І.І. Захаров, В.В. Бондар, О.І. Захарова, М.Ф. Тюпало РОЗРАХУНОК ОКИСНЮВАЛЬНО-ВІДНОВНИХ ПОТЕНЦІАЛІВ АКВАКОМПЛЕКСІВ МЕТАЛІВ ЗМІННОЇ ВАЛЕНТНОСТІ

Неемпіричним квантово-хімічним методом функціонала густини DFT/B3LYP з використанням базису LANL2DZ показана можливість розрахунку окиснювально-відновних потенціалів електрохімічних систем $Me^{+(n+1)}/Me^{+n}$ для перехідних металів — ванадія, хрома, мангана, ферума і кобальта. У розрахунку енергії Гіббса реакції $Me^{+n} - e \rightarrow Me^{+(n+1)}$ використана модельна реакція для аквакомплексів у газовій фазі: $[Me(H_2O)_6]^{+n} + H^+ \rightarrow [Me(H_2O)_6]^{+(n+1)} + 1/2H_2\uparrow$. Розраховані значення потенціалів розглянутих окиснювально-відновних систем добре співпадають з експериментальними даними у водному розчині.

Квантово-хімічне моделювання електрохімічних процесів широко використовується в сучасних дослідженнях [1—4]. Так, проведене в роботі [5] DFT моделювання реакцій осадження металів для розрахунку стандартних окиснювально-відновних потенціалів йонів перехідних металів показало високу надійність і відносну точність квантово-хімічного підходу. У даній роботі вперше зроблена спроба квантово-хімічного розрахунку значень окиснювально-відновних потенціалів Ме⁺(n+1)/Me⁺ⁿ.

Неемпіричним методом молекулярних орбіталей (МО) в теорії функціонала густини (DFT) з трьохпараметричним обмінно-кореляційним функціоналом B3LYP [6, 7] нами проведені квантово-хімічні розрахунки молекулярних структур і частот коливання октаедричних аквакомплексів перехідних металів четвертого періоду для різних типів симетрії (T_h і D_{2h}). Наявність ефекту Яна-Теллера зазвичай приводить до пониження висо-косиметричного основного стану комплексу [8]. У даній роботі ми прийняли прямокутну структуру октаедричних комплексів з симетрією D_{2h} (рисунок).

Оптимізована модель розрахунків структур октаедричних аквакомплексів перехідних металів за різними типами симетрії: $T_h (R_1 = R_2 = R_3)$ та $D_{2h} (R_1 \neq R_2 \neq R_3)$.

Оптимізація геометричних параметрів молекулярної структури комплексів проведена з використанням ефективного потенціалу LANL2 [9] для внутрішніх (остовних) оболонок атомів перехідних елементів. Для валентних орбіталей в розрахунках використано розширений doubleбазис (DZ). (Такий варіант розрахунків в комплексі програм Gaussian-92 характеризується абревіатурою B3LYP/LANL2DZ [10]). Заряди атомів розраховувалися на основі аналізу електронної густини по Маллікену. Всі розрахунки аквакомплексів проведені в наближенні "слабкого поля" (з максимальним значенням спіну *d*-електронів йона перехідного металу) і "сильного поля" (низькоспінового стану).

Попередньо було з'ясовано, що енергія утворення аквакомплексів металів у наближенні "сильного поля" помітно більша, ніж для "слабкого поля". Всі оптимізовані молекулярні структури аквакомплексів у високоспіновому стані (рисунок) відповідають реальному енергетичному мінімуму (табл. 1) (розрахунок коливального спектру не має негативних значень частот). Так, енергія утворення $Mn(H_2O)_6^{+2}$ в "сильному полі" за результатами розрахунків більша за енергію утворення у "слабкому полі" на 0.09 ат.од. (234.23 кДж).

У табл. 2 наведені результати B3LYP/ LANL2DZ розрахунків енергетичних параметрів аквакомплексів перехідних металів у різних зарядових станах $[Me(H_2O)_6]^{+n}$ (де n = 2—3).

Окиснювально-відновні системи, потенціали яких менші за потенціал водневого електроду, у водному середовищі термодинамічно нестійкі і їх відновлена форма вступає у взаємодію з йонами H⁺ і відновлює їх з виділенням молекулярного водню. Наприклад:

$$Cr^{2+} + H^+ \rightarrow Cr^{3+} + 1/2H_2^{\uparrow}$$
 ado
 $Cr^{2+} + H^+(OH^-) \rightarrow Cr^{3+} + OH^- + 1/2H_2^{\uparrow}.$

© І.І. Захаров, В.В. Бондар, О.І. Захарова, М.Ф. Тюпало, 2008

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 4

Таблиця 1

Геометричні параметри і заряди на атомах аквакомплексів металів змінної валентності

Аква- комплекс	Розрахований заряд		Тип	R_1	R_2	R_3
	на мета- лі в ком- плексі	на мо- лекулі води	симет- рії		Å	
$V(H_2O)_6^{2+}$	1.12	0.146	T_{h}	2.15	2.15	2.15
$V(H_2O)_6^{3+}$	1.45	0.258	D_{2h}^{n}	1.99	2.06	2.06
$Cr(H_2O)_6^{2+}$	1.10	0.15	D_{2h}^{2h}	2.35	2.10	2.09
$Cr(H_2O)_6^{3+}$	1.30	0.28	T_h	2.00	2.00	2.00
$Mn(H_2O)_6^{2+}$	1.14	0.143	T_h	2.19	2.19	2.19
$Mn(H_2O)_6^{3+}$	1.33	0.22	D_{2h}	2.15	1.96	1.97
$Fe(H_2O)_6^{2+}$	1.04	0.16	D_{2h}	2.16	2.16	2.12
$Fe(H_2O)_6^{3+}$	1.32	0.28	D_{2h}	2.05	2.05	2.04
$Co(H_2O)_6^{2+}$	0.98	0.17	D_{2h}	2.14	2.12	2.06
Co(H ₂ O) ₆ ³⁺	1.22	0.29	D_{2h}	2.04	2.04	2.00

Ця реакція обрана нами як модель квантовохімічних розрахунків газофазної реакції для аквакомплексів:

$$[Cr(H_2O)_6]^{+2} + H^+ \rightarrow [Cr(H_2O)_6]^{+3} + 1/2H_2^{\uparrow}.$$
 (1)

Максимальна робота, яку може зробити система при протіканні реакції при постійному ти-

Таблиця 2

Повні енергії E_{total} , енергії нульових коливань E_0 і ентропії S_{298}^0 аквакомплексів перехідних металів у різних зарядових станах

Аква- комплекс	Е _{total} , ат.од.	Тип симет- рії	Електронна конфігурація та спін йона у "слабкому полі"	Елект- ронний терм	<i>Е</i> ₀ , кДж∕мол⊧	S ⁰ ₂₉₈ , Дж/(моль∙К)
$V(H_2O)_6^{2+}$	-529.531884	T_{h}	d^3 , $s = 3/2$	${}^{4}A_{a}$	401.52	492.34
$V(H_2O)_6^{3+}$	-528.960697	D_{2h}	$d^2, \ s = 1$	${}^{3}B_{3q}^{\circ}$	415.34	452.79
$Cr(H_2O)_6^{2+}$	-544.472743	D_{2h}	$d^4, \ s = 2$	${}^{5}A_{g}^{5}$	397.07	531.05
$Cr(H_2O)_6^{3+}$	-543.914836	T_{h}^{2n}	d^3 , $s = 3/2$	${}^{4}A_{o}^{*}$	414.59	433.91
$Mn(H_2O)_6^{2+}$	-562.110725	T_{h}^{n}	$d^5, s = 5/2$	${}^{6}A_{g}^{\circ}$	396.36	519.82
$Mn(H_2O)_6^{3+}$	-561.476921	D_{2h}	$d^4, \ s = 2$	${}^{5}A_{g}^{\circ}$	408.67	466.08
$Fe(H_2O)_6^{2+}$	-581.590621	D_{2h}	$d^6, \ s = 2$	${}^{5}B_{1g}^{\circ}$	401.25	510.00
$Fe(H_2O)_6^{3+}$	-580.980305	D_{2h}	$d^5, s = 5/2$	${}^{6}A_{g}^{\circ}$	409.18	462.68
$Co(H_2O)_6^{2+}$	-603.212027	D_{2h}	$d^7, \ s = 3/2$	${}^{4}B_{3g}^{0}$	400.29	503.76
$Co(H_2O)_6^{3+}$	-602.554005	D_{2h}	$d^6, \ s = 2$	${}^{5}B_{1g}$	409.70	456.21
H ₂	-1.174416	$D_{\infty h}$	—	${}^{1}\Sigma_{a}^{0}$	26.65	130.28
0 ₂	-150.314740	$D_{\infty h}$	_	${}^{3}\Sigma_{q}^{8}$	8.66	205.81
H ₂ O	-76.414316	C_{2v}	—	${}^{1}A_{1}^{\delta}$	54.51	188.82

ску і температурі, дорівнює зменшенню вільної енергії Гіббса ($-\Delta G$). Розраховане значення ΔG служить критерієм можливості мимовільного протікання окиснювально-відновної реакції і дозволяє встановити зв'язок між хімічною та електричною енергією [4]: $-\Delta G = nF\varphi$.

Звідси витікає, що для одноелектронного процесу (n = 1) в стандартних умовах

$$\Delta G^0_{298} = F \cdot \varphi^0, \qquad (2)$$

де F — число Фарадея, кул; ϕ^0 — різниця потенціалів щодо водневого електроду, В.

Всі значення електродних потенціалів зазвичай приводяться в довідкових виданнях за водневою шкалою, в якій як еталон прийнято потенціал електродного процесу відновлення водню:

$$\mathrm{H}^{+} + e \rightarrow 1/2\mathrm{H}_{2}\uparrow.$$
 (3)

Рівняння окислення металу у випадках, що розглядаються нами, має вигляд:

$$\operatorname{Me}^{+n} - e \to \operatorname{Me}^{+(n+1)},$$
 (4)

а для сумарного процесу (3) і (4):

 $H^+ + Me^{+n} \rightarrow 1/2H_2 + Me^{+(n+1)},$

яке відповідає модельній реакції (1).

Оскільки зміна енергії Гіббса напівреакції (3) в стандартних умовах дорівнює нулю, то розраховане ΔG_{298}^0 для реакції (1) характеризуватиме потенціал даного окиснювально-відновного процесу

щодо водневого електрода. Розрахована нами змі-

на енергії Гіббса в газофазній реакції (1) складає ΔG^{\cup}_{298} = -36523.14 Дж/моль (табл. 2), що відповідно до рівняння (2) дає значення для $\phi^0(Cr^{2+}/Cr^{3+}) = +0.378$ В. Напрямок мимовільного процесу (1) відповідає реакції окиснення Cr^{2+} . У літературі електродний процес зазвичай записується у бік відновлення Cr^{3+}/Cr^{2+} , тому знак $\phi^0(Cr^{2+}/Cr^{3+})$ буде негативний — -0.378 В. Розрахована величина потенціалу мало відрізняється від експериментального значення в рідкій фазі і складає -0.404 В [12].

Відзначимо, що в рідинній і газовій фазах переміщення електрона відбувається за різними механізмами. У розчині при зовнішньосферному переносі електрон відновника на початку сольватується молекулами розчинника, а потім сольватований електрон реагує з окиснювачем, у той же час у газовій фазі відбувається безпосереднє переміщення електрона до йона і перекриття їх орбіталей [11]. Окиснювально-відновні системи, потенціали яких більше за потенціал кисневого електрода, у водному середовищі термодинамічно нестійкі і їх окиснена форма вступає у взаємодію з молекулами води і розкладає її з виділенням кисню. Наприклад:

$$2\mathrm{Mn}^{3+} + \mathrm{H}_{2}\mathrm{O} \rightarrow 2\mathrm{Mn}^{2+} + 2\mathrm{H}^{+} + 1/2\mathrm{O}_{2}\uparrow$$

Моделювання цієї реакції відповідає квантово-хімічному розрахунку газофазної реакції для аквакомплексів:

$$2[Mn(H_2O)_6]^{+3} + H_2O \rightarrow 2[Mn(H_2O)_6]^{+2} + + 2H^+ + 1/2O_2\uparrow.$$
(5)

Розрахована нами зміна енергії Гіббса в газофазній реакції (5) складає $\Delta G^0_{298} = -54617.3$ Дж/моль, що відповідно до рівняння (2) дає значення для $\varphi^0(Mn^{3+}/Mn^{2+}) = +0.566$ В. Напрямок мимовільного процесу (3) відповідає реакції відновлення, а потенціал окиснювально-відновної системи Mn³⁺/Mn²⁺ розраховано по рівнянню (5) щодо кисневого електрода.

Оскільки при електролізі води одночасно виділяється кисень і водень:

$$\mathrm{H}_{2}\mathrm{O} \rightarrow 1/2\mathrm{O}_{2}\uparrow + \mathrm{H}_{2}\uparrow$$

то можна оцінити потенціал кисневого електрода щодо водневого по модельній реакції в газовій фазі:

$$H_2 = 1/2H_2O - 1/2O_2.$$
 (6)

Розрахована зміна енергії Гіббса в газофазній реакції (6) в рамках методу B3LYP/LANL2DZ складає $\Delta G^{0}_{298} = -90017.6 \, \text{Дж/моль}$, що відповідно до рівняння (2) дає значення потенціалу кисневого електрода $\phi^{0}(\text{H}^{+}/\text{O}_{2}) = +0.933 \text{ B}.$

З урахуванням знайденого нами значення потенціалу кисневого електрода можна визначити потенціал окиснювально-відновної системи $\phi^0(Mn^{3+}/Mn^{2+}) = (0.566 + 0.933) = +1.499$ В щодо водневого електрода. Це значення добре співпадає з довідковою величиною для водних розчинів +1.51 В [12].

Можна також провести розрахунок потенціалу модельної реакції аквакомплексів щодо водневого електрода:

$$[Mn(H_2O)_6]^{+2} + H^+ = [Mn(H_2O)_6]^{+3} + 1/2H_2^{\uparrow}.$$
(7)

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2008. Т. 74, № 4

Для газофазної реакції (7) розраховане нами значення енергії Гіббса складає $\Delta G_{0298}^{0} = + 144632.3$ Дж/моль, що дає значення для $\varphi^{0}(Mn^{2+}/Mn^{3+}) = -1.499$ В. Тут мимовільний процес направлений у бік відновлення і розраховане значення потенціалу відновлення співпадає з розрахунком по рівнянню (5).

Нами розраховані також аналогічні одноелектронні реакції відновлення V^{+3} , Fe^{+3} , Co^{+3} і показано, що розраховані значення окиснювально-відновних потенціалів добре відповідають експериментальним значенням у водному розчині (табл. 3).

Таблиця З

Розраховані та експериментальні значення окиснювально-відновних потенціалів (ϕ^0) систем $Me^{+(n+1)}/Me^{+n}$ у водних розчинах

Система	$\Delta_r H^0$	$\Delta_r G^0_{298}$	φ ⁰ , B		
$\mathrm{Me}^{+(n+1)}/\mathrm{Me}^{+n}$	кДж/	моль	Розраху- нок	Експери- мент [12]	
V^{3+}/V^{2+}	+14.85	+49.68	-0.514	-0.255	
Cr^{3+}/Cr^{2+}	+46.02	+36.52	-0.378	-0.404	
Mn^{3+}/Mn^{2+}	-148.03	-144.64	+1.499	+1.51	
$\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}$	-82.01	-76.70	+0.795	+0.771	
$\mathrm{Co}^{3+}/\mathrm{Co}^{2+}$	-208.74	-203.49	+2.100	+1.95	

Примітка. Розрахунки теплоти $\Delta_r H^0$ реакцій $[Me(H_2O)_6]^{+n} + H^+ \rightarrow [Me(H_2O)_6]^{+(n+1)} + 1/2H_2^{\uparrow}$ проведені з урахуванням енергій нульових коливань: $\Delta_r H^0 = \Delta_r E_{total} + \Delta_r E_0$. Енергію Гіббса $\Delta_r G^0_{298}$ розраховували по рівнянню: $\Delta_r G^0_{298} = \Delta_r H^0 - T \cdot \Delta_r S^0_{298}$.

Таким чином, показано, що для оцінки потенціалу одноелектронних окиснювально-відновних систем у рідинній фазі перехідних металів можна використовувати ab initio квантово-хімічні розрахунки для газофазної реакції аквакомплексів:

$$[Me(H_2O)_6]^{+n} + H^+ \rightarrow [Me(H_2O)_6]^{+(n+1)} + 1/2 H_2^{\uparrow}.$$

РЕЗЮМЕ. Неэмпирическим квантово-химическим методом функционала плотности DFT/B3LYP с использованием базиса LANL2DZ показана возможность расчета окислительно-восстановительных потенциалов электрохимических систем $Me^{+(n+1)}/Me^{+n}$ для переходных металлов: ванадия, хрома, мангана, феррума и кобальта. В расчете энергии Гиббса реакции $Me^{+n} - e \rightarrow Me^{+(n+1)}$ использована модельная реакция для аквакомплексов в газовой фазе: $[Me(H_2O)_6]^{+n} + H^+ \rightarrow [Me(H_2O)_6]^{+(n+1)} + 1/2H_2^{\uparrow}$. Рассчитанные значения потенциалов рассмотренных окислительно-восстановительных систем хорошо совпадают с экспериментальными данными в водном растворе.

SUMMARY. By nonempirical quantum-chemical method of density functional theory DFT/B3LYP with use of basis LANL2DZ it is shown an opportunity of calculation of oxidation-reduction potentials of the electrochemical systems $Me^{+(n+1)}/Me^{+n}$ for transition metals: vanadium, chrome, manganese, iron and cobalt. In calculation of Gibbs's energy of electrode reaction $Me^{+n} - e \rightarrow Me^{+(n+1)}$ was used the model reaction in gas phase: $[Me(H_2O)_6]^{+n} + H^+ \rightarrow [Me(H_2O)_6]^{+(n+1)} + 1/2H_2$. The calculated values of potentials for the considered oxidation-reduction systems well correspond to experimental data in a water solution.

- 1. Похмурський В., Корній С., Копилець В. // Фізикохімічна механіка матеріалів. Спец. вип. "Проблеми корозії та протикорозійного захисту матеріалів". -2006. -№ 5. -С. 26—33.
- 2. Копилець В., Корній С. // Там же. -2006. -№ 5. -С. 34—38.
- 3. Захаров И.И., Тюпало Н.Ф., Шаповалова И.Н., Та-

Сєвєродонецький технологічний інститут Східноукраїнського національного університету ім. В. Даля

тарченко Г.О. // Фізико-хімічна механіка матеріалів. -2005. -**41**, № 1. -С. 1—7.

- 4. Тюпало М.Ф., Захаров І.І. // Фізико-хімічна механіка матеріалів. Спец. вип. "Проблеми корозії та протикорозійного захисту матеріалів". -2006. -№ 5. -С. 120—126.
- 5. Сердюк В.А., Варгалюк В.Ф. // Вестн. Днепропетр. ун-та. Сер. Хим. -2005. -Вып. 11, № 7. -С. 35—37.
- Becke A.D. // Phys. Rev. -1988. -A38. -P. 3098—3100.
 Lee C., Yang W., Parr R.G. // Ibid. -1988. -B37.
- -P. 785–789.
- 8. Захаров И.И., Колбасина О.И., Семенюк Т.Н. и др. // Журн. структур. химии. -1994. -**35**, № 2. -С. 32—39.
- 9. Hay P.J., Wadt W.R. // J. Chem. Phys. -1985. -82. -P. 270-310.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 92/DFT, Rev. G.2. -Pittsburgh PA: Gaussian, Inc., 1993.
- Горбунов А.И., Гуров А.А., Филиппов Г.Г., Шаповалов В.Н. Теоретические основы общей химии. -М.: МГТУ, 2003.
- Артеменко А.И., Малеванный В.А., Тикунова И.В. Справочное руководство по химии. -М.: Высш. шк., 1990.

Надійшла 09.02.2007