z, ) are kernels expressed in terms of the Dunkl kernel Ey(z,y) which
is the eigenfunction of the Dunkl operator Tj.

We point out that recently (see [6]) A. Nowak and K. Stempak have studied Riesz transforms
for the Dunkl harmonic oscillator in the rank-one case.

We conclude this introduction by giving the organization of this paper. In the second section,
we define the heat-diffusion integral G (f) and the Poisson integral Fj(f) and give the integral
representations of G (f) and Fi(f). In the third section, we deal with the Hilbert transforms H,f
and prove that these operators are of the strong type (p,p), 1 < p < 400. The remaining part
is concerned with the study of the conjugate Poisson.
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2 Heat-diffusion and Poisson integrals

2.1 Heat-diffusion

With the help of the Dunkl-Hermite functions introduced in the previous section, we define and
study the heat-diffusion in the Dunkl setting. As the Dunkl-Hermite polynomials are expressed
in terms of Laguerre polynomials, using Lemma 1.5.4 in [12], we have the following limiting
behavior of ||h%||x,, with respect to n.

Proposition 1. For1 < p <4, we have

141 gl
Wy~ ™ i ko =2 <1,
S U g p-2>1
1 1 1
1R 1l f ff)7 SR <L
PTG i kp—2) > 1
For p > 4, we have
n7%7é+k(%7%), ’Lf k(p — 2) S é"" %7
k
Hh2nHk7pN Sl g1y I p
no 4 2 2T gf k(p—2)>§+67
k W ETEHGD i kp-9 <4k,
1A% 41llkp ~ 1
nTE G hp-2) > S+ 2

Proposition 2. There exists a positive constant C' such that

L

17k ]| < Oz =12,
Proof. Using the fact that
nIl(n+k+ 1)
HE — Vi.(Hay,
T 2n)T(k + 1) k(Hzn)

(see [7]), where {Hap }n>0 is the set of classical Hermite polynomials, and Vj, is the intertwining
operator between T} and the usual derivative di given by

2k k‘ _
i = S S [ e (- 2) s

we deduce that
2 nT(n+k+ 1)

RE 1loo han || oo,
1A llo0 < vﬁ——Fk+ [h2n]

where {hay, }n>0 is the classical Hermite-functions. In view of the following estimate

[Anlloo < Cnié

given in [4, Lemma 2.1], using Stirling’s formula, we can deduce easily the result.
In the same way, we have

nl(n+k+3)
H§n+1 =
(2n + DIT(k + 3)

where {Hap41}n>0 is the classical Hermite polynomials, we obtain the result as above. |

Vie(Hap+1),
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Let
aF(F) = k 2% gy
E(f) /R FOORE @)t dt

Using the fact that h¥ ¢ LY (R, |z|?kdx), where p' is the conjugate exponent of p, and Holder’s
inequality, we deduce that

lak ()] < 1 flkpll Bl

k,p
In view of Propositions 1 and 2, we have the following.

Proposition 3. The series
“+oo
Y eGPy (@), >0,
n=0

converges uniformly in x € R.

Definition 1. We define the heat-diffusion integral of f by

—+00
Ge(f)(t, ) =Y etk (pHpk(z),  t>0, zeR

n=0

Proposition 4. The heat-diffusion integral Gy (f) possesses the following integral representation

Gu(f)(t,x) = /R Pa(t, 2, y) f(4) [y **dy,

where

+oo
Py(t,x,y) =Y e "2 Dpk )k (y).

n=0
Proof. We obtain an integral form of G (f) by writing
+00

G(f)(t,z) =Y e B () /]R F)hi(y)ly*dy

n=0

+oo
= /RZe‘t@"*z’f“)hﬁ<x>hﬁ<y>f<y>ry\%dy - /R Pult, z,y)f (y)ly|**dy.
n=0

Interchanging the order of summation and integration is justified by Lebesgue’s dominated
convergence theorem since

+o00
§ etk /R 1S (@)hE () ()] [y 2 dy
n=0

+o0o
<3 e DR | RE g | £l < o0 m

n=0
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Mehler’s formula established by Margit Rosler for Dunkl-Hermite polynomials (see [8]),
adapted to Dunkl-Hermite functions {h¥},>¢ reads

+00 2
npk (o NPk (Y Ck -3 () (2 +22) 2ry
ngzor hy (y)h,(z) = 1z 7«2)’”% e 2'1 £ 1,27 0<r<l, (1)

where ¢, is the constant defined by

-1
k= (/ e_xZIx\deac)
R

and E}, is the Dunkl kernel expressed in terms of the normalized Bessel function

Ey(z,y) = kaé(”?y) + m]mé(“ﬂy),

where
+o0o z2\2
. (=" ()" 1
e PR A — > — .
Jal2) F(O‘H);)mr(wraﬂ)’ “="5
Set
“+oo
Uk(r,y, z) == Zr”hﬁ(y)hfl(z), 0<r<l.
n=0

Proposition 5. The kernel Uy, satisfies the following properties

(7“) Uk(’r’yv Z) >0,

(1)  Uk(r,y,2) = Uk(r, 2,y), (2)
k+1 2
2 2 _l(l—r )yz
U : = 2R 14277 3
i) 10l = (1) @ B
Proof. (i) and (ii) are obvious, let us therefore prove (ii).
Ck _l(1+r2)(y2+z2) 2ry ok
Un(ryy, Mg = —2 [ e72\ize B, (=Y d
L e (12 ) 2z
7‘2 ’r2
- % 1 67%(%)7&,2 / 67%<1:2)Z2Ek 2y )2 ‘Z|2kdz.
(1—r2)Fta R 1—72
Performing the change of variables u = }f;i z, and using the following identity (see [2])

y2

12
/ Ej(z, y)e_le\dex = 2k+%c,;167
R

we are done. [ |

Proposition 6. The heat-diffusion integral G(f) is a C* function on Ry x R satisfying the
differential-difference equation

(B g3 ) GriE) =0, ()

(here Ly, means that the operator Ly acts on the variable x).
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Proof. On the one hand, one has for all m € N

m too
%Gk(f)(ta 2) =Y (=1)"™(2n + 2k + 1) DR () (). (5)
n=0

On the other hand, it is easy to see that

2

() () = =% - H () — b (1),

thus for fixed ¢, the series (5) can be differentiated termwisely with respect to z. A similar
argument holds for higher derivatives and then G (f) is C*° on R4 x R. Differentiating term
by term shows that G (f)(¢, x) satisfies (4). |

Theorem 1. The heat-diffusion integral G(f)(t,-), t > 0, satisfies

1GR(F)(E ) p < (cosh(2) 2| £,

Proof. Using
Pk (t) x, y) = 67t(2k+1)Uk (6721%7 Z, y)
and (3), we obtain

/ Py(t, 2, y)|y|*dy = (cosh(2t)) (k+2)ey tanh(20)2?,
R

By Holder’s inequality, it follows that

p(k+3)
|Gr(f)(t, z)[P < (cosh(2t))P’/R!f(y)!”lPk(t,:v,y)\ly\%dy,

where p’ is the conjugate exponent of p. Integration with respect to x and using Fubini’s Theorem
yield

IGK(F)(t lip < (cosh(26))~(3) | 1

k,p-

2.2 Poisson integral

In this subsection, we introduce the Poisson integral and we give its LP boundedness.

Definition 2. The Poisson integral Fj(f) of f is defined by

+oo
Fp(f)(t,x) = e WIS (Hhh(2),  t>0, =zeR

n=0
Again the defining series is convergent by Propositions 1 and 2.

Proposition 7. Fy(f) possesses the following integral representation

ﬂUWw%jéﬂwa%MWW@,

where

t Foo +2
Ak(t7$7y) = E 0 Pk(u7$7y)u7%efﬂdu_ (6)

Ay, is called the Poisson kernel associated with {h%},>0.
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Proof. By using the subordination formula

o0 2

5 B/ e 3
el = — e °sT2¢e¢” s ds, > 0, 7
Viar Jo b @)

we obtain an integral form of Fj(f)(¢,x) by writing

S 2e

t 2n—|—2k—|— g 3 _t (2n+2k+1)
Z” o) [ ds [ FRS )l dy

t o= oo g
= Va7 2 @) / whemuEn A e gy / F@)hn)ly[*dy
/ /+OO ~ 2n+2k+1)uhk( )hk (y)u_ge_%du|y|2kdy
\/477 "

t 3 +2
= — Py(u, z,y)u"2e” 1aduly|?*d :/ Ap(t, x, 2k dy.
= /R @) /0 (s 2, ) Py = [ @Aty

The same argument used for the heat-diffusion integral implies that Fy(f) is C*° on Ry x R
and satisfies

82
(Bt gz ) ALlA)(E2) 0. .
Theorem 2. F,(f)(t,-) € LP(R, |z|**dz) and
IFe() () e < 22 V2T £y,

Proof. One has

oo 3 _ 2
Rt = [ Atans@lar = —= [ [ Pspuie Saurwlyay

t oo 2k _3 _ﬁ
- = /0 /R Pe(u, 2,y f (9)ly*dy ) w3 S du

t oo 3 _ 12
= Jin Gr(f)(u,z)u”2e” 2udu.
0

It follows that

2k+1 [

A
I < == [ IGU e < 2+

3 Hilbert transforms

The operator (—Ly) is positive and symmetric in L?(R, |z|**dz) on the domain C°*(R). It may
be easily checked that the operator (—Lj) given by

+oo +oo
e (z aiz(f)h:z) — 3 (n + 2+ k(L
n=0

n=0

on the domain

“+oo
Dom(—Ly) = {f € L*(R, |z|*dx) : Z 1(2n + 2k + 1)k (f)? < +oo}
n=0
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is a self-adjoint extension of (—Lg), has the spectrum {2n + 2k + 1} and admits the spectral
decomposition

“+o00

(—Le)f =D _(2n+ 2k + Dal(f)h, f € Dom(—Ly).
n=0

Following [10, p. 57] the Hilbert transforms associated with the Dunkl-Hermite operator are
formally given by

Hy* = (Tp + 2)(—Ly) 2.

+oo
Note, that if f ~ > af(f)hE, then again formally,
n=0

+00 +oo
O(n, k) _ O(n+1,k)
H+ ~ k G S et A— hki 5 H ~ — 7]2 - hIrCL )
vt 7;)an(f) 9t ok 11 n—1 wt %a (f) 9 1 9k 1 1 +1
where

O(n, k) = Van if n is even,
"l V2n + 4k if nis odd.

We use the convention that A% | = 0if n = 0. It is clear that Hf are defined on L?(R, |z|?*dx) by

H+f — +§Oo: ak(f) e(nvk) hk ) H f = _+§OO ak(f) 9(n+ 1>k) hk L
kJ n n—1» kJ — n n+1-
ot V2n+ 2k + 1 oart V2n + 2k + 1

To proceed to a deeper analysis of these definitions, in particular to consider Hki on a wider
class of functions, we define the kernels RkjE (z,y) by

“+00

1 1 1 +oo 1
Rf(w,y):ﬁ(ﬂwix) 0 Pu(t, z, y)t 5dt:ﬁ/0 (Tho £ 2) Pe(t, m,y)t " 2dt. (8)

It will be shown in Proposition 8 that the second integral in (8) converges.
We have

+oo
Pi(t,z,y) = e 22D Rk (1) k(3

n=0
_ Ck — 1 coth(2t) (22 +y2) < L )
= e 2 E . ) .
2k+%(sinh(2t))k+% F sinh(2t) Y
The change of variables 2¢ = log(1X£) furnishes a useful variant of (8):

D=

RE(,y) = f;/;@,xix)&(x,y) <log<1fj>)_ =

where

1
1_ 2 k‘+§ 1 2
Ks(z,y) = cx < 438 ) 1)@ g, (( 288 ):H/) :
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We then write
2

R (z,y) = =

(R (2, y) £ Rio(, )],

$s

where

Riq1(z,y) = /0

1

N

ds

1+s\Y\
T o Ks(2, y) <10g <1—3>> 1_<2

! 1+s\\ 7 ds
Rualen) = [ arion (1 (152)) T

Proposition 8. There ezists a positive constant C such that for (z,y) € A° = {(z,y) € R?:
x # 1y}, the kernels Ry 1(x,y) and Ry 2(x,y) satisfy

C

and

|Rk‘,1(x7 y)| <

Proof. We start with proving (10). We have

1 2
s <€ [ a0 g (L) 0y as
0

where we let

=1 (s ()

Using the following estimate (see [9])

2 _2
b <<1 S )M) < (55l
2s

the same reasoning as in [11, pp. 460-461] in the classical case gives the result. In order to
estimate Ry 1, write

D=

ThcKole,9) = 5 [sa 4 0) 4 (o )] Kolono)

to see that

1 1 L
R (2, 9)] < c/ 8(s) [s\x Fyl 4o y‘:| (D) g, (( s ) xy> ds.
0

2s

and use the same above arguments used to get the bound for Ry, ;. |

Proposition 9. There exists a positive constant C such that for (z,y) € A° = {(z,y) € R? :

Cle — 2

Ria(2,y) — Ria(a'yp)] < S22 (11)
|z —y|
Cle — o'

Res(e.y) — Rea(a,y)| < SE=2] (12)

lz —y|?
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Proof. Start with

! 1+s "2 s
Rualen) = Reale' )| < [ Jokon) — o] (106 (157)) 710

1 5, o 2
<C [ po)fec )0, ((1 = ) xy)
0 S

2
- x’e_%(”i)(z/%yz)Ek 1= 2y
2s

Using the following estimates (see [9])

s (= ((5) ) = (s (7)),
k<< > )x,y)ge(12§2)|“97

then the same reasoning as in [11, pp. 461-463] in the classical case gives the result.

Considering Ry, 1, we have

1

|Ri1(w,y) — Riq (2, y\</ Ty o Ks(2,y) — Th K wy\<10g<1+8)> 5%
<c [ s (%))

= [s(w’+y)+i(w’—y)] 1) e g, <(125 )x’y)

The proof of (11) follows the same steps of the one of (12). |

)| st 00+ (o -] H e
2

ds.

Proposition 10. There exists a positive constant C such that for (z,y) € A® = {(z,y) € R?:
x#y}, if |z —yl 2 2ly — /| then

C o
Rua(e.) - Ruato)] < S (13

C o
Reao) - Rualo/)] < P (14
Proof. The proofs of (13) and (14) are quite similar to the ones of (11) and (12). [

Lemma 1. Givenm, m=1,2,..., and f € CX(R) there exists C = Cy, y > 0 such that

(f,hE) < C@n+2k+ 1)~

/ J (@)@l da.

(f, hEY| = ‘/f(t)hﬁ(t)]t]%dt’ = [(—(2n+2k+1))"™(LPf,RE)| <C@n+2k+1)"". W
R

where

Proof.
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Theorem 3. Let f,g € C°(R) with disjoint supports. Then
4f0) = [ [ B @l dsla e (15)

Proof. We first consider ’H,‘:. Let

+00 +oo
F=>ap(Hhy  and  g=> bi(g)ht
n=0 n=0
Then

+ k k
el = Zm Dl

The convergence of the three series is in L?(R, |z|**dz)) and by Parseval’s identity

(Hif.9) an(£)by_1(9). (16)

Z \/2n—|—2k:+

We will show that the right sides in (15) and (16) coincide. Note that we can see as in Proposi-
tion 8 that

—+00 1
/ (Tow +2)Pilt, 2, )|t 3dt < .
0 |95 - y|

This result and the assumption made on the supports of f and g show that

+oo
/ L] 10+ 0 Pl e g @)l dyfaf o < +oc. (17)

/ / R (2, ) f (1) @)y dylz* da
+oo
f / / / (T + 2) Polt, 2, y) ¥ dt £ (9)g () |y | dy |

+oo — 1
-~ /0 /R /R {(Tk,x + ) (Z e'f‘?"“’“mh’;(x)hﬁ(y))} a(0) ()| *daly|Pdyt S dt
n=0
400 +00 N 1
=\/17; / / / {Ze‘“%“’“*”e(n,k)hz_1<x>hﬁ<y>}gx)f(y)\xl”“dw\yr%dyt-zdt

\/»/—i-oo/ { _t 2n+2k+1)0(n k‘)bk ( )hk( )} f(y)]y|2kdyt_%dt
1t [ —t(2n+2k+1) kel (o bt +
-=/ > B(n. k)ak(F)E_1(g) ¢ ¢ 3dt = (] f.g).

Note that Fubini’s theorem is justified by (17). Recall that

Pt
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then one gets similarly

/ / Ry (2, 9)f (9@ ly P dylo | da
+oo
-~ / / / [(Tho — 2)Pe(t 2, ) W2t f () g (@) ly Pyl da

ZJ% RNV (9) = (M £.9).

Theorem 4. For almost every x in R, the Hilbert transforms are given by

H; f(z) = lim F)RE (2, y) |y dy.

e—0 |z—y|>€

Proof. We have

/ FW)RE (@, )|yl dy = / F@I ™ 197 RE () dy = / Gy W (z, y)dy,
| |z—y|>e |z—y|>€

T—y|>e

where p’ is the conjugate exponent of p,

2k » + 2k 4
gy) = fWlyl», g€ LP(R,dr), Wi (z,y) = [y|*" Ry (z,y),

W,;JE (x,y) are Calder6n—Zygmund kernels (see Propositions 8, 9 and 10). It follows that

lim FW) Ry (2, y)ly|* dy = lim g(W)W,5 (z,y)dy

0 fr—y|>e 0 fr—y|>e
exist for almost every = (see [5, p. 55]).
Remark 1. For f € L?(R, |z|**dz), we have
(M ) (@) = +iHE (Fef) (@),
where Fy, is the Plancherel Dunkl transform, (see [1]).
Theorem 5. The operators H,f are bounded on LP(R, |z|**dz), 1 < p < +o0.

Proof. Consider the truncated operators
HaS@ = [ TRl
fo—yl>e
1M1, = [ 1Pl dn = [ | Yim 35 7o) Plods
’ R R ¢ ’
_ / lim [HE,f(2)]|2|*dz = / lim inf [H2, f(2)[P|2]*da
Re—»O ) R e——0 s
< limint / (M T (@) dr = i / 12| ¥ 1, f () [P da.
€E—> R ’ €e— R ’
Yet,

2l 7 HE f () = / F@)lal BE (2, )yl dy = / 9(9) ZE (z, y)dy,
|z—y|>e

lz—y|>e
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where
2k » + 2k 2k
9@y) = fwlyl»,g € LP(R,dx), Zi(x,y) = |=|» [y|*" Ry (z,y).

Z ,;t (z,y) are Calder6n—Zygmund kernels (see Propositions 8, 9 and 10). Let

SE(z) = /R o) ZE (2, y)dy.

The operators S;t are Calderén—Zygmund type associated with the Calderén—Zygmund kernels
Z,;t(x,y) (see [5, p. 48]), then

sup
e>0

/|_ . 9W) Z;; (z,y)dy

are bounded on LP(R,dz) for 1 < p < 400 (see [5, p. 56]). Consequently, there exists a positive
constant C' = C,, such that if f € LP(R, |z|**dz) then

IHE Fllrp < ClIflkp- u

Lemma 2. There exists a positive constant C such that for f € L' (R, |z|**dz), A > 0, we have

C
/ L e < Sl
{zeR:sup,~¢ |H€’k,f(1‘)|>)\}

Proof. We have

M) = [

|lz—y|>e€

FO)RE (,y)y[*Fdy = / 9()Wir (z, y)dy,

|z—y|>e
where
2k + 2k 4
g(y) = fW)lyl» and Wi (z,y) = |y|*" By (z,y).

Let
SE(z) = /R o)Wt (z, y)dy.

The operators Sgﬁ are Calderén—Zygmund operators associated with the Calderén—Zygmund ker-
nels W= (z, y) then there exists a positive constant C such that for A > 0 and f € L'(R, |z[*dz),
we have

C
/ < Sl .
{z€Rsup s o [HE, f(2)|>A}

As a by-product, we have the following.

Theorem 6. There exists a positive constant C such that for f € L'(R, |z|**dz), we have

sup ()\/ dx) < Clfllk1-
A>0 {z€R:|HE f(2)|>A}
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4 Conjugate Poisson integrals

Dunkl-Hermite functions allow to define the conjugate Poisson integrals.

Definition 3. The conjugate Poisson integrals f,;t(t, x) of f are defined by

+oo
() = 3o e IR () Oy,

< Vant2k+1 "
+oo
_ —tVInF 2R, O(n+1,k)
fe (t,x) = Z a2k k(f)\/ﬁ hi(z).
n=0

Remark 2. The same arguments used for the heat-diffusion integral show that f,;t(t,x) €
C>® (R4 x R) and satisfy the differential-difference equations

2
(i) (L,w + ;2) fE(tx) = 225 (t, 2), (18)
() (Tiw ) ()0 ) = F o i (0,2), (19)

where Fj(f)(t,z) is the Poisson integral of f.

We now use (19) to find an integral formula for fki(t, x). Using the subordination formula (7),
taking § = tv/2n + 2k + 1, making the change of variables s — (2n + 2k 4+ 1)u, and then
substituting r = e~2* leads to the formula

1
1
e—t\/2n+2k+1 — / L(t,?“)’r’n+k+2d1“,

where

t2
t€2logr
L(t,r) = : =
(2m)2r(—logr)2

Then if Ag(¢,x,y) denotes the Poisson kernel (6), we have

1
At 2,y) Ze—t\@n-&-%—i— B (a2 th / L(t, 7y b dr
0

1+00 1
/ Z nhﬁ(x)hﬁ(y)L(taT)TH%dT:/ L(t,r)Uy(r, z, y)r* 2 dr.
~0 0

Combining this and (1) we obtain

(Tk,x + x)Ak(t> €, y)

V2 L2y [y — rx)teﬂfg""e - E +:22y2 2rz ot L
= V2 et / Byt 2 dr. (20)
VT o (- logr) (1-— 7“2)]’”’ 1—r?

Now

(Tha + ) Ful(f) (t,2) = /R (T + 2) Au(t, 2, 9) 1 (9) [y *dy. (21)
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From Propositions 1 and 2, it is easy to check that f,j(t, x) — 0 as t — 400 and so

+o0 o
fia) == [ S e
¢ Ot
Using (21), (20) and (19) we find after integration
o) = [ Q)i ay,

where

Qk(ta z, y) = 6_%(x2+y2)Ql,k<t7 z, y)

and

1 ( _ 222122
y—rr) _rieiirly 2rz
Ql,k(t’xay) = /(; (1 — r2)k+2€ 1-r? Ek <1 — r27y> Wl,k(tvr)dr

with

1

2 1—r2\2 _&

WLk(t,T) = iCk ! teong‘k"_%.
N —logr

We now use (19) to find an integral formula for f, (¢, z)

(Thp — ) Ap(t, z,y)

2 202 41 2y2

— ﬁcke*%(l%ryz) /1 S Ly 2re Y Tki%dr' (22)
VT 0 (—logr)z(1—r2)Fts bor
Now
(Thw — 2)Fr(f)(t, 2) = /Rm,m — 1) Ag(t, 2, ) f(y)ly|*dy. (23)

The same reasoning as above gives f, (t,2) — 0 as t — 400 and so

+o0 o
[ (t,x) = —/t afk_(u, x)du.

Using (23), (22) and (19) we find after integration

fi (t2) = /R M(t, 2, 9) £ ()l dy,

where

1

My (t, @, y) = e 2@y (8 2, y)

and

1 (xr —ry)e 1-r2 2rx
Ml,k(t7x7y) - /0 (1 —7’2)k+2 Ex <1 _T27y> Yk(tvr)dr7

with
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Theorem 7. There exists a positive constant C' such that for 1 < p < +oo, f € LP(R, |z|**dx),
we have

1fi (8 ) lep < Ce™V2EL ]

k,p-

Proof. We have
£t Mk = | £ HE Fr(£) () ey < CIE()E ) lkp < Ce™ V2| £l u

Theorem 8. There exists a positive constant C such that for f € L'(R, |z|**dz), we have

sup dr | < Ce*tv%HHfHk’l.

y
A>0 {z€R:| f£ (t,2)|>A}

Proof. We have

sup )\/ dx | = sup )\/ dx
A>0 {weR:|fiF (t,2)[> A} A>0 {z€R:|EHE Fi (f) (t,2)|> A}
< CIF(f) () lka < Ce™ ™V fln. u
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