- 7. *Herzfeld S.H.* // J. Phys. Chem. -1952. -56, № 8. -P. 959—963.
- 8. Corrin M.L., Harkins W.D. // J. Amer. Chem. Soc. -1947. -69, № 3. -P. 679—683.
- 9. *Mukerjee P.* // Anal. Chem. -1956. -28, № 5. -P. 870—873.
- Herz A.H. // Adv. Coll. Interface Sci. -1977. -8, № 4. -P. 237—298.
- Mitra A., Chakraborty A.K. // Ind. J. Chem. Sect. A.: Inorg., Bio-inorg., Phys., Theor., Anal. Chem. -1998. -37, № 5. -P. 418—422.
- 12. Li Y., Dias J.R. // Chem. Rev. -1997. -97, № 1. -P. 283-304.
- 13. Teobaldi G., Zerbetto F. // J. Amer. Chem. Soc. -2003. -125, № 24. -P. 7388-7393.
- 14. Mayes A.G., Blyth J., Millington R.B. et al. // Anal. Chem. -2002. -74, № 15. -P. 3649—3657.
- 15. Laschewsky L., Wattebled M., Arotcarena J.-L. et al. // Langmuir. -2005. -21, № 16. -P. 7170—7179.
- Mitra A., Nath R.K., Biswas S. et al. // J. Photochem. Photobiol. A: Chemistry. -2006. -178, № 1. -P. 98—105.
- 17. Шаповалов С.А., Коваль В.Л., Мчедлов-Петросян Н.О. и др. // Докл. НАН Украины. -1999. -№ 2. -С. 156—161.
- 18. Шаповалов С.А. // Укр. хим. журн. -2004. -70, № 3. -С. 25—29.

Научно-исследовательский институт химии при Харьковском национальном университете им. В.Н. Каразина

- 19. Шаповалов С.А. // Журн. физ. химии. -2005. -79, № 3. -С. 565—570.
- 20. Ищенко А.А., Деревянко Н.А., Попов С.В. и др. // Изв. РАН. -1997. -№ 5. -С. 950—955.
- 21. *Herz A.H.* // Photogr. Sci. Eng. -1974. -18, № 2. -P. 207-215.
- 22. Sheppard S.E. // Rev. Modern Phys. -1942. -14. Apr.-Jul. -P. 303-340.
- Полуэктов Н.С., Бельтюкова С.В., Мешкова С.В. // Журн. аналит. химии. -1971. -26, № 6. -С. 1042—1047.
- 24. Адамович Л.П., Мельник В.В., Мчедлов-Петросян H.O. // Журн. физ. химии. -1979. -53, № 2. -С. 356—359.
- West W., Pearce S. // J. Phys. Chem. -1965. -69, № 6. -P. 1894—1903.
- Stewart J.J.P. // J. Computat. Chem. -1989. -10, № 2. -P. 209—220.
- 27. Stewart J.J.P. MOPAC 2000. User's Manual. -New-York: Fujitsu Limited, 2000.
- Шаповалов С.А., Самойлов Е.А., Иванов В.В. // Изв. вузов. Химия и хим. технология. -2006. -49, № 7. -С. 39—44.
- 29. Абрамзон А.А., Бочаров В.В., Гаевой Г.М. Поверхностно-активные вещества: Справочник. -Ленинград: Химия, 1979.
- Саввин С.Б., Чернова Р.К., Штыков С.Н. Поверхностно-активные вещества. -М.: Наука, 1991.

Поступила 07.05.2007

УДК 536.631:722:665.289

Н.П. Горбачук, В.Р. Сидорко, Л.М. Куликов, С.Н. Кириенко, И.М. Обушенко, С.К. Шатских ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НоGe_{1.5} В ИНТЕРВАЛЕ ТЕМПЕРАТУР 51.54—1837 К

Впервые исследована теплоемкость и энтальпия HoGe_{1.5} в широкой области температур. Получены значения основных термодинамических функций при стандартных условиях: $C_p^{0}(298.15 \text{ K}) = 64.78 \pm 0.26$; $S^{0}(298.15 \text{ K}) = 107.3 \pm 0.9$; $\Phi'(298.15 \text{ K}) = 59.2 \pm 0.9 \text{ Дж моль}^{-1} \text{ K}^{-1}$; $H^{0}(298.15 \text{ K}) - H^{0}(0 \text{ K}) = 14337 \pm 72 \text{ Дж моль}^{-1}$. Температурные зависимости энтальпии германида (Дж моль⁻¹) в интервале температур 298.15—1178, 1178—1686, 1714—1837 К имеют вид: $H^{0}(T) - H^{0}(298.15 \text{ K}) = 6.444 \cdot 10^{-3} \cdot T^{2} + 63.34 \cdot T + 213190 \cdot T^{-1} - 20171$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 8.422 \cdot 10^{-3} \cdot T^{2} + 64.25 \cdot T + 399581 \cdot T^{-1} - 21246$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 118.04 \cdot T - 35193$ соответственно. Рассчитаны энтальпии и энтропии полиморфного превращения и плавления HoGe_{1.5}: $T_{\rm np} = 1178 \pm 15 \text{ K}$, $\Delta H_{\rm np} = = 2.9 \pm 1.4 \text{ кДж моль}^{-1}$, $\Delta S_{\rm np} = 2.5 \pm 1.2 \text{ Дж моль}^{-1} \cdot \text{K}^{-1}$ и $T_{\rm nn} = 1686 \pm 25 \text{ K}$, $\Delta H_{\rm nn} = 52.6 \pm 4.6 \text{ кДж моль}^{-1} \cdot \text{K}^{-1}$.

Редкоземельные металлы (P3M), их сплавы и соединения с другими элементами благодаря многообразию структурных типов являются источником новых материалов с широким спектром уникальных физико-химических свойств.

Являясь фундаментальными характеристика-

ми, термодинамические свойства соединений совместно со сведениями о строении диаграмм состояния представляют набор данных для прогнозирования фазовых равновесий в экспериментально неисследованных системах, понимания характера физико-химического взаимодействия компонен-

© Н.П. Горбачук, В.Р. Сидорко, Л.М. Куликов, С.Н. Кириенко, И.М. Обушенко, С.К. Шатских, 2008

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 4

тов. Наряду с достаточно полной изученностью диаграмм состояния систем P3M—Ge, термодинамические свойства фаз в этих системах изучены недостаточно, в особенности для элементов иттриевой подгруппы [1].

Цель настоящей работы — экспериментальное исследование теплоемкости и энтальпии HoGe_{1.5}, расчет его термодинамических характеристик для твердого и жидкого состояний. Какиелибо сведения, касающиеся термодинамических свойств полуторного германида гольмия, в литературе отсутствуют.

Образец для исследований был выплавлен из металлического гольмия марки ГоМ-1 (99.98 %) и монокристаллического полупроводникового германия (99.99 %) в электродуговой печи в среде аргона, очищенного плавлением титанового геттера и отожжен в течение 50 ч при температуре 1100 °С. Аттестация образца проведена методами химического и рентгенофазового анализа. Согласно аттестации, полученный сплав был двухфазным с содержанием 65 % мас. HoGe_{1.5} и 35 % мас. Ho₃Ge₄. По данным рентгенофазового анализа основная фаза (HoGe_{1.5}) имела структурный тип AlB₂ гексагональной сингонии с периодами решетки (нм): a=0.3909 и c=0.4125, что хорошо согласуется с данными [2].

Теплоемкость сплава массой 21,0997 г измерена адиабатическим методом с периодическим вводом тепла [3]. Погрешность измерений, согласно аттестации установки по стандартным образцам термодинамических свойств (α-Al₂O₃, Mo), составила 0.4 %. Измерения энтальпии проведены методом смешения на высокотемпературном

дифференциальном калориметре [4] в интервале температур 400-1200 К на образцах массой 0.2-0.3 г и на высокотемпературной калориметрической установке [5] с использованием образца массой 4.9629 г, помещенного в двойную танталовую ампулу. Погрешность измерения энтальпии не превышала 1.5 %. Экспериментальные значения теплоемкости приведены в табл. 1, а энтальпии — в табл. 2. Для расчета термодинамических функций НоGe1 5 в широкой области температур в экспериментальные данные по теплоемкости и энтальпии были введены аддитивные поправки на наличие в сплаве примесной фазы. Ввиду отсутствия в литературе данных по теплоемкости и энтальпии Ho₃Ge₄ их величины найдены нами по правилу аддитивности с использованием соответствующих значений для элементов [6]. Сопоставление экспе-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 4

Таблица 1

Экспериментальные	значения	теплоемкости
(Дж·кг ⁻¹ ·К ⁻¹) исследов	занного сп	лава

<i>Т</i> , К	C ^o p	<i>Т</i> , К	C ^o p	<i>Т</i> , К	C ^o p
51.54	110.77	119.29	188.59	220.78	220.81
53.62	115.41	126.79	195.50	231.87	223.11
58.04	122.60	134.95	198.89	242.88	225.01
64.75	133.81	144.08	200.57	254.91	226.28
72.28	147.29	154.43	204.70	266.93	228.51
78.03	154.48	165.70	207.91	276.01	230.01
81.85	157.70	177.31	211.89	283.56	230.67
90.20	166.61	188.91	213.61	289.78	231.10
98.00	172.89	200.79	217.01	294.37	231.40
105.39	178.99	210.06	218.61	297.41	231.65
112.46	185.78	210.71	218.80	301.14	231.84
		1		1	

риментальных и аддитивных величин теплоемкости и энтальпии для исследованных нами ранее однофазных германидов Ho_5Ge_3 и HoGe показывает их различие в пределах не более 1 % по теплоемкости и 5 % — по энтальпии. Уточненные на наличие примесной фазы величины теплоемкости HoGe_{1.5} обработаны с помощью пакета программ, позволяющих проводить сглаживание температурной зависимости теплоемкости, экстраполяцию ее к 0 К и расчет термодинамических функций [3]. Сглаженные значения теплоемкости и рассчитанные величины энтальпии, энтропии и приведенной энергии Гиббса HoGe_{1.5} при низких температуррах приведены в табл. 3. Температурная

Таблица 2

Экспериментальные значения энтальпии (Дж·кг⁻¹) исследованного сплава

<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15 \text{ K})$	<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15 \text{ K})$	<i>Т</i> , К	$H^{0}(T) - H^{0}(298.15 \text{ K})$
463	39267	852	139667	1324	281179
521	53485	873	143312	1390	301003
537	57480	930	160353	1476	327926
580	68349	1009	174483	1559	352753
598	72564	1085	200365	1623	373869
641	83278	1109	208141	1674	392546
687	94918	1171	226050	1688	523546
767	116013	1185	238829	1714	606771
804	127360	1221	249216	1775	639771
812	127502	1239	251944	1837	664087

Таблица З

Теплоемкость, энтропия, приведенная энергия Гиббса $({\rm Д} {\tt w} \cdot {\tt Mons}^{-1} \cdot {\tt K}^{-1})$ и энтальпия $({\rm Q} {\tt w} \cdot {\tt Mons}^{-1})$ НоGe_{1.5 при низких температурах

Т, К	C ^o p	S ^o	Φ'	$H^{0}(T) - H^{0}(0 \text{ K})$
10	_	0.7	0.3	4
20	_	2.3	0.9	28
30	_	5.7	1.8	116
40	_	10.8	3.4	295
50	_	16.7	5.5	560
60	35.24	22.7	7.8	891
70	39.70	28.6	10.4	1272
80	43.59	34.2	13.0	1692
90	46.61	39.4	15.7	2141
100	49.16	44.4	18.3	2614
110	51.28	49.1	20.9	3107
120	53.21	53.6	23.4	3616
130	54.76	57.4	25.9	4140
140	55.94	61.7	28.3	4677
150	56.90	65.5	30.7	5225
160	57.66	69.1	33.0	5783
170	58.39	72.6	35.2	6352
180	59.10	75.9	37.4	6929
190	59.78	79.0	39.5	7515
200	60.44	82.1	41.5	8109
210	61.06	85.0	43.5	8712
220	61.64	87.9	45.5	9322
230	62.19	90.6	47.4	9940
240	62.69	93.3	49.2	10565
250	63.16	95.8	51.0	11197
260	53.60	98.3	52.8	11836
270	64.00	100.8	54.6	12482
280	64.35	103.2	56.2	13135
290	64.62	105.5	57.9	13795
298.15	64.78	107.3	59.2	14337

зависимость энтальпии сплава (табл. 2) в интервалах 463—1171, 1185—1674, 1714—1837 К разная, что согласно [1] соответствует низко-, высокотемпературной модификации HoGe_{1.5} и его жидкой фазе. Экспериментальная точка при 1698 К соответствует твердо-жидкой области L+ HoGe [1].

Температуры $\alpha \leftrightarrow \beta$ полиморфного превращения и инконгруэнтного плавления HoGe_{1.5} найдены как средние для интервалов, разделяющих α , β и жидкую фазы германида (T_{np} =1178 ± 15 K, T_{nn} =1686 ± 25 K), и хорошо согласуются с данными [1], составляющими соответственно 1198 (± 1 %) и 1673 (± 1 %) K.

Аппроксимация уточненных на наличие примеси данных по энтальпии HoGe_{1.5} для конденсированного состояния проведена уравнением Майера–Келли, а для жидкой фазы — линейной зависимостью.

Температурная зависимость энтальпии (Джмоль⁻¹) германида в интервале 298.15—1178 К имеет вид:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = 6.444 \cdot 10^{-3} \cdot T^{2} + 63.34 \cdot T + 213193 \cdot T^{-1} - 20171 .$$
(1)

Для согласования низкотемпературной теплоемкости с высокотемпературными данными коэффициенты (1) находили методом наименьших квадратов с учетом граничных условий [7]: $H^{0}(T) - H^{0}(298.15 \text{ K}) = 0$ при 298.15 К и $C_{p}^{0}(298.15 \text{ K}) = 64.78 \text{ Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1}$.

На основании уравнения (1) получены температурные зависимости теплоемкости, энтропии, приведенной энергии Гиббса (Дж·моль⁻¹·K⁻¹):

$$-106595 \cdot T^{-2} - 321.99E. \tag{4}$$

Температурная зависимость энтальпии (Джмоль⁻¹) НоGе_{1.5} для интервала 1178—1686 К следующая:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = 8.422 \cdot 10^{-3} \cdot T + + 64.25 \cdot T + 399581 \cdot T^{-1} - 21246 .$$
 (5)

Теплоемкость, энтропия и приведенная энергия Гиббса (Дж·моль⁻¹·K⁻¹) в интервале температур 1178—1686 К аппроксимируются следующими зависимостями:

$$C_{p}^{o}(T) = 16.844 \cdot 10^{-3} \cdot T + 64.25 - 399581 \cdot T^{-2}; \quad (6)$$

$$S^{o}(T) = 16.844 \cdot 10^{-3} \cdot T + 64.25 \cdot \ln T +$$

$$+ 199791 \cdot T^{-2} - 267.15; \quad (7)$$

$$\Phi'(T) = 8.422 \cdot 10^{-3} \cdot T + 64.25 \cdot \ln T + 21246 \cdot T^{-1} -$$

$$-199791 \cdot T^{-2} - 331.40.$$
 (8)

Температурная зависимость энтальпии (Джмоль⁻¹) жидкой фазы HoGe_{1.5} описана линейной зависимостью:

$$H^{0}(T) - H^{0}(298.15 \text{ K}) = 118.04 \cdot T - 35193$$
. (9)

Коэффициенты уравнений (5) и (9) найдены с учетом только первого граничного условия. Экстраполяция энтальпий германида, найденных по уравнениям (1), (5) и (9), к соответствующим

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 4

температурам позволила произвести расчет энтальпии и энтропии полиморфного превращения и плавления HoGe_{1.5}:

$$\Delta H_{\rm пp} = 2.9 \pm 1.4 \ \kappa \mbox{Д} \mbox{ж-моль}^{-1}, \ \Delta S_{\rm пp} = 2.5 \pm 1.2 \ \mbox{Д} \mbox{ж-моль}^{-1} \mbox{K}^{-1}, \ \Delta H_{\rm пл} = 52.6 \pm 4.6 \ \kappa \mbox{Д} \mbox{ж-моль}^{-1}, \ \Delta S_{\rm пл} = 31.2 \pm 2.7 \ \mbox{Д} \mbox{ж-моль}^{-1} \mbox{K}^{-1}.$$

Анализ низкотемпературной теплоемкости НоGe1 5 показывает, что она несколько выше, чем у изоструктурных ему германидов лютеция и гадолиния [8]. Поскольку низкотемпературная теплоемкость LuGe_{1.5} и GdGe_{1.5} может быть представлена суммой электронной и фононной составляющих, то наблюдаемое превышение ее для HoGe₁₅ объясняется наличием дополнительного вклада по Шоттки, связанного с термическим возбуждением 4f-электронов на более высокие энергетические уровни, возникшие вследствие расщепления основных состояний ионов Но³⁺ энергетическим полем кристалла. Для нахождения вклада по Шоттки необходимо от общей изобарной теплоемкости отделить ее регулярную часть (сумма фононного и электронного вкладов). Рассматривая фононный вклад в теплоемкость для GdGe₁₅ и LuGe₁₅, можно сказать, что, с одной стороны, увеличение массы атомов-осциляторов должно приводить к уменьшению частот их колебаний и, как следствие, к более высокому темпу роста теплоемкости, но, с другой стороны, уменьшение объема элементарной ячейки ведет к обратному эффекту. Кроме того, разными для этих соединений могут быть и коэффициенты электронной теплоемкости, а значит и разная зависимость электронной составляющей. Ввиду отсутствия данных о коэффициентах электронной теплоемкости и фононных спектрах рассматриваемых соединений регулярная часть теплоемкости HoGe₁₅ находилась как половина суммы изобарных теплоемкостей LuGe_{1.5} и GdGe_{1.5}. Вклад по Шоттки $C_{f,m}$ для HoGe_{1.5} найден как разность его изобарной теплоемкости и регулярной ее части (рисунок, а). Монотонный рост теплоемкости исследованного германида вплоть до температуры плавления дает основания представить изобарную теплоемкость его при температурах выше комнатной в виде суммы фононного, электронного, ангармонического и вклада по Шоттки, обусловленного мультиплетной структурой термов Ho^{3+} ($C_{f,M}$). Нами проведена оценка составляющей $C_{f,M}$ для интервала 300-2400 К (рисунок, б). При расчете учитывались электронные переходы с основного уровня ${}^{5}I_{8}$ на на первые три мультиплетные уровни ${}^{5}I_{7}$

Вклад в теплоемкость по Шоттки при низких (*a*) и высоких (б) температурах.

(5000 см⁻¹), ${}^{5}I_{6}$ (8600 см⁻¹), ${}^{5}I_{5}$ (11100 см⁻¹), а также переходы ${}^{5}I_{7} \rightarrow {}^{5}I_{6}$ [9]. Величины теплоемкости рассматриваемых германидов, полученные на основании данных по энтальпии, близки в пределах погрешности определения (4—5%) для HoGe_{1.5} и LuGe_{1.5} и более низкие для GdGe_{1.5} [10]. Поскольку фононная составляющая достигает своего предельного значения 3Rn (согласно классической теории), при температурах 500—600 К наблюдаемая разница определяется разными температурными зависимостями электронной и ангармонической составляющих теплоемкости, а также наличием у HoGe_{1.5} дополнительного вклада $C_{f.M}$.

Рассматривая ряд изоструктурных германидов GdGe_{1.5} \rightarrow HoGe_{1.5} \rightarrow LuGe_{1.5}, следует обратить внимание на увеличение в этом направлении температур полиморфного превращения (1114 \rightarrow 1178 \rightarrow 1334 K), энтальпий превращения (1.2 \rightarrow 2.9 \rightarrow 3.3 кДж·моль⁻¹) и рост теплоемкости в точке превращения (2.2 \rightarrow 7.0 \rightarrow 9.6 %).

Процесс плавления в данном ряду германидов, наоборот, происходит при понижении температур плавления (1719 \rightarrow 1686 \rightarrow 1590 K) и энтальпий плавления (56.3 \rightarrow 52.6 \rightarrow 50.2 кДж·моль⁻¹). Скачок теплоемкости в точке плавления также уменьшается (51.8, 27.6, 26.7 %), что указывает на меньшее изменение структуры ближнего порядка, определяющей теплоемкость расплавов. Наблюдаемая закономерность в изменении термических характеристик, характеризующих фазовые превращения, вероятно, является следствием усиления связей Me-Me и ослабления Me-Ge в рассматриваемом ряду.

РЕЗЮМЕ. Вперше досліджено теплоємність та ентальпію НоGe_{1.5} в широкій області температур. Отримано значення основних термодинамічних функцій при стандартних умовах: $C_p^{0}(298.15 \text{ K}) = 64.78\pm 0.26$; $S^{0}(298.15 \text{ K}) = 107.3 \pm 0.9$; $\Phi'(298.15 \text{ K}) = 59.2 \pm 0.9 \text{ Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1}$; $H^{0}(298.15 \text{ K}) - H^{0}(0 \text{ K}) = 14337 \pm 72 \text{ Дж} \cdot \text{моль}^{-1}$. Температурні залежності ентальпії германіду (Дж · моль⁻¹) в інтервалах температур 298.15—1178, 1178—1686, 1714—1837 K мають вигляд: $H^{0}(T) - H^{0}(298.15 \text{ K}) = 6.444 \cdot 10^{-3}$. $T^{2} + 63.34 \cdot T + 213190 \cdot T^{-1} - 20171$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 8.422 \cdot 10^{-3} \cdot T^{2} + 64.25 \cdot T + 399581 \cdot T^{-1} - 21246$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 118.04 \cdot T - 35193$ відповідно. Розраховано ентальпії і ентропії поліморфного перетворення та плавлення НоGe_{1.5}: $T_{np} = 1178 \pm 15 \text{ K}$, $\Delta H_{np} = 2.9 \pm 1.4 \text{ кДж} \cdot \text{моль}^{-1}$, $\Delta S_{np} = 2.5 \pm 1.2 \text{ Дж} \cdot \text{моль}^{-1}$, $\Delta T_{na} = 1686 \pm 25 \text{ K}$, $\Delta H_{na} = -52.6 \pm 4.6 \text{ кДж} \cdot \text{моль}^{-1}$, $\Delta S_{nn} = 31.2 \pm 2.7 \text{ Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1}$.

SUMMARY. Heat capacity and enthalpy of HoGe_{1.5} was investigated for the first time in wide temperature range. The values of thermodynamic functions were determined under standard conditions: $C_p^{0}(298.15 \text{ K}) = 64.78\pm 0.26$; $S^{0}(298.15 \text{ K}) = 107.3 \pm 0.9$; $\Phi'(298.15 \text{ K}) = 59.2 \pm 0.9 \text{ J} \cdot \text{mole}^{-1} \cdot \text{K}^{-1}$; $H^{0}(298.15 \text{ K}) - H^{0}(0 \text{ K}) = 14337 \pm 72 \text{ J} \cdot \text{mole}^{-1}$. Temperature dependences of enthalpy (J·mole⁻¹) of germanide were determined as: $H^{0}(T) - H^{0}(298.15 \text{ K}) = 6.444 \cdot 10^{-3} \cdot T^{2} + 63.34 \cdot T + 213190 \cdot T^{-1} - 20171$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 8.422 \cdot 10^{-3} \cdot T^{2} + 64.25 \cdot T + 399581 \cdot T^{-1} - 21246$, $H^{0}(T) - H^{0}(298.15 \text{ K}) = 6.444 \cdot 10^{-3} \cdot 10^{-3} \cdot T^{-3}$

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев

118.04·*T* – 35193, for 298.15—1178, 1178—1686, 1714—1837 K, respectively. The enthalpies and entropies of HoGe_{1.5} polymorphic transformation and melting were calculated: *T*_{tr} = 1178 ± 15 K, ΔH_{tr} =2.9 ± 1.4 κJ·mole⁻¹, ΔS_{tr} =2.5 ± 1.2 J·mole⁻¹. K⁻¹ and *T*_{tr}=1686 ± 25 K, ΔH_{tr} =52.6 ± 4.6 κJ·mole⁻¹, ΔS_{tr} =31.2 ± 2.7 J·mole⁻¹·K⁻¹.

- Буянов Ю.И., Великанова Т.Я., Марценюк П.С. и др. Фазовые равновесия и термодинамика фаз в двойных системах редкоземельных металлов с германием. -Киев, 1998.
- 2. Сременко В.Н., Обушенко І.М., Буянов Ю.І. // Доп. АН УРСР. Сер.А. -1980. -№ 7. -С. 87—91.
- 3. Болгар А.С., Крикля А.И., Суодис А.П., Блиндер А.В. // Журн. физ. химии. -1998. -72, № 4. -С. 439—443.
- 4. Болгар А.С., Горбачук Н.П., Блиндер А.В. // Теплофизика высоких температур. -1996. -**34**, № 4. -С. 541—545.
- Болгар А.С., Турчанин А.Г., Фесенко В.В. Термодинамические свойства карбидов. -Киев: Наук. думка, 1973.
- Hultgren R., Desai R.D., Hawkins D.T. et al. Selected values of the thermodynamic properties of the elements. -Metal Park: Amer. Soc. Metals, 1973.
- 7. Литвиненко В.Ф., Болгар А.С., Муратов В.Б. и др. Деп. в ВИНИТИ 19.04.1984, № 6300-В.
- 8. *Горбачук Н.П., Болгар А.С. //* Порошк. металлургия. -2001. -№ 1-2. -С. 71—75.
- 9. Ельяшевич М.А. Спектры редких земель. -М.: ГИТТЛ, 1953.
- 10. Горбачук Н.П., Болгар А.С. // Порошк. металлургия. -1999. -№ 9-10. -С. 41—44.

Поступила 20.04.2007

УДК 54.128.13:541.124:[542.943-386+546.262-386]:549.67

Т.Л. Ракитская, Т.А. Киосе, В.Я. Волкова

АДСОРБЦИОННЫЕ СВОЙСТВА БАЗАЛЬТОВОГО ТУФА И КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ ЗАКРЕПЛЕННЫХ НА НЕМ АЦИДОКОМПЛЕКСОВ Рd (II) И Cu (II) В РЕАКЦИИ ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА

Показано, что кислотно-модифицированный базальтовый туф (H-БТ6) избирательно адсорбирует Cu (II) из растворов, содержащих K_2PdCl_4 и CuX₂ (X = Cl⁻, NO₃⁻). Установлена взаимосвязь между адсорбируемостью CuX₂ и активностью катализатора Pd(II)-Cu(II)/H-БТ6 в реакции низкотемпературного окисления монооксида углерода.

Базальтовый туф (БТ) — природный полиминеральный цеолит, содержащий клиноптилолит, морденит и монтмориллонит в определенном соотношении, является перспективным сорбентом для очистки сточных вод от ионов Cu (II) [1], а

© Т.Л. Ракитская, Т.А. Киосе, В.Я. Волкова, 2008

его кислотно-модифицированные формы (Н-БТ) были впервые применены в качестве носителя ацидокомплексов Pd (II) и Cu (II), катализирующих при совместном присутствии низкотемпературное окисление монооксида углерода кислородом воз-